231 |
Test-Retest Reliability of Tone- And 40 Hz Train-Evoked Gamma Oscillations in Female Rats and Their Sensitivity to Low-Dose NMDA Channel BlockadeRaza, Muhammad U., Digavalli, Sivarao V. 01 August 2021 (has links)
Rationale: Schizophrenia patients consistently show deficits in sensory-evoked broadband gamma oscillations and click-evoked entrainment at 40 Hz, called the 40-Hz auditory steady-state response (ASSR). Since such evoked oscillations depend on cortical N-methyl D-aspartic acid (NMDA)-mediated network activity, they can serve as pharmacodynamic biomarkers in the preclinical and clinical development of drug candidates engaging these circuits. However, there are few test-retest reliability data in preclinical species, a prerequisite for within-subject testing paradigms. Objective: We investigated the long-term psychometric stability of these measures in a rodent model. Methods: Female rats with chronic epidural implants were used to record tone- and 40 Hz click-evoked responses at multiple time points and across six sessions, spread over 3 weeks. We assessed reliability using intraclass correlation coefficients (ICC). Separately, we used mixed-effects ANOVA to examine time and session effects. Individual subject variability was determined using the coefficient of variation (CV). Lastly, to illustrate the importance of long-term measure stability for within-subject testing design, we used low to moderate doses of an NMDA antagonist MK801 (0.025–0.15 mg/kg) to disrupt the evoked response. Results: We found that 40-Hz ASSR showed good reliability (ICC=0.60–0.75), while the reliability of tone-evoked gamma ranged from poor to good (0.33–0.67). We noted time but no session effects. Subjects showed a lower variance for ASSR over tone-evoked gamma. Both measures were dose-dependently attenuated by NMDA antagonism. Conclusion: Overall, while both evoked gamma measures use NMDA transmission, 40-Hz ASSR showed superior psychometric properties of higher ICC and lower CV, relative to tone-evoked gamma.
|
232 |
Spinophilin-Dependent Regulation of the Phosphorylation, Protein Interactions, and Function of the GluN2B Subunit of the NMDAR and its Implications in Neuronal Cell DeathBeiraghi Salek, Asma 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Excitotoxicity, a major hallmark of neurodegeneration associated with cerebral ischemia, is a result of accumulation of extracellular glutamate. This excess glutamate leads to hyperactivation of glutamate receptors such as the N-methyl-D-asparate (NMDA) receptors (NMDARs) following the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPARs). Excessive activation of NMDARs causes an influx of calcium, which can eventually activate apoptotic pathways and lead to death of neurons. Regulation of NMDAR subunit composition, localization, surface expression, and activity can balance cell survival via activation of either pro-death or pro-survival pathways after a course of an ischemic insult. Specifically, phosphorylation of different NMDAR subunits defines their activity and downstream signaling pathways. NMDARs are phosphorylated by multiple kinases and dephosphorylated by different phosphatases. Besides phosphatases and kinases, per se, phosphorylation of synaptic proteins that regulate kinase or phosphatase targeting and activity also mediate NMDAR phosphorylation. Spinophilin, a major synaptic scaffolding and protein phosphatase 1 (PP1) targeting protein, mediates substrate phosphorylation via its ability to bind PP1. Our studies focus on delineating the role of spinophilin in the regulation of phosphorylation and function of the GluN2B subunit of the NMDA receptor as well as the role of spinophilin in modulating glutamate-induced neurotoxicity. Interestingly, our data demonstrate that spinophilin sequesters PP1 away from GluN2B thereby enhancing phosphorylation of GluN2B at Ser-1284. These changes impact GluN2B protein interactions, subcellular localization, and surface expression, leading to alterations in the amount of calcium entering the neuron via GluN2B-containing NMDARs. Our data show that spinophilin biphasically regulates GluN2B function. Specifically, Ser-1284 phosphorylation enhances calcium influx through GluN2B containing NMDA receptors, but spinophilin leads to dramatic decreases in the surface expression of the receptor independent of Ser-1284 phosphorylation. Moreover, in spinophilin knockout mice, we observe less PP1 binding to GluN2B and less phosphorylation of Ser-1284, but more surface expression of GluN2B and greater levels of caspase activity. Together, these observations suggest a potential neuroprotective role for spinophilin by decreasing GluN2B-containing NMDA receptor-dependent surface expression and thereby decreasing intracellular calcium and neuronal cell death.
|
233 |
The Effect of oestrogen in a series of models related to schizophrenia and Alzheimer¿s disease. A preclinical investigation into the effect of oestrogen on memory, executive function on and anxiety in response to pharmacological insult and in a model of natural forgetting.Cook, Samantha January 2012 (has links)
Alzheimer¿s disease is associated with aging and is characterised by a progressive cognitive decline. Its onset in women coincides with the abrupt depletion of ovarian steroids prompting the investigation of utilising oestrogen replacement therapy as restoration or a preventative measure. Gonadal steroids have also recently been implicated in other disease states, particularly schizophrenia. In addition to the cognitive decline, sufferers of Alzheimer¿s disease and schizophrenia display anxiety related behaviour which gonadal steroids have also been shown to ameliorate. In this thesis several paradigms were used to investigate the effects of oestradiol benzoate (EB) on cognition and anxiety, utilising the NMDA receptor antagonist PCP, the muscarinic receptor antagonist scopolamine and the dopamine releasing agent amphetamine to induce a cognitive deficit in rats by different pharmacological mechanisms. The thesis also investigated the effects of EB on a delay dependent cognitive deficit model of forgetfulness in natural aging. Results showed that subchronic PCP dosing failed to induce a significant deficit in the novel object recognition task. Locomotor activity tests demonstrated that the PCP treated rats were sensitised to the treatment suggesting that the PCP dosing regimen was successful. There was no significant effect of oestrogen in the reversal learning model or in the plus maze task designed to explore EB¿s effects on anxiety. However, in the latter task there was a trend towards an anxiogenic effect of EB. Results from the delay dependent model of forgetfulness in natural aging demonstrated that EB could enhance recognition memory, but not spatial memory. The results are discussed in the context of the role of gonadal steroids especially oestrogen in combating the cognitive decline seen in schizophrenia, neurodegenerative disease and natural aging.
|
234 |
Bidirectional Regulation of AMPA and NMDA Receptors during Benzodiazepine WithdrawalShen, Guofu 14 July 2009 (has links)
No description available.
|
235 |
NMDA and dopaminergic contributions to context fear memory reconsolidationKochli, Daniel Edward 24 July 2017 (has links)
No description available.
|
236 |
EFFECTS OF NEONATAL 3,4-METHYLENEDIOXYMETHAMPHETAMINE ON HIPPOCAMPAL GENE EXPRESSION, SPATIAL LEARNING AND LONG-TERM POTENTIATIONSKELTON, MATTHEW RYAN 13 July 2006 (has links)
No description available.
|
237 |
TRACKING AN ELECTRICALLY SILENT SOURCE IN THE HIPPOCAMPUS USING A CALCIUM-SENSITIVE FLUORESCENT DYEKeshav, Arvind 13 September 2016 (has links)
No description available.
|
238 |
POSTNATAL DEVELOPMENTAL DISTRIBUTION OF NMDA RECEPTOR SUBUNIT MRNA IN AUDITORY BRAINSTEM OF RATSingh, Enakshi 10 1900 (has links)
<p>The superior olivary complex (SOC) is comprised of nuclei involved in sound localization. To compute interaural sound level differences, lateral superior olive (LSO) neurons integrate converging glutamatergic inputs from the cochlear nucleus with glycinergic inputs from the medial nucleus of the trapezoid body (MNTB). To compute interaural timing differences, the medial superior olive (MSO) integrates converging glutamatergic inputs from the ipsilateral and contralateral cochlear nucleus. The MSO also receives a major inhibitory input from the MNTB. N-methyl-D-aspartate receptors (NMDARs) are thought to play a role in the developmental refinement of these auditory brainstem pathways. The GluN2A and GluN2B NMDAR subunits confer widely different properties on NMDARs, substantially affecting plasticity. We assessed postnatal developmental messenger RNA (mRNA) expression of GluN1, GluN2A and GluN2B subunits in the LSO, MSO and MNTB using quantitative <em>in-situ</em> hybridization in tissue from 10 litters, ages postnatal day 1 to 36 (P1-36).</p> <p>GluN1 mRNA expression in the LSO, MSO and MNTB decreased with age. In all three nuclei, GluN2B mRNA expression was highest during the first postnatal week, dropping to low levels thereafter. In the LSO, GluN2A levels increased, then decreased to moderate levels. In the MNTB, GluN2A levels decreased from initially high levels. In the MSO, GluN2A levels increased to intermediate levels. The GluN2A/2B ratio increased 2-fold between P1 and P8 in the MNTB, whereas the ratio increased 3-fold between P8 and P15 in the LSO and MSO. The changes in GluN2A:GluN2B ratio are consistent with a developmental switch from GluN2B-containing NMDARs to GluN2A-containing NMDARs. These results are consistent with prior electrophysiological experiments that show NMDAR-mediated currents declining with age in the aVCN-MNTB, aVCN-LSO and MNTB-LSO pathways. The GluN2A subunit exhibited different developmental expression patterns in MNTB, LSO and MNTB, which suggests that GluN2A mRNA expression is locally regulated between nuclei, whereas GluN2B may be globally regulated.</p> / Master of Science (MSc)
|
239 |
Investigating the Behavioural and Molecular Mechanisms of Lurasidone Hydrochloride in a Mk-801 Model of SchizophreniaFera, Brendan Robert January 2019 (has links)
Schizophrenia is a debilitating neuropsychiatric disorder that affects approximately one percent of the global population. Aberrant N-methyl-D-aspartate receptors and endoplasmic reticulum stress have been implicated in the pathogenesis of schizophrenia. Despite a century of extensive research, outcomes from best-practice treatments remain dismal. Lurasidone hydrochloride is a novel atypical antipsychotic drug with a unique receptor binding profile that can potentially treat the heterogeneous symptomology of schizophrenia. However, discrepancies in experimental design (i.e. animal models used, symptoms assessed etc.) have yielded conflicting results surrounding the procognitive and antidepressant properties of lurasidone. Furthermore, the limited aqueous solubility of lurasidone poses a considerable challenge for improving antipsychotic drug delivery to the brain and limiting the prevalence of adverse side effects. These obstacles coupled with the elusive pathophysiology of schizophrenia and its incurable nature, highlight the importance of investigating novel therapeutic targets and their underlying mechanisms to improve treatment and enhance the quality of life of patients with schizophrenia. This thesis sought to accomplish three primary objectives: (1) validate the behavioural efficacy of lurasidone hydrochloride; (2) investigate the role of mesencephalic astrocyte-derived neurotrophic factor as a potential therapeutic target of lurasidone; and (3) evaluate the therapeutic potential of intranasal lurasidone administration as a novel method for antipsychotic drug delivery. The data presented within this thesis suggest that repeated lurasidone treatment may be effective at treating the positive, negative, and cognitive symptoms of schizophrenia, but not sensorimotor gating deficits. Furthermore, sub-chronic lurasidone treatment in rats significantly increased the relative expression of mesencephalic astrocyte-derived neurotrophic factor in the rat prefrontal cortex, a primary site of impairment observed in schizophrenia. Lastly, we conclude that lurasidone administered via the nasal route using a novel poly(oligo ethylene glycol methacrylate)-based nanogel formulation required four times less drug to achieve a therapeutic response comparable to traditional intraperitoneal routes. The findings presented within this thesis suggest that lurasidone might be a favourable atypical antipsychotic drug that exerts its therapeutic effects through the modulation of neurotrophic factor expression in the brain regions affected by schizophrenia. This thesis offers new insight that can help guide future studies toward improving the prognosis of patients suffering from schizophrenia. / Thesis / Master of Science (MSc)
|
240 |
Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonismNeill, Joanna C., Barnes, Samuel, Cook, Samantha, Grayson, Ben, Idris, Nagi F., McLean, Samantha, Snigdha, S., Rajagopal, Lakshmi, Harte, Michael K. 10 August 2010 (has links)
Yes / Cognitive deficits in schizophrenia remain an unmet clinical need. Improved understanding of the neuro- and psychopathology of these deficits depends on the availability of carefully validated animal models which will assist the development of novel therapies. There is much evidence that at least some of the pathology and symptomatology (particularly cognitive and negative symptoms) of schizophrenia results from a dysfunction of the glutamatergic system which may be modelled in animals through the use of NMDA receptor antagonists. The current review examines the validity of this model in rodents. We review the ability of acute and sub-chronic treatment with three non-competitive NMDA antagonists; phencyclidine (PCP), ketamine and MK801 (dizocilpine) to produce cognitive deficits of relevance to schizophrenia in rodents and their subsequent reversal by first- and second-generation antipsychotic drugs. Effects of NMDA receptor antagonists on the performance of rodents in behavioural tests assessing the various domains of cognition and negative symptoms are examined: novel object recognition for visual memory, reversal learning and attentional set shifting for problem solving and reasoning, 5-Choice Serial Reaction Time for attention and speed of processing; in addition to effects on social behaviour and neuropathology. The evidence strongly supports the use of NMDA receptor antagonists to model cognitive deficit and negative symptoms of schizophrenia as well as certain pathological disturbances seen in the illness. This will facilitate the evaluation of much-needed novel pharmacological agents for improved therapy of cognitive deficits and negative symptoms in schizophrenia.
|
Page generated in 0.0341 seconds