• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strained Zigzag Graphene Nanoribbon Devices With Vacancies as Perfect Spin Filters

Magno, Macon, Hagelberg, Frank 01 January 2018 (has links)
The transport properties of zigzag graphene nanoribbons (zGNRs) were studied by density functional theory (DFT) in conjunction with Green’s function analysis. In particular, spin transport through a zGNR (12,0) device was investigated under the constraint of ferromagnetic coordination of the ribbon edges. Several configurations with two vacant sites in the edge and the bulk region of the zGNR device were derived from this system. For all structures, magnetocurrent ratios (MCRs) were recorded as a function of the bias as well as the amount of strain applied longitudinally to the devices. ZGNR devices with vacancies in the edge regime turn out to exhibit perfect spin-filter activity for well-defined choices of the strain and the bias, carrying completely polarized minority spin currents. In the alternative structure, characterized by vacancies in the bulk regime, spin currents with majority orientation prevail. With respect to both the sign and the size, the MCR is seen to depend sensitively on the device parameters, i.e., the vacancy locations, the bias, and the amount of strain. These results are interpreted in terms of density-of-states distributions, transmission spectra, and transmission operator eigenstates.
2

Quantum Mechanical and Atomic Level ab initio Calculation of Electron Transport through Ultrathin Gate Dielectrics of Metal-Oxide-Semiconductor Field Effect Transistors

Nadimi, Ebrahim 30 April 2008 (has links) (PDF)
The low dimensions of the state-of-the-art nanoscale transistors exhibit increasing quantum mechanical effects, which are no longer negligible. Gate tunneling current is one of such effects, that is responsible for high power consumption and high working temperature in microprocessors. This in turn put limits on further down scaling of devices. Therefore modeling and calculation of tunneling current is of a great interest. This work provides a review of existing models for the calculation of the gate tunneling current in MOSFETs. The quantum mechanical effects are studied with a model, based on a self-consistent solution of the Schrödinger and Poisson equations within the effective mass approximation. The calculation of the tunneling current is focused on models based on the calculation of carrier’s lifetime on quasi-bound states (QBSs). A new method for the determination of carrier’s lifetime is suggested and then the tunneling current is calculated for different samples and compared to measurements. The model is also applied to the extraction of the “tunneling effective mass” of electrons in ultrathin oxynitride gate dielectrics. Ultrathin gate dielectrics (tox<2 nm) consist of only few atomic layers. Therefore, atomic scale deformations at interfaces and within the dielectric could have great influences on the performance of the dielectric layer and consequently on the tunneling current. On the other hand the specific material parameters would be changed due to atomic level deformations at interfaces. A combination of DFT and NEGF formalisms has been applied to the tunneling problem in the second part of this work. Such atomic level ab initio models take atomic level distortions automatically into account. An atomic scale model interface for the Si/SiO2 interface has been constructed and the tunneling currents through Si/SiO2/Si stack structures are calculated. The influence of single and double oxygen vacancies on the tunneling current is investigated. Atomic level distortions caused by a tensile or compression strains on SiO2 layer as well as their influence on the tunneling current are also investigated. / Die vorliegende Arbeit beschäftigt sich mit der Berechnung von Tunnelströmen in MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors). Zu diesem Zweck wurde ein quantenmechanisches Modell, das auf der selbstkonsistenten Lösung der Schrödinger- und Poisson-Gleichungen basiert, entwickelt. Die Gleichungen sind im Rahmen der EMA gelöst worden. Die Lösung der Schrödinger-Gleichung unter offenen Randbedingungen führt zur Berechnung von Ladungsverteilung und Lebensdauer der Ladungsträger in den QBSs. Der Tunnelstrom wurde dann aus diesen Informationen ermittelt. Der Tunnelstrom wurde in verschiedenen Proben mit unterschiedlichen Oxynitrid Gatedielektrika berechnet und mit gemessenen Daten verglichen. Der Vergleich zeigte, dass die effektive Masse sich sowohl mit der Schichtdicke als auch mit dem Stickstoffgehalt ändert. Im zweiten Teil der vorliegenden Arbeit wurde ein atomistisches Modell zur Berechnung des Tunnelstroms verwendet, welche auf der DFT und NEGF basiert. Zuerst wurde ein atomistisches Modell für ein Si/SiO2-Schichtsystem konstruiert. Dann wurde der Tunnelstrom für verschiedene Si/SiO2/Si-Schichtsysteme berechnet. Das Modell ermöglicht die Untersuchung atom-skaliger Verzerrungen und ihren Einfluss auf den Tunnelstrom. Außerdem wurde der Einfluss einer einzelnen und zwei unterschiedlich positionierter neutraler Sauerstoffleerstellen auf den Tunnelstrom berechnet. Zug- und Druckspannungen auf SiO2 führen zur Deformationen in den chemischen Bindungen und ändern den Tunnelstrom. Auch solche Einflüsse sind anhand des atomistischen Modells berechnet worden.
3

Etude théorique de nouveaux concepts de nano-transistors en graphène / Theoretical study of new concepts of graphene based transistors

Berrada, Salim 16 May 2014 (has links)
Cette thèse porte sur l’étude théorique de nouveaux concepts de transistors en graphène par le formalisme des fonctions de Green dans l’hypothèse du transport balistique. Le graphène est un matériau bidimensionnel composé d’atomes de carbone organisés en nid d’abeille. Cette structure confère des propriétés uniques aux porteurs de charge dans le graphène, comme une masse effective nulle et un comportement ultra-relativiste (fermions de Dirac), ce qui conduit à des mobilités extraordinairement élevées. C’est pourquoi des efforts très importants ont été mis en œuvre dans la communauté scientifique pour la réalisation de transistors en graphène. Cependant, en vue de nombreuses applications, le graphène souffre de l’absence d’une bande d’énergie interdite. De plus, dans le cas des transistors conventionnels à base de graphène (GFET), cette absence de bande interdite, combinée avec l’apparition de l’effet tunnel de Klein, a pour effet de dégrader considérablement le rapport I_ON/I_OFF des GFET. L’absence de gap empêche également toute saturation du courant dans la branche N – là où se trouve le maximum de transconductance pour des sources et drain dopés N – et ne permet donc pas de tirer profit des très bonnes performances fréquentielles que le graphène est susceptible d’offrir grâce aux très hautes mobilités de ses porteurs. Cependant, de précédents travaux théorique et expérimentaux ont montré que la réalisation d’un super-réseau d’anti-dots dans la feuille de graphène – appelée Graphene NanoMesh (GNM) – permettait d’ouvrir une bande interdite dans le graphène. On s’est donc d’abord proposé d’étudier l’apport de l’introduction de ce type de structure pour former canal des transistors – appelés GNMFET – par rapport aux GFET « conventionnels ». La comparaison des résultats obtenus pour un GNM-FET avec un GFET de mêmes dimensions permettent d’affirmer que l’on peut améliorer le rapport I_ON/I_OFF de 3 ordres de grandeurs pour une taille et une périodicité adéquate des trous. Bien que l’introduction d’un réseau de trous réduise légèrement la fréquence de coupure intrinsèque f_T, il est remarquable de constater que la bonne saturation du courant dans la branche N, qui résulte de la présence de la bande interdite dans le GNM, conduit à une fréquence maximale d’oscillation f_max bien supérieure dans le GNM-FET. Le gain en tension dans ce dernier est aussi amélioré d’un ordre de grandeur de grandeur par rapport au GFET conventionnel. Bien que les résultats sur le GNM-FET soient très encourageants, l’introduction d’une bande interdite dans la feuille de graphène induit inévitablement une masse effective non nulle pour les porteurs, et donc une vitesse de groupe plus faible que dans le graphène intrinsèque. C’est pourquoi, en complément de ce travail, nous avons exploré la possibilité de moduler le courant dans un GFET sans ouvrir de bande interdite dans le graphène. La solution que nous avons proposée consiste à utiliser une grille triangulaire à la place d’une grille rectangulaire. Cette solution exploite les propriétés du type "optique géométrique" des fermions de Dirac dans le graphène, qui sont inhérentes à leur nature « Chirale », pour moduler l’effet tunnel de Klein dans le transistor et bloquer plus efficacement le passage des porteurs dans la branche P quand le dopage des sources et drains sont de type N. C’est pourquoi nous avons choisi d’appeler ce transistor le « Klein Tunneling FET » (KTFET). Nous avons pu montrer que cette géométrie permettrait d’obtenir un courant I_off plus faible que ce qui est obtenu d’habitude, pour la même surface de grille, pour les GFET conventionnels. Cela offre la perspective d’une nouvelle approche de conception de dispositifs permettant d’exploiter pleinement le caractère de fermions de Dirac des porteurs de charges dans le graphène. / This thesis is a theoretical study of new concepts of graphene-based transistors using non equilibrium Green’s function formalism in the ballistic limit. Graphene is a two-dimensional material made of a honeycomb arrangement of carbon atoms. This crystallographic structure allows electrons to behave like ultra-relativistic particles, namely massless Dirac fermions. This yields extraordinary high mobility for charge carriers in this material and a huge potential for high frequency applications. Consequently, strong efforts have been made in the scientific community towards the implementation of this material as a channel for field effect transistors. Unfortunately, graphene suffers from the lack of an energy band gap, and the Klein tunneling effect that takes place in Graphene Field Effect Transistor’s (GFET) channel makes it impossible to back-scatter completely the carriers even for high potential barriers. This degrades considerably the I_ON/I_OFF ratio obtained in GFETs. Additionally, the absence of a band gap makes it impossible to obtain current saturation in the N branch, where the maximum of transconductance is reached for n-doped source and drain regions, preventing to take full advantage from the huge potential for high frequency application of graphene. Fortunately, it has been demonstrated in both theoretical and experimental works that Graphene NanoMesh (GNM), a structure obtained after punching an anti-dot super-lattice in the graphene sheet, can open a band gap for charge carriers. This has motivated our study of a field effect transistor where the GNM is used as a channel (GNMFET) and to compare its performance with the conventional GFET. Our study showed that the use of this type of transistors can improve the I_ON/I_OFF ratio up to 3 orders of magnitude when the GNM is carefully chosen. Though the introduction of the anti-dots in the graphene sheet reduces the transit frequency f_T, it is remarkable that the good saturation that occurs in the N branch, as a result of the band gap opening, yields a much higher maximum oscillation frequency f_max in the GNMFET. The voltage gain is also improved by an order of magnitude compared to its GFET counterpart. Though the performance of the GNMFET is very encouraging, the band gap opening in the GNM confers a finite effective mass to the carriers in graphene, resulting in lower group velocity compared to the case of pristine graphene. This is why we explored a new solution that avoids the band gap opening to modulate the current in graphene-based transistors. We proposed the use of a triangular gate of the transistor. The operation of this transistor relies on optics-like behavior of Dirac fermions that emerges from their “chiral” properties, giving the possibility to modulate the Klein tunneling. We called this transistor the “Klein Tunneling Field Effect Transistor” (KTFET), and we showed that that this prismatic gate shape enables the KTFET to have an “OFF” current I_OFF that is lower than the one that it obtained for the conventional GFET and which is determined by the Dirac point. This study paves the way for a new approach to designing graphene devices which fully exploits the Dirac fermions nature of particles in graphene.
4

Quantum Mechanical and Atomic Level ab initio Calculation of Electron Transport through Ultrathin Gate Dielectrics of Metal-Oxide-Semiconductor Field Effect Transistors

Nadimi, Ebrahim 16 April 2008 (has links)
The low dimensions of the state-of-the-art nanoscale transistors exhibit increasing quantum mechanical effects, which are no longer negligible. Gate tunneling current is one of such effects, that is responsible for high power consumption and high working temperature in microprocessors. This in turn put limits on further down scaling of devices. Therefore modeling and calculation of tunneling current is of a great interest. This work provides a review of existing models for the calculation of the gate tunneling current in MOSFETs. The quantum mechanical effects are studied with a model, based on a self-consistent solution of the Schrödinger and Poisson equations within the effective mass approximation. The calculation of the tunneling current is focused on models based on the calculation of carrier’s lifetime on quasi-bound states (QBSs). A new method for the determination of carrier’s lifetime is suggested and then the tunneling current is calculated for different samples and compared to measurements. The model is also applied to the extraction of the “tunneling effective mass” of electrons in ultrathin oxynitride gate dielectrics. Ultrathin gate dielectrics (tox<2 nm) consist of only few atomic layers. Therefore, atomic scale deformations at interfaces and within the dielectric could have great influences on the performance of the dielectric layer and consequently on the tunneling current. On the other hand the specific material parameters would be changed due to atomic level deformations at interfaces. A combination of DFT and NEGF formalisms has been applied to the tunneling problem in the second part of this work. Such atomic level ab initio models take atomic level distortions automatically into account. An atomic scale model interface for the Si/SiO2 interface has been constructed and the tunneling currents through Si/SiO2/Si stack structures are calculated. The influence of single and double oxygen vacancies on the tunneling current is investigated. Atomic level distortions caused by a tensile or compression strains on SiO2 layer as well as their influence on the tunneling current are also investigated. / Die vorliegende Arbeit beschäftigt sich mit der Berechnung von Tunnelströmen in MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors). Zu diesem Zweck wurde ein quantenmechanisches Modell, das auf der selbstkonsistenten Lösung der Schrödinger- und Poisson-Gleichungen basiert, entwickelt. Die Gleichungen sind im Rahmen der EMA gelöst worden. Die Lösung der Schrödinger-Gleichung unter offenen Randbedingungen führt zur Berechnung von Ladungsverteilung und Lebensdauer der Ladungsträger in den QBSs. Der Tunnelstrom wurde dann aus diesen Informationen ermittelt. Der Tunnelstrom wurde in verschiedenen Proben mit unterschiedlichen Oxynitrid Gatedielektrika berechnet und mit gemessenen Daten verglichen. Der Vergleich zeigte, dass die effektive Masse sich sowohl mit der Schichtdicke als auch mit dem Stickstoffgehalt ändert. Im zweiten Teil der vorliegenden Arbeit wurde ein atomistisches Modell zur Berechnung des Tunnelstroms verwendet, welche auf der DFT und NEGF basiert. Zuerst wurde ein atomistisches Modell für ein Si/SiO2-Schichtsystem konstruiert. Dann wurde der Tunnelstrom für verschiedene Si/SiO2/Si-Schichtsysteme berechnet. Das Modell ermöglicht die Untersuchung atom-skaliger Verzerrungen und ihren Einfluss auf den Tunnelstrom. Außerdem wurde der Einfluss einer einzelnen und zwei unterschiedlich positionierter neutraler Sauerstoffleerstellen auf den Tunnelstrom berechnet. Zug- und Druckspannungen auf SiO2 führen zur Deformationen in den chemischen Bindungen und ändern den Tunnelstrom. Auch solche Einflüsse sind anhand des atomistischen Modells berechnet worden.
5

Simulation of the electron transport through silicon nanowires and across NiSi2-Si interfaces

Fuchs, Florian 25 April 2022 (has links)
Die fortschreitenden Entwicklungen in der Mikro- und Nanotechnologie erfordern eine solide Unterstützung durch Simulationen. Numerische Bauelementesimulationen waren und sind dabei unerlässliche Werkzeuge, die jedoch zunehmend an ihre Grenzen kommen. So basieren sie auf Parametern, die für beliebige Atomanordnungen nicht verfügbar sind, und scheitern für stark verkleinerte Strukturen infolge zunehmender Relevanz von Quanteneffekten. Diese Arbeit behandelt den Transport in Siliziumnanodrähten sowie durch NiSi2-Si-Grenzflächen. Dichtefunktionaltheorie wird dabei verwendet, um die stabile Atomanordnung und alle für den elektronischen Transport relevanten quantenmechanischen Effekte zu beschreiben. Bei der Untersuchung der Nanodrähte liegt das Hauptaugenmerk auf der radialen Abhängigkeit der elektronischen Struktur sowie deren Änderung bei Variation des Durchmessers. Dabei zeigt sich, dass der Kern der Nanodrähte für den Ladungstransport bestimmend ist. Weiterhin kann ein Durchmesser von ungefähr 5 nm identifiziert werden, oberhalb dessen die Zustandsdichte im Nanodraht große Ähnlichkeiten mit jener des Silizium-Volumenkristalls aufweist und der Draht somit zunehmend mit Näherungen für den perfekt periodischen Kristall beschrieben werden kann. Der Fokus bei der Untersuchung der NiSi2-Si-Grenzflächen liegt auf der Symmetrie von Elektron- und Lochströmen im Tunnelregime, welche für die Entwicklung von rekonfigurierbaren Feldeffekttransistoren besondere Relevanz hat. Verschiedene NiSi2-Si-Grenzflächen und Verzerrungszustände werden dabei systematisch untersucht. Je nach Grenzfläche ist die Symmetrie dabei sehr unterschiedlich und zeigt auch ein sehr unterschiedliches Verhalten bei externer Verzerrung. Weiterhin werden grundlegende physikalische Größen mit Bezug zu NiSi2-Si-Grenzflächen betrachtet. So wird beispielsweise die Stabilität anhand von Grenzflächen-Energien ermittelt. Am stabilsten sind {111}-Grenzflächen, was deren bevorzugtes Auftreten in Experimenten erklärt. Weitere wichtige Größen, deren Verzerrungsabhängigkeit untersucht wird, sind die Schottky-Barrierenhöhe, die effektive Masse der Ladungsträger sowie die Austrittsarbeiten von NiSi2- und Si-Oberflächen. Ein Beitrag zur Modellentwicklung numerischer Bauelementesimulationen wird durch einen Vergleich zwischen den Ergebnissen von Dichtefunktionaltheorie-basierten Transportrechnungen und denen eines vereinfachten Models basierend auf der Wentzel-Kramers-Brillouin-Näherung geliefert. Diese Näherung ist Teil vieler numerischer Bauelementesimulatoren und erlaubt die Berechnung des Tunnelstroms basierend auf grundlegenden physikalischen Größen. Der Vergleich ermöglicht eine Evaluierung des vereinfachten Models, welches anschließend genutzt wird, um den Einfluss der grundlegenden physikalischen Größen auf den Tunneltransport zu untersuchen.:Index of Abbreviations 1. Introduction 2. Silicon Based Devices and Silicon Nanowires 2.1. Introduction 2.2. The Reconfigurable Field-effect Transistor 2.2.1. Design and Functionality 2.2.2. Fabrication 2.3. Overview Over Silicon Nanowires 2.3.1. Geometric Structure 2.3.2. Fabrication Techniques 2.3.3. Electronic Properties 3. Simulation Tools 3.1. Introduction 3.2. Electronic Structure Calculations 3.2.1. Introduction and Basis Functions 3.2.2. Density Functional Theory 3.2.3. Description of Exchange and Correlation Effects 3.2.4. Practical Aspects of Density Functional Theory 3.3. Electron Transport 3.3.1. Introduction 3.3.2. Scattering Theory 3.3.3. Wentzel-Kramers-Brillouin Approximation for a Triangular Barrier 3.3.4. Non-equilibrium Green’s Function Formalism A. Radially Resolved Electronic Structure and Charge Carrier Transport in Silicon Nanowires A.1. Introduction A.2. Model System A.3. Results and Discussion A.4. Summary and Conclusions A.5. Appendix A: Computational Details A.6. Appendix B: Supplementary Material A.6.1. Comparison of the Band Gap Between Relaxed and Unrelaxed SiNWs A.6.2. Band Structures for Some of the Calculated SiNWs A.6.3. Radially Resolved Density of States for Some of the Calculated SiNWs B. Electron Transport Through NiSi2-Si Contacts and Their Role in Reconfigurable Field-effect Transistors B.1. Introduction B.2. Model for Reconfigurable Field-effect Transistors B.2.1. Atomistic Quantum Transport Model to Describe Transport Across the Contact Interface B.2.2. Simplified Compact Model to Calculate the Device Characteristics B.3. Results and Discussion B.3.1. Characteristics of a Reconfigurable Field-effect Transistor B.3.2. Variation of the Crystal Orientations and Influence of the Schottky Barrier B.3.3. Comparison to Fabricated Reconfigurable Field-effect Transistors B.4. Summary and Conclusions B.5. Appendix: Supplementary Material B.5.1. Band Structure and Density of States of the Contact Metal B.5.2. Relaxation Procedure B.5.3. Total Transmission Through Multiple Barriers C. Formation and Crystallographic Orientation of NiSi2-Si Interfaces C.1. Introduction C.2. Fabrication and characterization methods C.3. Model System and Simulation Details C.4. Results and discussion C.4.1. Atomic structure of the interface C.4.2. Discussion of ways to modify the interface orientation C.5. Summary C.6. Appendix: Supplementary Material D. NiSi2-Si Interfaces Under Strain: From Bulk and Interface Properties to Tunneling Transport D.1. Introduction D.2. Model System and Simulation Approach D.3. Computational Details D.3.1. Electronic Structure Calculations (Geometry Relaxations) D.3.2. Electronic Structure Calculations (Electronic Structure) D.3.3. Device Calculations D.4. Tunneling Transport From First-principles Calculations D.4.1. Evaluation of the Current D.4.2. Isotropic Strain D.4.3. Anisotropic Strain D.5. Transport Related Properties and Effective Modeling Schemes D.5.1. Schottky Barrier Height D.5.2. Simplified Transport Model D.5.3. Models for the Schottky Barrier Height D.6. Summary and Conclusions D.7. Appendix: Supplementary Material D.7.1. Schottky Barriers of the {110} Interface Under Anisotropic Strain D.7.2. Silicon Band Structure, Electric Field, and Number of Transmission Channels D.7.3. k∥-resolved Material Properties D.7.4. Evaluation of the Work Functions and Electron Affinities D.7.5. Verification of the Work Function Calculation 4. Discussion 5. Ongoing Work and Possible Extensions 6. Summary Bibliography List of Figures List of Tables Acknowledgements Selbstständigkeitserklärung Curriculum Vitae Scientific Contributions / The ongoing developments in micro- and nanotechnologies require a profound support from simulations. Numerical device simulations were and still are essential tools to support the device development. However, they gradually reach their limits as they rely on parameters, which are not always available, and neglect quantum effects for small structures. This work addresses the transport in silicon nanowires and through NiSi2-Si interfaces. By using density functional theory, the atomic structure is considered, and all electron transport related quantum effects are taken into account. Silicon nanowires are investigated with special attention to their radially resolved electronic structure and the corresponding modifications when the silicon diameter is reduced. The charge transport occurs mostly in the nanowire core. A diameter of around 5 nm can be identified, above which the nanowire core exhibits a similar density of states as bulk silicon. Thus, bulk approximations become increasingly valid above this diameter. NiSi2-Si interfaces are studied with focus on the symmetry between electron and hole currents in the tunneling regime. The symmetry is especially relevant for the development of reconfigurable field-effect transistors. Different NiSi2-Si interfaces and strain states are studied systematically. The symmetry is found to be different between the interfaces. Changes of the symmetry upon external strain are also very interface dependent. Furthermore, fundamental physical properties related to NiSi2-Si interfaces are evaluated. The stability of the different interfaces is compared in terms of interface energies. {111} interfaces are most stable, which explains their preferred occurrence in experiments. Other properties, whose strain dependence is studied, include the Schottky barrier height, the effective mass of the carriers, and work functions. A contribution to the development of numerical device simulators will be given by comparing the results from density functional theory based transport calculations and a model based on the Wentzel-Kramers-Brillouin approximation. This approximation, which is often employed in numerical device simulators, offers a relation between interface properties and the tunneling transport. The comparison allows an evaluation of the simplified model, which is then used to investigate the relation between the fundamental physical properties and the tunneling transport.:Index of Abbreviations 1. Introduction 2. Silicon Based Devices and Silicon Nanowires 2.1. Introduction 2.2. The Reconfigurable Field-effect Transistor 2.2.1. Design and Functionality 2.2.2. Fabrication 2.3. Overview Over Silicon Nanowires 2.3.1. Geometric Structure 2.3.2. Fabrication Techniques 2.3.3. Electronic Properties 3. Simulation Tools 3.1. Introduction 3.2. Electronic Structure Calculations 3.2.1. Introduction and Basis Functions 3.2.2. Density Functional Theory 3.2.3. Description of Exchange and Correlation Effects 3.2.4. Practical Aspects of Density Functional Theory 3.3. Electron Transport 3.3.1. Introduction 3.3.2. Scattering Theory 3.3.3. Wentzel-Kramers-Brillouin Approximation for a Triangular Barrier 3.3.4. Non-equilibrium Green’s Function Formalism A. Radially Resolved Electronic Structure and Charge Carrier Transport in Silicon Nanowires A.1. Introduction A.2. Model System A.3. Results and Discussion A.4. Summary and Conclusions A.5. Appendix A: Computational Details A.6. Appendix B: Supplementary Material A.6.1. Comparison of the Band Gap Between Relaxed and Unrelaxed SiNWs A.6.2. Band Structures for Some of the Calculated SiNWs A.6.3. Radially Resolved Density of States for Some of the Calculated SiNWs B. Electron Transport Through NiSi2-Si Contacts and Their Role in Reconfigurable Field-effect Transistors B.1. Introduction B.2. Model for Reconfigurable Field-effect Transistors B.2.1. Atomistic Quantum Transport Model to Describe Transport Across the Contact Interface B.2.2. Simplified Compact Model to Calculate the Device Characteristics B.3. Results and Discussion B.3.1. Characteristics of a Reconfigurable Field-effect Transistor B.3.2. Variation of the Crystal Orientations and Influence of the Schottky Barrier B.3.3. Comparison to Fabricated Reconfigurable Field-effect Transistors B.4. Summary and Conclusions B.5. Appendix: Supplementary Material B.5.1. Band Structure and Density of States of the Contact Metal B.5.2. Relaxation Procedure B.5.3. Total Transmission Through Multiple Barriers C. Formation and Crystallographic Orientation of NiSi2-Si Interfaces C.1. Introduction C.2. Fabrication and characterization methods C.3. Model System and Simulation Details C.4. Results and discussion C.4.1. Atomic structure of the interface C.4.2. Discussion of ways to modify the interface orientation C.5. Summary C.6. Appendix: Supplementary Material D. NiSi2-Si Interfaces Under Strain: From Bulk and Interface Properties to Tunneling Transport D.1. Introduction D.2. Model System and Simulation Approach D.3. Computational Details D.3.1. Electronic Structure Calculations (Geometry Relaxations) D.3.2. Electronic Structure Calculations (Electronic Structure) D.3.3. Device Calculations D.4. Tunneling Transport From First-principles Calculations D.4.1. Evaluation of the Current D.4.2. Isotropic Strain D.4.3. Anisotropic Strain D.5. Transport Related Properties and Effective Modeling Schemes D.5.1. Schottky Barrier Height D.5.2. Simplified Transport Model D.5.3. Models for the Schottky Barrier Height D.6. Summary and Conclusions D.7. Appendix: Supplementary Material D.7.1. Schottky Barriers of the {110} Interface Under Anisotropic Strain D.7.2. Silicon Band Structure, Electric Field, and Number of Transmission Channels D.7.3. k∥-resolved Material Properties D.7.4. Evaluation of the Work Functions and Electron Affinities D.7.5. Verification of the Work Function Calculation 4. Discussion 5. Ongoing Work and Possible Extensions 6. Summary Bibliography List of Figures List of Tables Acknowledgements Selbstständigkeitserklärung Curriculum Vitae Scientific Contributions
6

Electronic Transport Properties of Copper and Gold at Atomic Scale / Elektronische Transporteigenschaften von Kupfer und Gold auf atomarer Skala

Mohammadzadeh, Saeideh 15 December 2010 (has links) (PDF)
The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green’s function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. / In der vorliegenden Arbeit werden die wesentlichen Faktoren, die die elektronischen Transporteigenschaften von Kontaktstrukturen atomarer Größe aus Kupfer bzw. Gold bestimmen, theoretisch untersucht. Untersuchungsgegenstand ist eine leitfähige Struktur zwischen zwei kristallinen Elektroden. Um Transportberechungen sowohl unter Gleichgewichts- als auch unter Nicht-Gleichgewichts-Bedingungen durchführen zu können, wird die Simulations-Software gDFTB, die auf dem Nicht-Gleichgewichts-Green-funktionenformalismus in Kombination mit der Dichtefunktional-Tight-Binding-Methode beruht, eingesetzt. Die elektronischen Eigenschaften der betrachteten atomaren Drähte werden nur sehr schwach von ihrer kristallinen Orientierung, ihrer Länge und der Elektrodenanordnung beeinflusst. Als effektivster geometrischer Faktor wurde der Leiterquerschnitt gefunden, weil dieser die Anzahl der Leitungskanäle bestimmt. Darüber hinaus werden die erhaltenen Leitfähigkeitsoszillationen und die linearen Strom-Spannungs-Kennlinien erklärt. Für eine detaillierte Analyse des Leitungsmechanismus werden bei den Ein-Atom-Kontakten aus Kupfer und Gold die Übertragungskanäle und ihre Aufspaltung in Atomorbitale betrachtet. Die präsentierten Ergebnisse bieten eine mögliche Erklärung für den Zusammenhang zwischen Leitfähigkeit und geometrischer Struktur. Die Resultate zeigen eine akzeptable Übereinstimmung mit den verfügbaren experimentellen und theoretischen Studien.
7

Electronic Transport Properties of Copper and Gold at Atomic Scale

Mohammadzadeh, Saeideh 23 November 2010 (has links)
The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green’s function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. / In der vorliegenden Arbeit werden die wesentlichen Faktoren, die die elektronischen Transporteigenschaften von Kontaktstrukturen atomarer Größe aus Kupfer bzw. Gold bestimmen, theoretisch untersucht. Untersuchungsgegenstand ist eine leitfähige Struktur zwischen zwei kristallinen Elektroden. Um Transportberechungen sowohl unter Gleichgewichts- als auch unter Nicht-Gleichgewichts-Bedingungen durchführen zu können, wird die Simulations-Software gDFTB, die auf dem Nicht-Gleichgewichts-Green-funktionenformalismus in Kombination mit der Dichtefunktional-Tight-Binding-Methode beruht, eingesetzt. Die elektronischen Eigenschaften der betrachteten atomaren Drähte werden nur sehr schwach von ihrer kristallinen Orientierung, ihrer Länge und der Elektrodenanordnung beeinflusst. Als effektivster geometrischer Faktor wurde der Leiterquerschnitt gefunden, weil dieser die Anzahl der Leitungskanäle bestimmt. Darüber hinaus werden die erhaltenen Leitfähigkeitsoszillationen und die linearen Strom-Spannungs-Kennlinien erklärt. Für eine detaillierte Analyse des Leitungsmechanismus werden bei den Ein-Atom-Kontakten aus Kupfer und Gold die Übertragungskanäle und ihre Aufspaltung in Atomorbitale betrachtet. Die präsentierten Ergebnisse bieten eine mögliche Erklärung für den Zusammenhang zwischen Leitfähigkeit und geometrischer Struktur. Die Resultate zeigen eine akzeptable Übereinstimmung mit den verfügbaren experimentellen und theoretischen Studien.

Page generated in 0.1072 seconds