• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 37
  • 36
  • 25
  • 25
  • 18
  • 9
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 480
  • 130
  • 122
  • 65
  • 59
  • 57
  • 52
  • 46
  • 46
  • 43
  • 42
  • 42
  • 39
  • 39
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Design Analysis and Optimization of Front Underrun Protection Device

Sharma, Anil January 2018 (has links)
Under-running of passenger vehicle is one of the major parameters to be considered during the design and development of truck chassis. Front Under-run Protection Device (FUPD) plays an important role in avoiding under-running of vehicles from front side of a truck. This thesis is used to develop additional device which stops the impact from frontal area, which will not allow the passenger car inside the truck. The complete thesis was started from an idea of adding FUPD to truck chassis. Design of FUPD is done using 3D CAD software CATIA V5R20, then complete FUPD assembly is imported and done pre-processing using Altair Hyper Mesh, for visualizing the results. Crash analysis is done using Altair Radioss & results interpretation is done using HyperView and Hypergraph. FUPD is designed based on ECE R93 which satisfies the failure criteria (Standard) of displacement less than 400 mm. An Initial Design is generated along with Holding Brackets as an assembly using CATIA V5 as a tool. Base design is further optimized for getting light weight structure that meets structural performance criteria. By assuming all the loading conditions as per the standards, an amount of 27% mass reduction is obtained in FUPD Assembly along with holding bracket.
122

Contribution à la simulation numérique des crash de véhicules : prise en compte des non-linéarités matérielles et géométriques des composants de fonderie

Flidrova, Kamila 16 December 2010 (has links)
La sécurité routière est aujourd’hui un des objectifs principaux des constructeurs automobiles. Pour garantir un haut niveau de sécurité aux conducteurs et passagers mais aussi aux autres usages de la route, comme les piétons et les deux roues, les véhicules sont testés sous tous les angles avant leur commercialisation. Qu’ils soient virtuels ou réels, les essais jalonnent la conception et le développement d’une voiture. Aujourd’hui, la simulation numérique joue un rôle primordial dans le développement des nouveaux dispositifs et équipements. Pour que les modèles numériques offrent toujours plus de prédictivité, le domaine de la simulation numérique est en constante évolution. L’objectif de cette thèse est de contribuer à l’amélioration de la simulation des crash de véhicules. Le sujet de l’étude présentée dans ce document est composé de deux problématiques. La première consiste en la prise en compte des non-linéarités matérielles de type rupture dans le processus de dimensionnement au choc. Dans le domaine du crash, deux types de pièces sont distingués. Celles qui doivent casser en choc comme les suspensions moteur et celles dont rupture est interdite comme le carter moteur ou bien le carter d’embrayage. La rupture est un phénomène délicat à modéliser et également coûteux en temps de calcul. Par conséquent, les premiers modèles pour la simulation de la rupture ont été seulement fonctionnels (désactivation des ressorts de rupture). Avec l’arrivée de méthodes numériques telles que la méthode de suppression d’éléments, de nombreux modèles de rupture ont été développés. Comme ces modèles sont relativement récents, les bases de données matériaux sont souvent incomplètes ce qui rend difficile leur utilisation. Un des objectifs de la thèse est donc l’identification des paramètres matériaux pour le modèle de Mohr-Coulomb et le modèle de Johnson-Cook à l’aide d’essais sur éprouvettes. Une campagne d’essais sur un sous-système automobile a été également effectuée. La corrélation numérique des essais a permis de valider la modélisation« volumique » de la rupture et d’identifier des voies de progrès de la méthodologie actuelle. Le deuxième sujet présenté dans ce document est la modélisation du comportement élastique linéaire des composants qui ne doivent pas casser en choc et la prise en compte des non-linéarités géométriques de type grandes rotations et de contact. Une modélisation par des super-éléments élastiques linéaires adaptés pour les calculs explicites avec grandes rotations a été proposée pour les pièces massives de fonderie. La modélisation par super-élément est réalisée dans Radioss via un fichier.fxb. Une nouvelle méthode de réduction dérivée à partir de la méthode de MacNeal a été proposée. La base de transformation de celle-ci est constituée par des modes libres complétés par des modes de souplesse résiduelle (MLSR). Le modèle réduit à l’aide de la méthode MLSR est généré avec des routines Matlab développées dans le cadre de la thèse. Afin d’intégrer la modélisation par super-élément dans le processus de dimensionnement au choc PSA, une filière de calcul Abaqus–Matlab–Radioss a été proposée. Un processus de génération du fichier.fxb à l’aide des outils CFAO utilisés chez PSA a été établi. Afin d’optimiser la performance des calculs avec super-élément, trois nouvelles modélisations pour la gestion de contact avec super-élément ont été proposées. Une application de la modélisation par super-élément a été faite pour un modèle de test et également pour un modèle de choc de véhicule. / Nowadays, road safety is one of the main aims of car makers. To guarantee a high level of security to car drivers and passengers and also to other road users, such as for example pedestrians and two wheelers, the cars are submitted to a lot of tests before their commercialisation. Whether they are virtual or real, the experiments set out the conception and the development of a car. Nowadays, the numerical simulation plays a prime role in the development of new systems and equipments. In order to offer more and more predictivity by numerical models, the domain of the numerical simulation is inconstant evolution. The aim of this thesis is to contribute to the improvement of a car crash simulation. The subject of the study presented in this document is composed by two themes. The first one consists in inclusion of the material nonlinearities as fracture in the car crash dimensioning process. In car crash, two types of components are distinguished. Those which have to brake during the shock such as engine suspensions and those which have not to brake such as crankcase or clutch housing. The fracture is a phenomenon difficult to model, moreover, its computational time is important. Thus, the first fracture models were only functional (deactivation of fracture springs). With the arrival of numerical methods such as element deletion method, a lot of fracture models were developed. Because these models are relatively recent, the material databases are often incomplete which makes their use more difficult. Thus, one of the aims of this study is the material parameters identification of Mohr-Coulomb and Johnson-Cook fracture model with the aid of experiments on specimens. Another experiment campaign on an automotive subsystem was also realized. The numerical correlation using the material fracture parameters identified in the first step enabled to validate the "volumic"fracture modelisation and to identify the ways of progress of the current methodology. The second theme presented in this document is the modeling of linear elastic behavior of components which have not to brake in car crash and inclusion of geometrical nonlinearities as large rotations and contact. A modeling by linear elastic super elements adapted for explicit simulations with large rotations was proposed for massive cast iron components. The modeling by super elements was realized in Radioss by means of the file.fxb. A new reduction method derived from that of MacNeal was proposed. Its transformation basis is constituted by a free eigen-modes completed by residual flexibility modes. The model is reduced by means of Matlab routines which were developed in the framework of the thesis. In order to integrate the modeling by superelements in the dimensioning car crash process used at PSA, a procedure Abaqus–Matlab–Radioss was proposed. A process for the generation of the file.fxb by means of the CAD/CAMtools used at PSA was established. In order to optimize the simulation performance with superelements, three new models for contact management with a superelement were proposed. The modeling by superelement was applied in a test model and also in a frontal car crash simulation.
123

Apport des techniques temps fréquence à la caractérisation mécanique du corps humain en choc / Reaching injury chronology in impact biomechanics using time frequency signal processing

Gabrielli, François 18 February 2010 (has links)
Ce travail de thèse s’inscrit dans le cadre du développement d’un nouvel outil d’analyse et d’exploitation des expérimentations biomécaniques sur corps donnés à la science. Ces expérimentations pleine échelle, comme la reconstitution complète d’un accident réel, ou dit ‘fractionné’, comme l’investigation du comportement mécanique d’une articulation ou la validation d’un modèle éléments finis, utilisent des corps entier ou des segments anatomiques. L’exploitation de ces essais englobe l’analyse des résultantes accélérométriques et des vidéos rapides. Dans tous les cas l’objectif est de saisir les mécanismes lésionnels mis en jeu : si l’autopsie finale donne le bilan complet des lésions provoquées par l’essai expérimental, il est souvent complexe de retrouver la séquence chronologique d’apparition des lésions, voire de localiser anatomiquement cette lésion. Les méthodes actuelles souffrent d’un manque dans l’identification des lésions sur le traitement du signal : l’identification et la localisation temporelle d’une lésions sur un signal permettrait d’affiner la compréhension des mécanismes de destructions du corps humain et de compléter la validation des modèles éléments finis du corps humain. Les signaux accélérométriques issus de la biomécanique de chocs étant non stationnaires et fortement transitoires c’est vers le traitement du signal temps-fréquence que nous somme allé chercher de quoi localiser et discriminer l’apparition d’une lésion sur un signal. C’est plus précisément à partir de la transformée en ondelette continue que nous avons définit un critère de force de transitoire : un scalaire dépendant du temps reflète l’aspect transitoire du signal sur la bande fréquentielle supérieur du spectre temps-fréquence. Cette utilisation simple de la transformée temps échelle va être appliquée à deux structures critiques en biomécanique : le thorax, en tant que structure supportant les organes vitaux et faisant l’objet de moyen de protection spécifique, et le membre inférieur, en tant que premier segment anatomique touché en choc piéton. Dans le cas du thorax, le critère d’estimation de la force d’un transitoire a permis de cartographier de trajet d’un signal transitoire généré par la fracture d’une côte : ce résultat critique permettra de réduire l’instrumentation en biomécanique du thorax tout en en améliorant l’efficacité en terme de détection et localisation de fracture. Dans le cas du membre inférieur, le critère en transitoire a permis de discriminer les signaux transitoires provoqués par une fracture osseuse de ceux provoqué par une avulsion ligamentaire. L’accès à la distinction os/ligament est une avancée majeure dans l’exploitation des expérimentations biomécaniques sur le membre inférieur : les lésions pourront être associées plus facilement à une source lésionnelle et l’accès potentiel à l’état lésionnel de l’articulation du genou permettra de compléter la validation d’un modèle éléments finis. En conclusion cette thèse pose les bases de l’application de méthodes temps échelle à la biomécanique des chocs et permet d’analyser les signaux transitoires générés par les lésions pour améliorer leur localisation anatomique et temporelle. Ce travail très investigatoire devrait permettre de mettre au point un véritable outil d’exploitation expérimental à l’avenir. / This work introduces a new tool to be used in biomechanical experiment based on human surrogates. Those xperiments need human bodies or anatomic segments. They can be ‘full scale’when dealing with crash reconstruction or ‘sub system’ when dealing with any investigation that focuses on mechanical behavior of biological structure. Actual means of post processing of these experiments include accelerometers signal processing, necropsy and fast video recording. The objectives are usually to understand all injury mechanisms. The final necropsy indicates a listing of all injuries sustained by a human surrogate and an important issue is to recover the chronology of these injuries. Current signal post processing methods lack any injury identification system. Accelerometric signals recorded during impact biomechanical tests are definitely non stationary. We propose to use an approach based on time frequency visualization in order to detect and characterize any injury occurrence within those signals. More precisely we applied continuous wavelet transform and introduced a new criterion that quantifies any transient, or singularity, of the signal: we made the hypothesis that singularities are images of injury occurrence. The quantification of the singularity is calculated from the amount of high frequency contained in the signal. The criterion is applied to two anatomical structures of the human body. Firstly on the thorax, as it supports all vital organs and it is the object of intense safety system development. Secondly the criterion is applied on the lower limb, as it s the primary impacted structure during car/pedestrian collision. The application of the transient criterion to the thorax showed that transient signal caused by rib fractures can be tracked down. The knowledge of the path of the transient signal through the thorax lead to a better understanding of the injury mechanism of the rib. Detection and localization of the fracture rib is then improved and further instrumentation for similar biomechanical test could be tremendously reduced in the future. In the case of the lower limb, the transient criterion was used to localize in time any injury occurrence. Moreover the criterion enabled to discriminate ligament failure from bone fracture. This differentiation gives access to the chronology of injury occurrence during sub system impact test or full scale car crash reconstruction. The knowledge of such an internal chronology can lead to car improvement and further validation tool for finite element modes. In conclusion this work introduces a new application of time scale representation to impact biomechanics. Transient signals coming from injury can be localized in time and the origin of the injury can be determined. This preliminary study can be further completed to build an actual tool for the post processing and exploitation of impact biomechanical experiments.
124

Risk and burden of bicycle crash injuries in Iowa and nationwide

Hamann, Cara Jo 01 December 2012 (has links)
Increases in bicycling in the United States results in increased exposure to crashes and injuries. This research focuses on the factors involved in bicycle crashes in the United States and the state of Iowa. Data from the U.S. Nationwide Inpatient Sample and the Iowa Department of Transportation were used to address three aims: 1) estimate the burden and examine the outcomes of bicycle crashes resulting in hospitalizations nationwide by motor vehicle involvement, 2) describe how bicycle motor vehicle crashes vary by intersection and non-intersection in Iowa, and 3) identify the impact of on-road bicycle facilities on bicycle-motor vehicle crashes in Iowa. Using the U.S. Nationwide Inpatient Sample, years 2002-2009, the estimated annual burden of injury from bicycle-related hospitalizations equated to a billion dollars in hospital charges, over 100,000 days in the hospital, and over 300 in-hospital deaths. We also found that bicycling crashes involving motor vehicles had more hospital charges, longer stays, and greater odds of in-hospital death. We also used the Iowa Department of Transportation crash database, 2001 to 2010, to examine risk factors for bicycle-motor vehicle (BMV) crash locations. We found that BMV crashes involve risk factors at person, crash, environment, and population levels and these vary by intersection and non-intersection. Compared to intersections, non-intersection crashes were more likely to involve young bicyclists (0-9 years), locations outside city limits, with driver vision obscured, reduced lighting on the roadway and less likely involve failure to yield right of way. Finally, we conducted a case site-control site study in Iowa, using crash data from 2007 to 2010 to investigate the impact of pavement markings (bicycle lanes and shared lane arrows) and bicycle-specific signage on crash risk. Our results suggest that bicycle facilities are protective against crashes, with the most protective being the combination of both pavement markings and signage, followed by pavement markings alone, and then signage alone. This project shows that bicycling carries a large burden of injury in the United States and that there are many contributing factors to bicycle crashes. It also provides evidence suggesting that infrastructure changes can decrease crash occurrence and there opportunities to intervene at other levels (e.g., person factors) to have an even greater impact overall.
125

Development of a Finite Element Model for Predicting the Impact Energy Absorbing Performance of a Composite Structure

Roberts, Matthew Lowell 01 June 2014 (has links)
Because of their high strength-to-weight ratio, Fiber Reinforced Composite (FRC) materials are well suited for use in high performance racing applications where weight must be kept to a minimum. Formula SAE (FSAE) race cars are designed and built by college students, roughly following the model of a scaled down Formula One car. Strict regulations are placed on specific components of the car in the interest of equalizing competition and ensuring the safety of the drivers. Students are required to construct a survival cell (the chassis), which can resist large amounts of energy in the event of a crash, with an energy absorbing device at the front of the vehicle. The nose cone of the Cal Poly FSAE car is constructed as a carbon fiber shell designed to act as this sacrificial energy absorbing device. One difficulty associated with using FRC materials is that the anisotropic properties can lead to a variety of complex failure modes such as buckling, delamination, matrix cracking, and fiber breakage, all of which absorb different amounts of energy. In order to accurately predict the behavior of the nose cone so that it meets the requirements set forth by SAE, an initial finite element model has been constructed. This model uses the test results from another paper to construct an explicit non-linear dynamic analysis in Abaqus which simulates the axial crushing of a thin walled composite tube between two rigid plates. The modeling techniques discussed in this paper will be used as the basis for a future thesis dedicated to designing the nose cone for the Cal Poly FSAE car.
126

ANALÝZA TUHOSTI PŘEDNÍ ČÁSTI VOZIDEL / STIFFNESS ANALYSIS OF FRONT PART OF THE VEHICLE

Coufal, Tomáš January 2015 (has links)
The thesis deals with the front part stiffness of modern vehicles, especially for the use in the field of forensic engineering in the traffic accident analysis. During the traffic accident analysis, an inquiry into the collision between vehicles is carried out which is an integral part of determining the energy loss of the vehicle at the impact, or more precisely the deformation energy expressed in the form of Energy Equivalent Speed (EES). In case of known stiffness of given part of the vehicle and based on the depth of deformation, it is possible to calculate the deformation energy, or more precisely EES corresponding with given damage of the vehicle. In the field of forensic engineering, the values of stiffness of individual vehicle components are not known and therefore, alternative methods are used to calculate the EES, they are outlined in the research part of this dissertation. However, the current methods of EES determination have some limitations when it comes to usability, and therefore, new EES calculation for the front part of the vehicle was designed in the research. It was based on the real crash test results using real stiffness characteristics of the front part of a vehicle. The front part of the vehicle is divided into individual areas and each of these parts is characterised by its own stiffness coefficient. The designed EES calculation can thus be also used for collisions with partial overlapping, taking into account the real stiffness of the damaged part of the vehicle, which was not possible with existing methods. In the research part of this dissertation, a computer programme to calculate deformation energy and EES was processed. It works with individual stiffness characteristics in given areas where the input data are entered by the user and include the depth of permanent front part deformation in individual areas, vehicle weight, the direction of an impact force and the friction coefficient on the contact surface. Considering the fact that the vehicle stiffness is also one of the control parameters at solving collisions in the PC-Crash simulation programme, which is used in forensic engineering practice for the analysis of a collision process, a supplementary computer programme was designed. Based on the above-mentioned input data, the supplementary programme can further calculate data for collision solving in the simulation programme, namely stiffness, restitution coefficient and the vehicle damage stated in the output report of the simulation programme. Based on these data, the expert thus has the opportunity to solve the collision of two vehicles in the simulation programme with as much preciseness as if it was a real collision.
127

Simulation of vehicle crash into bridge parapet using Abaqus/Explicit

Ogmaia, Daly, Tasel, Sebastian Elias Tasel January 2015 (has links)
Safety is an important aspect when designing bridges and roads. One aspect among others to consider is the road restraint systems. The focus of this study was centered to safety barriers which are the vehicle parapets/guardrails. The parapet must meet certain requirements specified in European Standard in order to obtain a CE-marking, indicating the acceptance of use. Full-scale test must be performed for a proposed parapet to evaluate the performance. Often several full-scale tests are performed in order to achieve CE-marking, making it an expensive process. The primary objective of this master thesis was to investigate if Abaqus/Explicit could be used as the finite element software for simulation of crashes. Secondary objective was to investigate how well a performed full-scale crash could be simulated in Abaqus/Explicit. A full-scale test was conducted and the parapet installation and vehicle used was modeled. Same conditions as in the full-scale were used in the simulation. The results indicated that it is possible to simulate the full-scale crash using Abaqus/Explicit. However, the behavior of the full-scale test was not completely captured. The maximum dynamic and permanent horizontal deflection of the tabular thrie beam in the full-scale test was 582 mm and 515 mm, corresponding value from the simulation was 703 mm and 643 mm. The conclusion from the results is that Abaqus/Explicit is a suitable finite element software for simulating crashes. The differences between the full-scale test and the simulations in this master thesis were due to the simplifications and assumptions used when modeling the parapet, bridge deck and the vehicle. The overall global behavior of the full-scale test was not captured, however the simulation results were not far from the full-scale test even though rough simplifications and assumptions were used in the modeling. We believe that with more care to details in modeling, it should be possible to have better convergence between simulation and the full-scale test.
128

Design of an Origami Patterned Pre-Folded Thin Walled Tubular Structure for Crashworthiness

Chaudhari, Prathamesh 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Thin walled tubular structures are widely used in the automotive industry because of its weight to energy absorption advantage. A lot of research has been done in different cross sectional shapes and different tapered designs, with design for manufacturability in mind, to achieve high specific energy absorption. In this study a novel type of tubular structure is proposed, in which predesigned origami initiators are introduced into conventional square tubes. The crease pattern is designed to achieve extensional collapse mode which results in decreasing the initial buckling forces and at the same time acts as a fold initiator, helping to achieve a extensional collapse mode. The influence of various design parameters of the origami pattern on the mechanical properties (crushing force and deceleration) are extensively investigated using finite element modelling. Thus, showing a predictable and stable collapse behavior. This pattern can be stamped out of a thin sheet of material. The results showed that a properly designed origami pattern can consistently trigger a extensional collapse mode which can significantly lower the peak values of crushing forces and deceleration without compromising on the mean values. Also, a comparison has been made with the behavior of proposed origami pattern for extensional mode verses origami pattern with diamond fold.
129

Fyzikální a matematické modelování demolice komína / Physical and Mathematical modelling of Chimney Demolition

Ficker, Tomáš January 2022 (has links)
The thesis deals with physical and numerical modelling of downsized model of chimney and its demolition. The properties of downsized physical model, which is made of wooden cubes, are being researched and experimentally tested. The physical experiments are then designed using software FyDiK. Numerical Model is simplified to 2D problem, whereas the problem includes dynamic effects. Conformity of designed software model and physical experiment is tested. The aim of this thesis is to achive the best possible conformity of physical and numerical models.
130

Skeletal Blast Trauma: An Application of Clinical Literature and Current Methods in Forensic Anthropology to known Blast Trauma Casualties

Banks, Petra 08 December 2017 (has links)
In order to examine the feasibility of assessing blast event conditions from bone and to distinguish blast trauma from aircraft crash trauma, this study attempts to determine if the observations made in clinical research are mirrored in skeletal remains of individuals who died in blast events. Research was conducted by assessing the frequency of different forms of trauma and their comparison to aircraft crash trauma, the directionality of trauma, and open-air versus enclosed blast trauma. Data consisted of historic and forensic anthropology reports of individuals who died from blast events and aircraft crashes from the Defense POW/MIA Accounting Agency (DPAA). The results indicate a difference in the projectile/comminuted trauma between aircraft crash trauma and blast events, and that directionality is present in blast event fractures but should be used judiciously to determine blast direction. A sample of one open-air blast individual precluded assessment of enclosed versus open-air blast events.

Page generated in 0.0298 seconds