• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 18
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 57
  • 22
  • 15
  • 13
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Efeitos da nandrolona e da ceftriaxona na homeostasia glutamatérgica : uma busca por mecanismos interativos entre astrócitos e neurônios envolvidos no comportamento agressivo

Rodolphi, Marcelo Salimen January 2017 (has links)
Os esteroides anabolizantes androgênicos (EAA) como o decanoato de nandrolona (ND) são hormônios sintéticos derivados da testosterona. Sabe-se que um dos efeitos mais marcantes da administração abusiva destes esteroides é o aumento do comportamento agressivo. Evidências indicam que altas doses de EAA alteram a morfologia e causam hiperativação de sinapses glutamatérgicas, o que se correlaciona com um fenótipo agressivo exacerbado. Fisiologicamente o glutamato é considerado o principal neurotransmissor excitatório no cérebro de mamíferos, entretanto, em níveis elevados, pode causar hiperexcitabilidade neuronal mediada pelos receptores glutamatérgicos ionotrópicos do tipo N-metil-d-aspartato (NMDAr) e, consequentemente alterações no metabolismo mitocondrial. A terminação da sinalização excitatória glutamatérgica é realizada majoritariamente por transportadores existentes em astrócitos. Neste sentido, o transportador astrocitário de glutamato GLT-1 é responsável por mais de 90% da remoção do glutamato da fenda sináptica, contribuindo significativamente, para a manutenção da homeostasis da sinalizacão glutamatérgica. A administração do antibiótico β-lactâmico ceftriaxona (CEF) aumenta a expressão de GLT-1 e diminui a hiperexcitabilidade glutamatérgica, o que poderia potencialmente contrapor mecanismos cerebrais associados ao aumento do fenótipo agressivo induzidos pelo decanoato de nandrolona (ND). Entretanto, estas possíveis interacões moleculares e comportamentais ainda não foram exploradas. Assim, o objetivo primário deste trabalho foi investigar se o aumento da expressão do transportador astrocitário GLT-1 modula mecanismos glutamatérgicos envolvidos na agressividade induzida pelo ND, e a atividade mitocondrial. Para tanto, camundongos CF-1 machos de 60 dias de idade foram divididos em 4 grupos: veículo oleoso (VEH), nandrolona (ND), ceftriaxona (CEF) e nandrolona+ceftriaxona (ND/CEF). A nandrolona foi injetada por via subcutânea (15mg/Kg) por 19 dias. A ceftriaxona (200mg/Kg) ou solução salina foram administradas intraperitonealmente por 5 dias. Após a última injeção foi avaliada a latência para o primeiro ataque e o número de ataques no teste do intruso. Os animais foram sacrificados logo após o teste, e homogeneizados de córtex foram utilizados para imunoquantificação do GLT-1 e da fosforilação da subunidade pNR2Bser1232 do NMDAr. A atividade mitocondrial foi avaliada em sinaptossoma de cérebro total. Os níveis de glutamato foram medidos no líquido cefalorraquidiano. Comparado com o veículo, o tratamento com ND diminuiu significativamente a expressão do GLT-1, aumentou os níveis de glutamato e a expressão da subnidade pNR2Bser1232 o que foi mecanisticamente associado ao aumento do fenótipo agressivo; diminuicão da latência e aumento do número de ataques ao intruso. Ainda, a ND diminuiu o controle respiratório mitocondrial. A administração de CEF aumentou significativamente a expressão do GLT-1 e diminuiu os níveis de glutamato em relação ao grupo ND, enquanto que os níveis de pNR2Bser1232 e a agressividade foram similar ao grupo controle. No grupo ND/CEF o immunoconteúdo de GLT-1 e de pNR2Bser1232, os níveis de glutamato e o fenótipo agressivo, foram significativamente menores que no grupo ND, e similares ao grupo controle. Ainda, a CEF foi capaz de atenuar o prejuízo no controle respiratório mitocondrial causado pela ND. Nossos resultados demonstram que a interação bidirecional entre o transportador astrocitário GLT-1 e a subunidade pNR2Bser1232 neuronal mediada pelo glutamato, exercem um impacto regulatório no fenótipo agressivo induzido pela ND, e no controle respiratório mitocondrial. Desta maneira, este modelo reforça a importância da homeostasia funcional da sinapse tripartide glutamatérgica no fenótipo agressivo. / Anabolic androgenic steroids (AAS) such as nandrolone decanoate (ND) are synthetic hormones derived from testosterone. It is known that one of the most important adverse effects of abusive administration of these steroids is the increase in aggressive behavior. Evidence indicates that high doses of AAS alter morphology and cause hyperactivation of glutamatergic synapses which correlates with an aggressive exacerbated phenotype. Physiologically, glutamate is considered the main excitatory neurotransmitter in the mammalian brain. At high glutamate levels, occurs neuronal hyperexcitability mainly trhough the ionotropic N-methyl-d-aspartate (NMDAr) type of glutamatergic receptors and, consequently, changes in mitochondrial metabolism. Existing transporters in astrocytes predominantly perform the termination of glutamatergic excitatory signaling. In this sense, the GLT-1 glutamate astrocytic transporter is responsible for more than 90% of glutamate removal from the synaptic cleft, contributing significantly to the maintenance of glutamatergic signaling homeostasis. Administration of the β-lactam antibiotic ceftriaxone (CEF) increases GLT-1 expression and decreases glutamatergic hyperexcitability, which could potentially counteract brain mechanisms associated to increased aggressive phenotype mediated by nandrolone decanoate (ND). However, a possible molecular and behavioral interaction has not yet been explored in context. Thus, the primary objective of this work was to investigate whether increased expression of the GLT-1 astrocyte transporter modulates the glutamatergic mechanisms involved in ND-induced aggressive phenotype, and mitochondrial activity. Sixty-day-old male CF-1 mice were divided into 4 groups: oil vehicle (VEH), nandrolone (ND), ceftriaxone (CEF) and nandrolone + ceftriaxone (ND / CEF). Nandrolone was injected subcutaneously (15mg / kg) for 19 days. Ceftriaxone (200mg / kg) or saline solution were administered intraperitoneally for 5 days. After the last injection, the latency for the first attack and the number of attacks on the intruder test were evaluated. The animals were sacrificed after the test, and homogeinized cortex were used for immunoquantification of GLT-1 and phosphorylation of the NMDAr pNR2Bser1232 subunit. Mitochondrial activity was evaluated in total brain sinaptossomes. Glutamate levels were measured in the cerebrospinal fluid. Compared to the vehicle group, treatment with ND significantly decreased the expression of GLT-1, increased glutamate levels and expression of the pNR2Bser1232 which was mechanistically associated with an increase in the aggressive phenotype; decrease in the latency and increase in the number of attacks. Also, ND decreased mitochondrial respiratory control. Administration of CEF significantly increased GLT-1 expression and decreased glutamate levels relative to the ND group, whereas pNR2Bser1232 levels and aggressive phenotype were similar to the control group. In the ND / CEF group the expression of GLT-1 and pNR2Bser1232, glutamate levels and aggressive phenotype were significantly lower than in the ND group, and similar to the control group. Furthermore, CEF was able to attenuate the alteration in the mitochondrial respiratory control caused by ND. Our results demonstrated that the levels of glutamate astrocytic transporter GLT-1 and pNR2Bser1232 are important mechanism behind the increased aggressive phenotype induced by ND, and decreased mitochondrial respiratory control. Also, this model reinforces the importance of glutamate levels and astrocytic molecular targets in the regulation of the aggressive phenotype.
42

Acute Cannabinoid Treatment 'in vivo' Causes an Astroglial CB1R-Dependent LTD At Excitatory CA3-CA1 Synapses Involving NMDARs and Protein Synthesis

Kesner, Philip 19 November 2012 (has links)
Cannabinoids have been shown to alter synaptic plasticity but the mechanism by which this occurs at hippocampal CA3-CA1 synapses in vivo is not yet known. Utilizing in vivo electrophysiological recordings of field excitatory postsynaptic potentials (fEPSP) on anesthetized rats and mice as well as three lines of conditional knockout mouse models, the objective was to show a two-part mechanistic breakdown of cannabinoid-evoked CA3-CA1 long-term depression (LTD) in its induction as well as early and later-phase expression stages. It was determined that this cannabinoid-induced in vivo LTD requires cannabinoid type-1 receptors (CB1Rs) on astrocytes, but not CB1Rs on glutamatergic or GABAergic neuronal axons/terminals. Pharmacological testing determined that cannabinoid-induced in vivo LTD also requires activation of NMDA receptors (NMDAR) and subsequent postsynaptic endocytosis of AMPA receptors (AMPAR). There exists a clear role for NR2B-containing NMDARs in a persistent, transitory form, potentially related to prolonged or delayed glutamate release (possibly as a result of the astrocytic network). A key determination of the expression phase is the involvement of new protein synthesis (using translation and transcription inhibitors) – further evidence of the long-term action of the synaptic plasticity from a single cannabinoid dose.
43

Efeitos da nandrolona e da ceftriaxona na homeostasia glutamatérgica : uma busca por mecanismos interativos entre astrócitos e neurônios envolvidos no comportamento agressivo

Rodolphi, Marcelo Salimen January 2017 (has links)
Os esteroides anabolizantes androgênicos (EAA) como o decanoato de nandrolona (ND) são hormônios sintéticos derivados da testosterona. Sabe-se que um dos efeitos mais marcantes da administração abusiva destes esteroides é o aumento do comportamento agressivo. Evidências indicam que altas doses de EAA alteram a morfologia e causam hiperativação de sinapses glutamatérgicas, o que se correlaciona com um fenótipo agressivo exacerbado. Fisiologicamente o glutamato é considerado o principal neurotransmissor excitatório no cérebro de mamíferos, entretanto, em níveis elevados, pode causar hiperexcitabilidade neuronal mediada pelos receptores glutamatérgicos ionotrópicos do tipo N-metil-d-aspartato (NMDAr) e, consequentemente alterações no metabolismo mitocondrial. A terminação da sinalização excitatória glutamatérgica é realizada majoritariamente por transportadores existentes em astrócitos. Neste sentido, o transportador astrocitário de glutamato GLT-1 é responsável por mais de 90% da remoção do glutamato da fenda sináptica, contribuindo significativamente, para a manutenção da homeostasis da sinalizacão glutamatérgica. A administração do antibiótico β-lactâmico ceftriaxona (CEF) aumenta a expressão de GLT-1 e diminui a hiperexcitabilidade glutamatérgica, o que poderia potencialmente contrapor mecanismos cerebrais associados ao aumento do fenótipo agressivo induzidos pelo decanoato de nandrolona (ND). Entretanto, estas possíveis interacões moleculares e comportamentais ainda não foram exploradas. Assim, o objetivo primário deste trabalho foi investigar se o aumento da expressão do transportador astrocitário GLT-1 modula mecanismos glutamatérgicos envolvidos na agressividade induzida pelo ND, e a atividade mitocondrial. Para tanto, camundongos CF-1 machos de 60 dias de idade foram divididos em 4 grupos: veículo oleoso (VEH), nandrolona (ND), ceftriaxona (CEF) e nandrolona+ceftriaxona (ND/CEF). A nandrolona foi injetada por via subcutânea (15mg/Kg) por 19 dias. A ceftriaxona (200mg/Kg) ou solução salina foram administradas intraperitonealmente por 5 dias. Após a última injeção foi avaliada a latência para o primeiro ataque e o número de ataques no teste do intruso. Os animais foram sacrificados logo após o teste, e homogeneizados de córtex foram utilizados para imunoquantificação do GLT-1 e da fosforilação da subunidade pNR2Bser1232 do NMDAr. A atividade mitocondrial foi avaliada em sinaptossoma de cérebro total. Os níveis de glutamato foram medidos no líquido cefalorraquidiano. Comparado com o veículo, o tratamento com ND diminuiu significativamente a expressão do GLT-1, aumentou os níveis de glutamato e a expressão da subnidade pNR2Bser1232 o que foi mecanisticamente associado ao aumento do fenótipo agressivo; diminuicão da latência e aumento do número de ataques ao intruso. Ainda, a ND diminuiu o controle respiratório mitocondrial. A administração de CEF aumentou significativamente a expressão do GLT-1 e diminuiu os níveis de glutamato em relação ao grupo ND, enquanto que os níveis de pNR2Bser1232 e a agressividade foram similar ao grupo controle. No grupo ND/CEF o immunoconteúdo de GLT-1 e de pNR2Bser1232, os níveis de glutamato e o fenótipo agressivo, foram significativamente menores que no grupo ND, e similares ao grupo controle. Ainda, a CEF foi capaz de atenuar o prejuízo no controle respiratório mitocondrial causado pela ND. Nossos resultados demonstram que a interação bidirecional entre o transportador astrocitário GLT-1 e a subunidade pNR2Bser1232 neuronal mediada pelo glutamato, exercem um impacto regulatório no fenótipo agressivo induzido pela ND, e no controle respiratório mitocondrial. Desta maneira, este modelo reforça a importância da homeostasia funcional da sinapse tripartide glutamatérgica no fenótipo agressivo. / Anabolic androgenic steroids (AAS) such as nandrolone decanoate (ND) are synthetic hormones derived from testosterone. It is known that one of the most important adverse effects of abusive administration of these steroids is the increase in aggressive behavior. Evidence indicates that high doses of AAS alter morphology and cause hyperactivation of glutamatergic synapses which correlates with an aggressive exacerbated phenotype. Physiologically, glutamate is considered the main excitatory neurotransmitter in the mammalian brain. At high glutamate levels, occurs neuronal hyperexcitability mainly trhough the ionotropic N-methyl-d-aspartate (NMDAr) type of glutamatergic receptors and, consequently, changes in mitochondrial metabolism. Existing transporters in astrocytes predominantly perform the termination of glutamatergic excitatory signaling. In this sense, the GLT-1 glutamate astrocytic transporter is responsible for more than 90% of glutamate removal from the synaptic cleft, contributing significantly to the maintenance of glutamatergic signaling homeostasis. Administration of the β-lactam antibiotic ceftriaxone (CEF) increases GLT-1 expression and decreases glutamatergic hyperexcitability, which could potentially counteract brain mechanisms associated to increased aggressive phenotype mediated by nandrolone decanoate (ND). However, a possible molecular and behavioral interaction has not yet been explored in context. Thus, the primary objective of this work was to investigate whether increased expression of the GLT-1 astrocyte transporter modulates the glutamatergic mechanisms involved in ND-induced aggressive phenotype, and mitochondrial activity. Sixty-day-old male CF-1 mice were divided into 4 groups: oil vehicle (VEH), nandrolone (ND), ceftriaxone (CEF) and nandrolone + ceftriaxone (ND / CEF). Nandrolone was injected subcutaneously (15mg / kg) for 19 days. Ceftriaxone (200mg / kg) or saline solution were administered intraperitoneally for 5 days. After the last injection, the latency for the first attack and the number of attacks on the intruder test were evaluated. The animals were sacrificed after the test, and homogeinized cortex were used for immunoquantification of GLT-1 and phosphorylation of the NMDAr pNR2Bser1232 subunit. Mitochondrial activity was evaluated in total brain sinaptossomes. Glutamate levels were measured in the cerebrospinal fluid. Compared to the vehicle group, treatment with ND significantly decreased the expression of GLT-1, increased glutamate levels and expression of the pNR2Bser1232 which was mechanistically associated with an increase in the aggressive phenotype; decrease in the latency and increase in the number of attacks. Also, ND decreased mitochondrial respiratory control. Administration of CEF significantly increased GLT-1 expression and decreased glutamate levels relative to the ND group, whereas pNR2Bser1232 levels and aggressive phenotype were similar to the control group. In the ND / CEF group the expression of GLT-1 and pNR2Bser1232, glutamate levels and aggressive phenotype were significantly lower than in the ND group, and similar to the control group. Furthermore, CEF was able to attenuate the alteration in the mitochondrial respiratory control caused by ND. Our results demonstrated that the levels of glutamate astrocytic transporter GLT-1 and pNR2Bser1232 are important mechanism behind the increased aggressive phenotype induced by ND, and decreased mitochondrial respiratory control. Also, this model reinforces the importance of glutamate levels and astrocytic molecular targets in the regulation of the aggressive phenotype.
44

Efeitos da nandrolona e da ceftriaxona na homeostasia glutamatérgica : uma busca por mecanismos interativos entre astrócitos e neurônios envolvidos no comportamento agressivo

Rodolphi, Marcelo Salimen January 2017 (has links)
Os esteroides anabolizantes androgênicos (EAA) como o decanoato de nandrolona (ND) são hormônios sintéticos derivados da testosterona. Sabe-se que um dos efeitos mais marcantes da administração abusiva destes esteroides é o aumento do comportamento agressivo. Evidências indicam que altas doses de EAA alteram a morfologia e causam hiperativação de sinapses glutamatérgicas, o que se correlaciona com um fenótipo agressivo exacerbado. Fisiologicamente o glutamato é considerado o principal neurotransmissor excitatório no cérebro de mamíferos, entretanto, em níveis elevados, pode causar hiperexcitabilidade neuronal mediada pelos receptores glutamatérgicos ionotrópicos do tipo N-metil-d-aspartato (NMDAr) e, consequentemente alterações no metabolismo mitocondrial. A terminação da sinalização excitatória glutamatérgica é realizada majoritariamente por transportadores existentes em astrócitos. Neste sentido, o transportador astrocitário de glutamato GLT-1 é responsável por mais de 90% da remoção do glutamato da fenda sináptica, contribuindo significativamente, para a manutenção da homeostasis da sinalizacão glutamatérgica. A administração do antibiótico β-lactâmico ceftriaxona (CEF) aumenta a expressão de GLT-1 e diminui a hiperexcitabilidade glutamatérgica, o que poderia potencialmente contrapor mecanismos cerebrais associados ao aumento do fenótipo agressivo induzidos pelo decanoato de nandrolona (ND). Entretanto, estas possíveis interacões moleculares e comportamentais ainda não foram exploradas. Assim, o objetivo primário deste trabalho foi investigar se o aumento da expressão do transportador astrocitário GLT-1 modula mecanismos glutamatérgicos envolvidos na agressividade induzida pelo ND, e a atividade mitocondrial. Para tanto, camundongos CF-1 machos de 60 dias de idade foram divididos em 4 grupos: veículo oleoso (VEH), nandrolona (ND), ceftriaxona (CEF) e nandrolona+ceftriaxona (ND/CEF). A nandrolona foi injetada por via subcutânea (15mg/Kg) por 19 dias. A ceftriaxona (200mg/Kg) ou solução salina foram administradas intraperitonealmente por 5 dias. Após a última injeção foi avaliada a latência para o primeiro ataque e o número de ataques no teste do intruso. Os animais foram sacrificados logo após o teste, e homogeneizados de córtex foram utilizados para imunoquantificação do GLT-1 e da fosforilação da subunidade pNR2Bser1232 do NMDAr. A atividade mitocondrial foi avaliada em sinaptossoma de cérebro total. Os níveis de glutamato foram medidos no líquido cefalorraquidiano. Comparado com o veículo, o tratamento com ND diminuiu significativamente a expressão do GLT-1, aumentou os níveis de glutamato e a expressão da subnidade pNR2Bser1232 o que foi mecanisticamente associado ao aumento do fenótipo agressivo; diminuicão da latência e aumento do número de ataques ao intruso. Ainda, a ND diminuiu o controle respiratório mitocondrial. A administração de CEF aumentou significativamente a expressão do GLT-1 e diminuiu os níveis de glutamato em relação ao grupo ND, enquanto que os níveis de pNR2Bser1232 e a agressividade foram similar ao grupo controle. No grupo ND/CEF o immunoconteúdo de GLT-1 e de pNR2Bser1232, os níveis de glutamato e o fenótipo agressivo, foram significativamente menores que no grupo ND, e similares ao grupo controle. Ainda, a CEF foi capaz de atenuar o prejuízo no controle respiratório mitocondrial causado pela ND. Nossos resultados demonstram que a interação bidirecional entre o transportador astrocitário GLT-1 e a subunidade pNR2Bser1232 neuronal mediada pelo glutamato, exercem um impacto regulatório no fenótipo agressivo induzido pela ND, e no controle respiratório mitocondrial. Desta maneira, este modelo reforça a importância da homeostasia funcional da sinapse tripartide glutamatérgica no fenótipo agressivo. / Anabolic androgenic steroids (AAS) such as nandrolone decanoate (ND) are synthetic hormones derived from testosterone. It is known that one of the most important adverse effects of abusive administration of these steroids is the increase in aggressive behavior. Evidence indicates that high doses of AAS alter morphology and cause hyperactivation of glutamatergic synapses which correlates with an aggressive exacerbated phenotype. Physiologically, glutamate is considered the main excitatory neurotransmitter in the mammalian brain. At high glutamate levels, occurs neuronal hyperexcitability mainly trhough the ionotropic N-methyl-d-aspartate (NMDAr) type of glutamatergic receptors and, consequently, changes in mitochondrial metabolism. Existing transporters in astrocytes predominantly perform the termination of glutamatergic excitatory signaling. In this sense, the GLT-1 glutamate astrocytic transporter is responsible for more than 90% of glutamate removal from the synaptic cleft, contributing significantly to the maintenance of glutamatergic signaling homeostasis. Administration of the β-lactam antibiotic ceftriaxone (CEF) increases GLT-1 expression and decreases glutamatergic hyperexcitability, which could potentially counteract brain mechanisms associated to increased aggressive phenotype mediated by nandrolone decanoate (ND). However, a possible molecular and behavioral interaction has not yet been explored in context. Thus, the primary objective of this work was to investigate whether increased expression of the GLT-1 astrocyte transporter modulates the glutamatergic mechanisms involved in ND-induced aggressive phenotype, and mitochondrial activity. Sixty-day-old male CF-1 mice were divided into 4 groups: oil vehicle (VEH), nandrolone (ND), ceftriaxone (CEF) and nandrolone + ceftriaxone (ND / CEF). Nandrolone was injected subcutaneously (15mg / kg) for 19 days. Ceftriaxone (200mg / kg) or saline solution were administered intraperitoneally for 5 days. After the last injection, the latency for the first attack and the number of attacks on the intruder test were evaluated. The animals were sacrificed after the test, and homogeinized cortex were used for immunoquantification of GLT-1 and phosphorylation of the NMDAr pNR2Bser1232 subunit. Mitochondrial activity was evaluated in total brain sinaptossomes. Glutamate levels were measured in the cerebrospinal fluid. Compared to the vehicle group, treatment with ND significantly decreased the expression of GLT-1, increased glutamate levels and expression of the pNR2Bser1232 which was mechanistically associated with an increase in the aggressive phenotype; decrease in the latency and increase in the number of attacks. Also, ND decreased mitochondrial respiratory control. Administration of CEF significantly increased GLT-1 expression and decreased glutamate levels relative to the ND group, whereas pNR2Bser1232 levels and aggressive phenotype were similar to the control group. In the ND / CEF group the expression of GLT-1 and pNR2Bser1232, glutamate levels and aggressive phenotype were significantly lower than in the ND group, and similar to the control group. Furthermore, CEF was able to attenuate the alteration in the mitochondrial respiratory control caused by ND. Our results demonstrated that the levels of glutamate astrocytic transporter GLT-1 and pNR2Bser1232 are important mechanism behind the increased aggressive phenotype induced by ND, and decreased mitochondrial respiratory control. Also, this model reinforces the importance of glutamate levels and astrocytic molecular targets in the regulation of the aggressive phenotype.
45

Acute Cannabinoid Treatment 'in vivo' Causes an Astroglial CB1R-Dependent LTD At Excitatory CA3-CA1 Synapses Involving NMDARs and Protein Synthesis

Kesner, Philip January 2012 (has links)
Cannabinoids have been shown to alter synaptic plasticity but the mechanism by which this occurs at hippocampal CA3-CA1 synapses in vivo is not yet known. Utilizing in vivo electrophysiological recordings of field excitatory postsynaptic potentials (fEPSP) on anesthetized rats and mice as well as three lines of conditional knockout mouse models, the objective was to show a two-part mechanistic breakdown of cannabinoid-evoked CA3-CA1 long-term depression (LTD) in its induction as well as early and later-phase expression stages. It was determined that this cannabinoid-induced in vivo LTD requires cannabinoid type-1 receptors (CB1Rs) on astrocytes, but not CB1Rs on glutamatergic or GABAergic neuronal axons/terminals. Pharmacological testing determined that cannabinoid-induced in vivo LTD also requires activation of NMDA receptors (NMDAR) and subsequent postsynaptic endocytosis of AMPA receptors (AMPAR). There exists a clear role for NR2B-containing NMDARs in a persistent, transitory form, potentially related to prolonged or delayed glutamate release (possibly as a result of the astrocytic network). A key determination of the expression phase is the involvement of new protein synthesis (using translation and transcription inhibitors) – further evidence of the long-term action of the synaptic plasticity from a single cannabinoid dose.
46

Spinophilin-dependent regulation of the phosphorylation, protein interactions, and function of the GluN2B subunit of the NMDAR and its implications in neuronal cell death

Asma Beiraghi Salek (9746078) 07 January 2021 (has links)
Excitotoxicity, a major hallmark of neurodegeneration associated with cerebral ischemia, is a result of accumulation of extracellular glutamate. This excess glutamate leads to hyperactivation of glutamate receptors such as the N-methyl-D-asparate (NMDA) receptors (NMDARs) following the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPARs). Excessive activation of NMDARs causes an influx of calcium, which can eventually activate apoptotic pathways and lead to death of neurons. Regulation of NMDAR subunit composition, localization, surface expression, and activity can balance cell survival via activation of either pro-death or pro-survival pathways after a course of an ischemic insult. Specifically, phosphorylation of different NMDAR subunits defines their activity and downstream signaling pathways. NMDARs are phosphorylated by multiple kinases and dephosphorylated by different phosphatases. Besides phosphatases and kinases, per se, phosphorylation of synaptic proteins that regulate kinase or phosphatase targeting and activity also mediate NMDAR phosphorylation. Spinophilin, a major synaptic scaffolding and protein phosphatase 1 (PP1) targeting protein, mediates substrate phosphorylation via its ability to bind PP1. Our studies focus on delineating the role of spinophilin in the regulation of phosphorylation and function of the GluN2B subunit of the NMDA receptor as well as the role of spinophilin in modulating glutamate-induced neurotoxicity. Interestingly, our data demonstrate that spinophilin sequesters PP1 away from GluN2B thereby enhancing phosphorylation of GluN2B at Ser-1284. These changes impact GluN2B protein interactions, subcellular localization, and surface expression, leading to alterations in the amount of calcium entering the neuron via GluN2B-containing NMDARs. Our data show that spinophilin biphasically regulates GluN2B function. Specifically, Ser-1284 phosphorylation enhances calcium influx through GluN2B containing NMDA receptors, but spinophilin leads to dramatic decreases in the surface expression of the receptor independent of Ser-1284 phosphorylation. Moreover, in spinophilin knockout mice, we observe less PP1 binding to GluN2B and less phosphorylation of Ser-1284, but more surface expression of GluN2B and greater levels of caspase activity. Together, these observations suggest a potential neuroprotective role for spinophilin by decreasing GluN2B-containing NMDA receptor-dependent surface expression and thereby decreasing intracellular calcium and neuronal cell death.
47

The Neural Substrate of Sex Pheromone Signalling in Male Goldfish (Carassius auratus)

Lado, Wudu E. 26 October 2012 (has links)
The transmission of sex pheromone-mediated signals is essential for goldfish reproduction. However, the neural pathways underlying this reproductive signalling pathway in the goldfish brain is not well described. Lesioning experiments have shown previously that two brain areas, the preoptic area (POA) and the ventral telencephali pars ventralis (Vv) in particular, are important for reproduction. We used patch clamp electrophysiology to study the electrical activities of POA and Vv neurons. Based on the intrinsic properties of these neurons, we suggest there are five different functional classes of POA neurons and a single class of Vv neurons. In addition, by electrically stimulating the olfactory bulb (OB), we were able to show that this primary sensory structure makes monosynaptic glutamatergic connections with both POA and Vv neurons. While electrophysiology measures signalling events occurring at short time scales on the order of milliseconds to minutes, we were also interested in studying sex pheromone signalling in the goldfish brain over a long time scale. Thus, we describe changes in gene expression in male goldfish exposed to waterborne sex pheromones (17alpha,20beta dihydroxy-4-pregene-3-one and Prostaglandin-F2alpha) over 6 hours. We perform cDNA microarrays on Prostaglandin-F2alpha-treated fish to study the rapid modulation of transcription and define the signalling pathways affected. Our microarrays showed that 71 genes were differentially regulated (67 up and 4 down). Through gene ontology enrichment analysis, we found that these genes were involved in various biological processes such as RNA processing, neurotransmission, neuronal development, apoptosis, cellular metabolism and sexual reproduction. RT-PCRs were performed to validate our microarrays and to facilitate direct comparisons of the effects of the two sex pheromones, 17alpha,20beta dihydroxy-4-pregene-3-one and Prostaglandin-F2alpha. By combining electrophysiology and gene expression analyses, we were able to study sex-pheromone signalling on two different time scales. One short, occurring on the order of milliseconds to minutes, that involves electrical activities in the brain through the glutamatergic amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate receptors; and the other long occurring several hours later that involves changes in the gene expression levels of calmodulin and ependymin among other genes underlying neuroplasticity. Reproductive neuroplasticity in the goldfish may therefore require the activation of glutamatergic receptors which then activate downstream signals like calmodulin and ependymin to transform the sex pheromones-mediate signal into gene expression.
48

Implication de Syngap1 dans la transmission GABAergique et la plasticité synaptique

Xing, Paul 08 1900 (has links)
La déficience intellectuelle affecte de 1 à 3% de la population mondiale, ce qui en fait le trouble cognitif le plus commun de l’enfance. Notre groupe à découvert que des mutations dans le gène SYNGAP1 sont une cause fréquente de déficience intellectuelle non-syndromique, qui compte pour 1-3% de l’ensemble des cas. À titre d’exemple, le syndrome du X fragile, qui est la cause monogénique la plus fréquente de déficience intellectuelle, compte pour environ 2% des cas. Plusieurs patients affectés au niveau de SYNGAP1 présentent également des symptômes de l’autisme et d’une forme d’épilepsie. Notre groupe a également montré que SYNGAP1 cause la déficience intellectuelle par un mécanisme d’haploinsuffisance. SYNGAP1 code pour une protéine exprimée exclusivement dans le cerveau qui interagit avec la sous-unité GluN2B des récepteurs glutamatergique de type NMDA (NMDAR). SYNGAP1 possède une activité activatrice de Ras-GTPase qui régule négativement Ras au niveau des synapses excitatrices. Les souris hétérozygotes pour Syngap1 (souris Syngap1+/-) présentent des anomalies de comportement et des déficits cognitifs, ce qui en fait un bon modèle d’étude. Plusieurs études rapportent que l’haploinsuffisance de Syngap1 affecte le développement cérébral en perturbant l’activité et la plasticité des neurones excitateurs. Le déséquilibre excitation/inhibition est une théorie émergente de l’origine de la déficience intellectuelle et de l’autisme. Cependant, plusieurs groupes y compris le nôtre ont rapporté que Syngap1 est également exprimé dans au moins une sous-population d’interneurones GABAergiques. Notre hypothèse était donc que l’haploinsuffisance de Syngap1 dans les interneurones contribuerait en partie aux déficits cognitifs et au déséquilibre d’excitation/inhibition observés chez les souris Syngap1+/-. Pour tester cette hypothèse, nous avons généré un modèle de souris transgéniques dont l’expression de Syngap1 a été diminuée uniquement dans les interneurones dérivés des éminences ganglionnaires médianes qui expriment le facteur de transcription Nkx2.1 (souris Tg(Nkx2,1-Cre);Syngap1). Nous avons observé une diminution des courants postsynaptiques inhibiteurs miniatures (mIPSCs) au niveau des cellules pyramidales des couches 2/3 du cortex somatosensoriel primaire (S1) et dans le CA1 de l’hippocampe des souris Tg(Nkx2,1-Cre);Syngap1. Ces résultats supportent donc l’hypothèse selon laquelle la perte de Syngap1 dans les interneurones contribue au déséquilibre d’excitation/inhibition. De manière intéressante, nous avons également observé que les courants postsynaptiques excitateurs miniatures (mEPSCs) étaient augmentés dans le cortex S1, mais diminués dans le CA1 de l’hippocampe. Par la suite, nous avons testé si les mécanismes de plasticité synaptique qui sous-tendraient l’apprentissage étaient affectés par l’haploinsuffisance de Syngap1 dans les interneurones. Nous avons pu montrer que la potentialisation à long terme (LTP) NMDAR-dépendante était diminuée chez les souris Tg(Nkx2,1-Cre);Syngap1, sans que la dépression à long terme (LTD) NMDAR-dépendante soit affectée. Nous avons également montré que l’application d’un bloqueur des récepteurs GABAA renversait en partie le déficit de LTP rapporté chez les souris Syngap1+/-, suggérant qu’un déficit de désinhibition serait présent chez ces souris. L’ensemble de ces résultats supporte un rôle de Syngap1 dans les interneurones qui contribue aux déficits observés chez les souris affectées par l’haploinsuffisance de Syngap1. / Intellectual disability affects 1-3% of the world population, which make it the most common cognitive disorder of childhood. Our group discovered that mutation in the SYNGAP1 gene was a frequent cause of non-syndromic intellectual disability, accounting for 1-3% of the cases. For example, the fragile X syndrome, which is the most common monogenic cause of intellectual disability, accounts for 2% of all cases. Some patients affected by SYNGAP1 also showed autism spectrum disorder and epileptic seizures. Our group also showed that mutations in SYNGAP1 caused intellectual disability by an haploinsufficiency mechanism. SYNGAP1 codes for a protein expressed only in the brain which interacts with the GluN2B subunit of NMDA glutamatergic receptors (NMDAR). SYNGAP1 possesses a Ras-GAP activating activity which negatively regulates Ras at excitatory synapses. Heterozygote mice for Syngap1 (Syngap1+/- mice) show behaviour abnormalities and learning deficits, which makes them a good model of intellectual disability. Some studies showed that Syngap1 affects the brain development by perturbing the activity and plasticity of excitatory neurons. The excitatory/inhibitory imbalance is an emerging theory of the origin of intellectual disability and autism. However, some groups including ours, showed that Syngap1 is expressed in at least a subpopulation of GABAergic interneurons. Therefore, our hypothesis was that Syngap1 happloinsufficiency in interneurons contributes in part to the cognitive deficits and excitation/inhibition imbalance observed in Syngap1+/- mice. To test this hypothesis, we generated a transgenic mouse model where Syngap1 expression was decreased only in GABAergic interneurons derived from the medial ganglionic eminence, which expresses the transcription factor Nkx2.1 (Tg(Nkx2,1-Cre);Syngap1 mouse). We showed that miniature inhibitory postsynaptic currents (mIPSCs) were decreased in pyramidal cells in layers 2/3 in primary somatosensory cortex (S1) and in CA1 region of the hippocampus of Tg(Nkx2,1-Cre);Syngap1 mice. Those results suggest that Syngap1 haploinsufficiency in GABAergic interneurons contributes in part to the excitation/inhibition imbalance observed in Syngap1+/- mice. Interestingly, we also observed that miniature excitatory postsynaptic currents (mEPSCs) were increased in cortex S1 but decreased in CA1 region of the hippocampus. We further tested whether synaptic plasticity mechanisms that are thought to underlie learning and memory were affected by Syngap1 haploinsufficiency in GABAergic interneurons. We showed that NMDAR-dependent long-term potentiation (LTP) but not NMDAR-dependent long-term depression (LTD) was decreased in Tg(Nkx2,1-Cre);Syngap1 mice. We also showed that GABAA receptor blockade rescued in part the LTP deficit in Syngap1+/- mice, suggesting that a disinhibition deficit is present in these mice. Altogether, the results support a functional role of Syngap1 in GABAergic interneurons, which may in turn contributes to the deficit observed in Syngap1+/- mice.
49

The Neural Substrate of Sex Pheromone Signalling in Male Goldfish (Carassius auratus)

Lado, Wudu E. 26 October 2012 (has links)
The transmission of sex pheromone-mediated signals is essential for goldfish reproduction. However, the neural pathways underlying this reproductive signalling pathway in the goldfish brain is not well described. Lesioning experiments have shown previously that two brain areas, the preoptic area (POA) and the ventral telencephali pars ventralis (Vv) in particular, are important for reproduction. We used patch clamp electrophysiology to study the electrical activities of POA and Vv neurons. Based on the intrinsic properties of these neurons, we suggest there are five different functional classes of POA neurons and a single class of Vv neurons. In addition, by electrically stimulating the olfactory bulb (OB), we were able to show that this primary sensory structure makes monosynaptic glutamatergic connections with both POA and Vv neurons. While electrophysiology measures signalling events occurring at short time scales on the order of milliseconds to minutes, we were also interested in studying sex pheromone signalling in the goldfish brain over a long time scale. Thus, we describe changes in gene expression in male goldfish exposed to waterborne sex pheromones (17alpha,20beta dihydroxy-4-pregene-3-one and Prostaglandin-F2alpha) over 6 hours. We perform cDNA microarrays on Prostaglandin-F2alpha-treated fish to study the rapid modulation of transcription and define the signalling pathways affected. Our microarrays showed that 71 genes were differentially regulated (67 up and 4 down). Through gene ontology enrichment analysis, we found that these genes were involved in various biological processes such as RNA processing, neurotransmission, neuronal development, apoptosis, cellular metabolism and sexual reproduction. RT-PCRs were performed to validate our microarrays and to facilitate direct comparisons of the effects of the two sex pheromones, 17alpha,20beta dihydroxy-4-pregene-3-one and Prostaglandin-F2alpha. By combining electrophysiology and gene expression analyses, we were able to study sex-pheromone signalling on two different time scales. One short, occurring on the order of milliseconds to minutes, that involves electrical activities in the brain through the glutamatergic amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate receptors; and the other long occurring several hours later that involves changes in the gene expression levels of calmodulin and ependymin among other genes underlying neuroplasticity. Reproductive neuroplasticity in the goldfish may therefore require the activation of glutamatergic receptors which then activate downstream signals like calmodulin and ependymin to transform the sex pheromones-mediate signal into gene expression.
50

Functions of GluN2D-containing NMDA receptors in dopamine neurons of the substantia nigra pars compacta

Morris, Paul George January 2018 (has links)
Dopamine (DA) neurons of the substantia nigra pars compacta (SNc) have a key role in regulation of voluntary movement control. Their death is a hallmark of Parkinson’s disease, characterised by inhibited motor control, including muscle rigidity and tremor. Excitatory input to SNc-DA neurons is primarily from the subthalamic nucleus, and in PD these afferents display a higher frequency firing, as well as increased burst firing, which could cause increased excitatory activity in SNc-DA neurons. NMDA receptors (NMDARs) bind the excitatory neurotransmitter glutamate, and are essential for learning and memory. In SNc-DA neurons, NMDARs have a putative triheteromeric subunit arrangement of GluN1 plus GluN2B and/or GluN2D. Wild type (WT) mice, and those lacking the gene for GluN2D (Grin2D-null), were used to explore its role in various aspects of DA neuronal function and dysfunction using patch-clamp electrophysiology, viability assaying, and immunofluorescence. Pharmacological intervention using subunit-specific inhibitors ifenprodil and DQP-1105 on elicited NMDAR-EPSCs suggested a developmental shift from primarily GluN2B to GluN2B/D. Activity dependent regulation was assessed by high frequency burst stimulation of glutamatergic afferents: in comparison to controls, significant downregulation of NMDARs was observed in SNc-DA neurons, though no differences were observed based on genotype. This regulatory function may be a neuroprotective or homeostatic response. Ambient extracellular glutamate elicits tonic NMDAR activity in SNc-DA neurons, which may be important for maintaining basal levels of excitability: the role of GluN2D was assessed by recording the deflection in baseline current caused by application of competitive NMDAR antagonist D-AP5. There was a significantly larger NMDAR-mediated current in WT vs Grin2D-null mice, indicating that GluN2D has a role in binding ambient glutamate. Dysfunction of glutamate uptake could be a secondary pathophysiological occurrence in the SNc, leading to increased ambient glutamate: the effect of this was explored by application of the competitive glutamate transporter blocker TBOA. Here, the NMDAR-mediated portion of this current was significantly higher in WT mice in comparison to Grin2D-null. Interestingly, dose-response data obtained from bath application of NMDA showed significantly larger currents in Grin2D-null animals vs WT, but only at the top of the response curve (~1-10 mM), which may indicate a capability for larger conductance in Grin2D-null animals at high NMDAR saturation due to replacement of GluN2D with GluN2B. GluN2D may therefore be neuroprotective, by attenuating peak current flow in response to very high agonist concentrations. Lastly, GluN2D has been found to decrease NMDAR open probability under hypoxic conditions, potentially conferring resistance to hypoxia / ischemia related excitotoxicity. Therefore, low (15% O2 / 80% N2 / 5% CO2) vs high (95% O2 / 5% CO2) oxygen conditions were used along with immunofluorescent propidium iodide cell death assaying and immunofluorescent labeling for DA neurons in order to compare levels of DA neuronal death in the SNc based on oxygen status and genotype. Whilst there was a significant submaximal effect based on O2 status, genotype did not confer a practical resistance under these conditions. In summary, NMDARs have diverse roles in SNc-DA neurons which may both serve to maintain normal function and protect the cell against potentially pathological conditions.

Page generated in 0.074 seconds