• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 273
  • 192
  • 32
  • 26
  • 11
  • 9
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 760
  • 202
  • 174
  • 133
  • 124
  • 80
  • 71
  • 60
  • 57
  • 56
  • 55
  • 54
  • 52
  • 50
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Expression of Inflamatory Response Genes in Ferrets Challenged with H5N1 Avian Influenza Virus

Miniard, Brock M. 27 June 2012 (has links)
No description available.
422

Optimization of prediction methods for risk assessment of pathogenic germline variants in the Japanese population / 日本人における生殖細胞系列病的変異保有リスク予測の最適化

Senda, Noriko 23 May 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24089号 / 医博第4865号 / 新制||医||1059(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 武藤 学, 教授 万代 昌紀, 教授 松田 文彦 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
423

Cyclic di-GMP Regulates Motility, Biofilm Formation, and Desiccation Tolerance in Acinetobacter baumannii

Reynolds, Garrett 01 August 2022 (has links)
Acinetobacter baumannii is an increasingly multidrug-resistant pathogen contributing to hospital-acquired infections necessitating the discovery of novel treatments. A bacterial second messenger, cyclic diguanosine monophosphate (cyclic di-GMP), can regulate various persistence factors that are potentially advantageous for survival in hospital environments. Cyclic di-GMP–modulating enzymes and cyclic di-GMP–binding effectors predictively are encoded in the Acinetobacter baumannii genome. I hypothesized that cyclic di-GMP controls motility, biofilm formation, and desiccation tolerance in Acinetobacter baumannii. Disrupting cyclic di-GMP–modulating enzymes or cyclic di-GMP–binding effectors should alter the regulatory effectiveness of these phenotypes. I tested the multidrug-resistant isolate Acinetobacter baumannii strain AB5075 and identified several transposon mutants that altered twitching motility, biofilm formation, and desiccation tolerance; these results suggest that cyclic di-GMP plays a role during these three responses in Acinetobacter baumannii AB5075. Inhibiting these cyclic di-GMP signaling pathways could produce novel mechanisms to combat this pathogen in the hospital environment.
424

Studies on the Interaction and Organization of Bacterial Proteins on Membranes

Brena, Mariana 02 July 2019 (has links)
Bacteria have developed various means of secreting proteins that can enter the host cell membrane. In this work I focus on two systems: cholesterol-dependent cytolysins and Type III Secretion. Cholesterol is a molecule that is critical for physiological processes and cell membrane function. Not only can improper regulation lead to disease, but also the role cholesterol plays in cell function indicates it is an important molecule to understand. In response to this need, probes have been developed that detect cholesterol molecules in membranes. However, it has been recently shown that there is a need for probes that only respond to cholesterol that is accessible at the membrane surface. Perfringolysin O (PFO) is a toxin secreted by Clostridium perfringens that has been developed into a probe capable of detecting accessible cholesterol. Recently, researchers have been expanding the capabilities of this probe by substituting residues, modifying residues, truncating the probe, or a combination of the three. However, lack of characterization of these new probes has led to controversial results. To understand the role of a conserved Cys residue, here we perform cholesterol binding assays and measure the pore formation activity of a Cys modified PFO derivative. The Type III Secretion (T3S) system is a syringe-like apparatus used by various pathogens to inject effector proteins into target cells. The apparatus spans both the inner and outer bacterial membrane, extending to make contact with the host cell where it forms a pore known as the translocon. In Pseudomonas aeruginosa, the translocon is made up of two proteins, PopB and PopD. While recent advances have been made on the structure of the needle and injectisome, information on the translocon remains sparse. In this work, the P. aeruginosa T3S translocon is analyzed using both in vivo and in vitro methods.
425

Integrative microbial contamination assessment for water quality monitoring in the Great Lakes

Zheng, Wenjie 10 1900 (has links)
<p>Recreational beaches are important local resources for attracting tourists. It is critical to keep tracking recreational water quality to prevent public health issues. Waterborne pathogens are one of the main elements that could cause recreational water related diseases. Fecal pollution is the primary source of waterborne pathogens. Therefore, it is important to quantify the amount of fecal pollution indicators that are present in the water, particular the human fecal indicator. The primary objective of this thesis is to develop an integrative microbial quality monitoring system to better understand water quality. The first part of this thesis examined the presence of a general fecal pollution indicator (<em>E. coli</em>) and a human fecal pollution indicator (human-specific <em>Bacteroidales</em>). The correlations between pollution sources and beach water quality were also studied to identify the impact of pollution sources. The results revealed the highly localized correlations at individual beaches depended on the impact from pollution sources. The weak correlations suggested some previous assumed pollution sources may only weakly impacted beach water quality.</p> <p>Because <em>E. coli</em> strains differ enormously in pathogenic potential, it is possible that environmental <em>E. coli</em> have different genetic compositions and differential gene expression in genes such as the global stress regulator <em>rpoD</em> and <em>rpoS</em>. Thus, the second part of this thesis examined genetic composition and gene expression in <em>E. coli</em> environmental strains to study how global gene expression is altered in the natural environment. The results revealed differential RpoSexpression levels in environmental <em>E. coli </em>strains, suggesting that genes regulated by <em>rpoD</em> and <em>rpoS</em> may have differential expression levels in environmental strains, compared to commonly studied laboratory strains.</p> / Master of Science (MSc)
426

SsrB-dependent regulation during Salmonella pathogenesis

Tomljenovic-Berube, Ana M. 04 1900 (has links)
<p>Bacteria demonstrate an extraordinary capacity to survive and adapt to changing environments. In part, this ability to adapt can be attributed to horizontal gene transfer, a phenomenon which introduces novel genetic information that can be appropriated for use in particular niches. Nowhere is this more relevant than in pathogenic bacteria, whose acquisition of virulence genes have provided an arsenal that permits them to thrive within their selected host. Regulatory evolution is necessary for timely regulation of these acquired virulence genes in the host environment. <em>Salmonella enterica</em> serovar Typhimurium is an intracellular pathogen which possesses numerous horizontally-acquired genomic islands encoding pathogenic determinants that facilitate its host lifestyle. One island, <em>Salmonella</em> Pathogenicity Island (SPI)-2, encodes a type-III secretion system (T3SS) which is regulated by the two-component regulatory system SsrA-SsrB. This system coordinates expression of the SPI-2 T3SS as well as an array of virulence effectors encoded in horizontally-acquired regions throughout the <em>Salmonella</em> genome. The studies presented here investigated the mechanisms in which the transcription factor SsrB functions to integrate virulence processes through regulatory adaptation. This work identified the regulatory logic controlling SsrB and defined the associated SsrB regulon. Furthermore, SsrB was found to induce a regulatory cascade responsible for the expression of bacteriophage genes encoded within SPI-12, an island that also contributes to <em>Salmonella</em> virulence. These findings demonstrate the important contribution of regulatory evolution in pathogen adaptation to the host, and show that horizontally-acquired genes, once integrated into appropriate regulatory networks, can contribute to pathogen fitness in specific niche environments.</p> / Doctor of Philosophy (PhD)
427

Describing the Epitopes of Pathogenic Antibodies in Heparin-induced Thrombocytopenia

Huynh, Angela January 2019 (has links)
Heparin is an anticoagulant widely administered to patients undergoing major orthopedic or cardiac surgery. Though heparin is effective at preventing thrombosis, it is paradoxically associated with the development of heparin-induced thrombocytopenia (HIT). HIT is strongly associated with thrombotic complications and is an adverse drug reaction that occurs when heparin binds to the self-protein, platelet factor 4 (PF4) and forms immunogenic multimolecular complexes. As a result, anti-PF4/heparin antibodies are formed, which bind to these complexes, and can cross-linking Fc receptors on platelets and monocytes causing intense platelet activation, thrombocytopenia, and thrombosis. Patients who receive heparin frequently form antibodies against these PF4/heparin complexes; however, most of these antibodies do not cause HIT. Over-diagnosis of HIT is common due to the detection of clinically insignificant non-pathogenic anti-PF4/heparin antibodies. Current enzyme immunoassays (EIAs) cannot distinguish between pathogenic and non-pathogenic anti-PF4/heparin antibodies and will give a false positive result in the presence of the clinically insignificant non-pathogenic anti-PF4/heparin antibodies. Further functional testing is required to identify samples containing the pathogenic anti-PF4/heparin antibodies that will lead to HIT; however, these tests are not readily available in most centres, and delay timely diagnosis. There is little known about the differences between pathogenic and non-pathogenic HIT antibodies. The identification of antigenic determinations of pathogenic HIT antibodies binding to PF4 from this project will have direct implications for patient care. We will be able to accurately and rapidly identify “true” HIT patients from learning more about the pathogenic HIT antibody epitope. / Dissertation / Doctor of Science (PhD) / At least 30% of patients admitted into the hospital will be exposed to the anticoagulant, heparin. 1-3% of these patients develop heparin-induced thrombocytopenia (HIT): an adverse drug reaction. HIT is a major cause of morbidity and mortality in patients receiving heparin if not diagnosed and treated in a timely manner. HIT occurs when patients form antibodies against the platelet protein, platelet factor 4, in complex with heparin leading to an immune response. However, most heparin-exposed patients produce these antibodies but do not have HIT. Current rapid and available diagnostics tools cannot distinguish between antibodies that can or cannot cause the disease. To improve HIT diagnosis, we will identify the molecular differences between the antibodies that cause HIT and those that do not. From this, we can develop a new diagnostic assay that will be able to dictate whether the antibodies found in patients are specific for HIT.
428

Use of plant-derived essential oil compounds and naturally-occurring apple flavor compounds to control foodborne pathogens in apple juice

Abdulmalik, Takiyah 25 April 2012 (has links)
Recent demands for minimally-processed foods, has led to the exploration of plant-derived essential oil (EO) compounds as an alternative means of preservation. While some of these compounds are effective against foodborne pathogens, their strong aroma and "spicy" flavor are not compatible with the flavor of juice. The purpose of this research was to evaluate the antimicrobial activity of three EO compounds (thymol, eugenol, and trans-cinnamaldehyde) alone and in combination with three naturally-occurring apple aroma compounds (hexanal, trans-2-hexenal and 1-hexanol) in order to identify combinations that lower the concentrations needed to destroy foodborne pathogens in apple juice. The standard agar dilution method (SAD) and the Spiral Gradient Endpoint method (SGE) were compared for their abilities to determine minimum inhibitory concentrations (MIC) of the EO compounds. Both methods produced similar patterns of inhibition; however, the MICs produced by the SGE system were significantly higher than those produced by the SAD method of analysis (P<0.05). Since the results produced by the SAD method were more comparable with those published in literature, this method was selected for further testing. In general, the EO compounds were significantly more effective against the test pathogens (Listeria monocytogenes, Salmonella Typhimurium and Staphylococcus aurues) than were the apple aroma compounds (P<0.05). Cinnamaldehye exhibited the highest degree of activity, followed by thymol and eugenol. Eugenol was the only compound that acted synergistically with the apple aroma compounds. The most effective compounds (cinnamaldehyde, eugenol and trans-2-hexenal) were then used to inactivate L. monocytogens and S. Typhimurium in preservative-free apple juice. In most cases, treatment with 0.05% of each compound resulted in a 5 log CFU/ml reduction in bacterial numbers following one day of storage at 4°C or 25°C. Likewise, treatment with antimicrobial combinations (containing 0.025% of trans-2-hexenal in combination with 0.025% trans-cinnamaldehyde or eugenol) also resulted in a 5 log CFU/ml reduction in bacterial numbers, following one day of storage at 4°C or 25°C. Since these combinations contained half the effective concentration of the essential oil compounds, they may be used to preserve the microbial quality of apple juice, while reducing the likelihood of off flavors in the final juice product. / Ph. D.
429

Association of foodborne pathogens with Capsicum annuum fruit and evaluation of the fruit for antimicrobial compounds

Huff, Karleigh Rose 27 September 2011 (has links)
Hot peppers are gaining popularity in the United States as both a vegetable and a spice. In 2008, jalapeño peppers were involved in a multistate outbreak of Salmonella Saintpaul. This is the first outbreak implicating jalapeño as a vehicle for foodborne illness. Hot peppers contain many compounds thought to possess antimicrobial characteristics. This research was conducted to provide more information on the interactions of pathogenic bacteria and jalapeño peppers, as well as to identify properties of Capsicum annuum that affect bacterial survival, growth, and inhibition. Behavior of pathogens associated with jalapeños was investigated by inoculating jalapeño fruits with a cocktail of Listeria monocytogenes, Salmonella enterica, or Escherichia coli O157:H7 on the intact external surface, injured external surface, or intact internal cavity and storing the jalapeños at 7°C or 12°C. Intact external jalapeñosurfaces did not support the growth of the bacteria tested under storage conditions of 7°C. However, L. monocytogenes populations remained detectable throughout the 2 week study. At 7°C, pathogenic bacteria were able to survive but not grow on injured and internally inoculated jalapeño, but populations increased at 12°C (p=0.05). The most supportive growth environment for the pathogenic bacteria was the internal cavity of jalapeño held at 12°C. This study demonstrated the importance of intact uninjured produce and proper storage temperatures for food microbial safety. Inhibitory properties of jalapeños were studied by making extracts from fresh jalapeño peppers to test for antimicrobial activity. A disk diffusion assay determined that the extracts were capable of inhibiting the growth of the pathogenic bacteria tested. Listeria monocytogenes was especially sensitive to the extracts. jalapeño extracts were fractionated using HPLC and used for inhibition assays using disk diffusion and growth curve generation. Two fractions stimulated bacterial growth (p=0.05), while two other fractions inhibited bacterial growth. The inhibitory fractions were separated further using HPLC and tested for antimicrobial activity. Fraction E1 suppressed the growth of L. monocytogenes. HPLC-MS analysis revealed that Fraction E1 contained compounds known as capsianosides. To prove that inhibition is caused by capsianoside(s) and determine minimum inhibitory concentrations, a method to isolate the pure compound should be developed. / Ph. D.
430

Evaluation of the virulence potential of avian pathogenic Escherichia coli isolated from broiler breeders with colibacillosis in Mississippi

Joseph, Jiddu 08 August 2023 (has links) (PDF)
Avian pathogenic Escherichia coli (APEC) is a bacterium that is responsible for colibacillosis in birds. However, information about broiler breeder APEC isolates is limited, but the data is critical due to the transfer of this bacteria down the production pyramid to progenies resulting in high mortality. Therefore, we evaluated the phenotypic virulence characteristics of 28 isolates using embryo lethality and day-old chick challenge assays. Also, the in vitro adhesion and invasion potential of selected nine isolates were identified. Results showed more than 1/3rd of the isolates were highly virulent and the virulence increased as the number of virulence-associated genes increased. High adhesion and invasion rates were observed among the isolates. Overall, the study helped us to evaluate the virulence characteristics of APEC from broiler breeders. However, future studies based on whole genome approach would help to identify the specific targets which can be used to develop effective interventions.

Page generated in 0.0481 seconds