11 |
Measurement Of (anti-)neutrino--nucleon Structure Functions In Chorus ExperimentKama, Sami 01 August 2005 (has links) (PDF)
In this work an analysis of the CHORUS
(anti-)neutrino-nucleon scattering data taken on lead--scintillator calorimeter
during the 1998 run is presented. The differential cross-sections are
measured in the range of $0.01le xle 0.7$, $0.05le y le 0.95$,
$10le E_nu le 200 GeV$ for both anti-neutrino and neutrino beam modes.
The anti-neutrino and neutrino--nucleon structure
functions Fone, Ftwo and Fthree is extracted by making 2, 3 and 6-parameter
fits to the measured differential cross-sections.
The comparisons of these results with
the earlier experiments, CDHSW and CCFR is given.
|
12 |
Simulation of electromagnetic channels for PANDA@FAIR / Simulation de canaux électromagnétiques pour PANDA@FAIRMa, Binsong 23 September 2014 (has links)
Le multi-détecteur PANDA (antiProton ANnihilation at DArmstadt) équipera l’anneau de stockage d’antiprotons du complexe d’accélérateurs FAIR (Facility for Antiproton and Ion Research), en construction à Darmstadt et dont les premiers faisceaux sont prévus en 2019. L’expérience cible fixe PANDA est un outil du futur pour la physique hadronique. Avec PANDA, on peut étudier par exemple la spectroscopie des mésons, rechercher de nouveaux états de la matière, comme les boules de glue et les hybrides, étudier la spectroscopie des baryons charmés et multi-étranges, les hypernoyaux, les hadrons dans la matière nucléaire. Les réactions d’annihilation antiproton-proton permettent aussi d’étudier la structure du nucléon, en particulier en utilisant les canaux électromagnétiques de production de paires électron-positron, qui constituent l’objet d’étude de cette thèse. Un problème majeur de l’étude des canaux électromagnétiques, est le bruit de fond hadronique, qui est au moins six ordres de grandeur plus grand que le signal et qui nécessite une excellente identification de particules et une bonne résolution en impulsion. Or, la reconstruction de l’impulsion des électrons et positrons est dégradée par l’émission de photons de Bremsstrahlung le long de leur trace. Dans la première partie de la thèse, j’ai étudié ce problème et développé une méthode, basée sur une correction de l’impulsion des électrons et positrons événement par événement, en utilisant la détection des photons de Bremsstrahlung dans le calorimètre électromagnétique. Cette méthode, qui a été intégrée dans le code de reconstruction officiel de PANDA, PANDAroot, permet une amélioration très significative de la résolution en impulsion des électrons dont peuvent bénéficier toutes les études de canaux de production de paires électron-positron.Dans la deuxième partie, j’ai effectué une étude de faisabilité de la mesure de la réaction antiproton proton → J/Ψ π⁰ dans un modèle utilisant des TDAs (Transition Distribution Amplitudes) pion-nucléon. Les TDAs sont des objets non-perturbatifs qui décrivent la transition entre deux particules différentes. Par exemple, les TDAs pion-nucléon donnent des informations sur les composantes pioniques dans la fonction d’onde du nucléon. Pour cette étude, j’ai utilisé le modèle de TDA pour créer un générateur d’événements, puis j’ai étudié les capacités de réjection du bruit de fond hadronique. L’amélioration de l’efficacité du signal, due à la méthode de correction de Bremsstrahlung a pu aussi être quantifiée. Cette étude pourra être utilisée pour une proposition d’expérience pour PANDA. / The multi-purpose detector PANDA (antiProton Annihilation at Darmstadt) will be built at the antiproton storage ring of the FAIR accelerator complex that is under construction in Darmstadt and is expected to provide its first beam in 2019. The fixed target experiment PANDA is a state of the art hadronic physics detector. With PANDA, one can explore a wide range of topics including meson spectroscopy, search for new states of matter such as glue balls and hybrids, charmed and multi-strange baryon spectroscopy, hyper-nuclei, and properties of hadrons in nuclei. Proton antiproton annihilation reactions will also allow to study the structure of nucleons, in particular by exploiting the electromagnetic channel of electron-positron pair production which is the subject of this thesis.One major problem with studies of electromagnetic channels is the hadronic background with cross-sections at least six orders of magnitude larger than the signal, requiring excellent particle identification and good momentum resolution. However the momentum reconstruction for electrons and positrons is degraded due to the emission of Bremsstrahlung photons along their path. In the first part of this thesis, I studied this problem and developed a method based on the correction of the momentum of electrons and positrons event by event, using Bremsstrahlung photons detected in the electromagnetic calorimeter. This method, which has been integrated into PANDAroot, the official PANDA reconstruction code, provides a significant improvement of momentum resolution for electrons, and will be exploitable by any measurement with electron-positron pair in the exit channel.In the second part, I performed a feasibility study of measuring the reaction antiproton p →J/Ψ π⁰ using predictions from a model based on pion-nucleon TDAs (Transition Distribution Amplitudes). TDAs are non-perturbative objects that describe the transition between two particles of different nature. For example, pion-nucleon TDAs contain information about the pionic components in the nucleon's wave function. For this study, I relied on the TDA model to create an event generator, and studied the capability to reject hadronic background. The improvement of the efficiency for the signal due to the Bremsstrahlung correction method was quantified. This study can be used as basis for a proposal of an experiment with PANDA.
|
13 |
Investigating new lattice approaches to the momentum and spin structure of the nucleonWiese, Christian 03 June 2016 (has links)
Diese Arbeit beschäftigt sich mit der Berechnung von für die Struktur des Nukleons relevanten Observablen, die experimentell durch inklusive und semi-inklusive Streuexperimente bestimmt werden können. Es werden zwei Pilotstudien erörtert, welche die Spin- und Impulsstruktur des Nukleons mithilfe von Gitter-QCD untersuchen. Hierfür wird der Twisted-Mass-Formalismus mit dynamischen Fermionen verwendet, um sicherzustellen, dass die untersuchten Größen einen verbesserten Kontinuumslimes aufweisen. Der erste Teil dieser Arbeit untersucht die Umsetzbarkeit einer Rechnung, die sich mit dem durchschnittlichen Impulsanteil der Gluonen im Nukleon auseinandersetzt. Diese Größe wurde bisher kaum im Rahmen der Gitter-QCD behandelt. In diesem Zusammenhang werden zwei verschiedene Gittermethoden untersucht: das Feynman-Hellman-Theorem, sowie die direkte Berechnung der relevanten Formfaktoren. Mithilfe der zweiten Methode und mehreren Iterationen des Schmierens der Eichlinks ist es möglich, statistisch aussagekräftige Resultate zu erhalten. Die zweite Studie beschäftigt sich mit der direkten Berechnung der vollständigen Impuls- und Spinverteilung von Quarks und Antiquarks im Nukleon. Hierfür wird untersucht, ob eine kürzlich publizierte Methode praktikabel ist, nach der eine räumliche Quasiverteilung zu berechnen und aus dieser die physikalische Verteilung abzuleiten ist. In diesem Zusammenhang wird der Einfluß des Schmierens der Eichlinks und unterschiedlicher Impulsboosts des Nukleons erprobt. Die anschließend berechneten Isovektor-Quarkverteilungen (unpolarisiert und polarisiert) weisen eine gute qualitative Übereinstimmung mit Verteilungen auf, die mithilfe von phänomenologischen Analysen bestimmt wurden. Zentrale Erkenntnis dieser Arbeit ist der Nachweis, dass es auf dem Gitter prinzipiell möglich ist, beide Observablen zu berechnen. Trotzdem muss noch erheblich mehr Arbeit aufgewendet werden, um verlässliche Resultate für diese Größen zu erhalten. / This thesis deals with the theoretical computation of nucleon structure observables as they can be experimentally obtained from inclusive and semi-inclusive scattering experiments. I present two exploratory studies on spin and momentum structure observables of the nucleon in the framework of lattice QCD. Throughout this work, I use the twisted mass formalism with dynamical fermions at maximal twist, which ensures an improved continuum limit scaling for the relevant quantities. In the first part, I investigate the feasibility of a lattice calculation of the gluons’ average momentum fraction in the nucleon, a quantity that is rarely studied in lattice QCD. For this purpose, I study two different methods, namely the Feynman-Hellman theorem and the direct computation of the relevant form factor. Applying the latter method and combining it with several steps of stout gauge link smearing, I obtain a statistically significant results for the gluon content. The second study is concerned with the direct computation of the full momentum and spin distribution of quarks and antiquarks within the nucleon. I investigate the feasibility of a recently published approach proposing the computation of a purely spatial quasi-distribution that can be related to the physical distribution. I test the influence of gauge link smearing and different nucleon momentum boosts on the lattice data. Ultimately, I obtain iso-vector quark distributions for the unpolarized and polarize case that featuring a decent qualitative agreement to quark distributions acquired from phenomenological fits. As a key result of this work, I demonstrate that the demanding calculation of gluon content and the novel approach of computing quark distributions directly within lattice QCD are feasible in principle, although significantly more effort has to be invested into obtaining accurate results with reliable uncertainties.
|
14 |
Nucleon structure from lattice QCDDinter, Simon 29 November 2012 (has links)
In dieser Arbeit berechnen wir mit Hilfe der Gitter-QCD Observablen, die in Beziehung zur Struktur des Nukleons stehen. Ein Teil dieser Arbeit beschäftigt sich mit Momenten von Parton-Verteilungsfunktionen. Solche Momente sind wichtig für das Verständnis der Nukleon-Struktur und werden durch globale Analysen von tief-inelastischen Streuexperimenten bestimmt. Eine theoretische, nicht-perturbative Rechnung der Momente in der Gitter-QCD ist möglich. Allerdings existiert, seit solche Gitter-QCD Rechnungen vorliegen, eine Diskrepanz zwischen diesen Rechnungen und den Ergebnissen globaler Analysen experimenteller Daten. Wir untersuchen, ob systematische Effekte für diese Diskrepanz verantwortlich sind, dabei studieren wir insbesondere die Effekte angeregter Zustände. Zudem führen wir eine erste Rechnung mit vier dynamischen Quark-Flavors durch. Ein weiterer Aspekt dieser Arbeit ist eine Machbarkeitsstudie zur Berechnung des skalaren Quark-Inhalts des Nukleons in der Gitter-QCD. Dieser bestimmt den Wirkungsquerschnitt der durch ein skalares Teilchen (z.B. ein Higgs-Teilchen) vermittelten Wechselwirkung eines schweren Teilchens mit einem Nukleon und kann somit einen Einfluss bei der Suche nach Dunkler Materie haben. Bisherige Gitter-Rechnungen dieser Größe besitzen große Unsicherheiten und sind daher von geringer Signifikanz für phenomenologische Anwendungen. Wir benutzen eine Varianz-Reduktions-Methode zur Auswertung von unverbundenen Diagrammen um ein präzises Ergebnis zu erhalten. Des Weiteren stellen wir eine neue stochastische Methode zur Berechnung von Nukleon-Dreipunkt-Korrelationsfunktionen vor, die für die Berechnung von Observablen der Nukleon-Struktur benötigt werden. Wir testen die Konkurrenzfähigkeit dieser neuen Methode gegenüber der Standard-Methode. In allen Rechnungen benutzen wir Wilson twisted-Mass Fermionen mit maximalem Twist, so dass die hier berechneten Observablen nur O(a^2) Diskretisierungsfehler aufweisen. / In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a^2) discretization effects.
|
15 |
Structure interne du nucléon à haute et à basse énergie par la diffusion Compton virtuelle / Internal structure of the nucleon at low and high energy by virtual Compton scatteringBenali, Meriem 24 May 2016 (has links)
La première partie présente la mesure des polarisabilités généralisées (GPs) électrique αε(Q²) et magnétique βM(Q²) du proton qui sont fonctions du quadri-moment de transfert Q². L'expérience a été réalisée dans le Hall A1 à MAMI (Mayence) avec un faisceau d'énergie de l'ordre de 1 GeV, à Q²=0.45 GeV² (qcm=714 MeV/c et ε=0.63). Le modèle DR (Relations de Dispersion) a été utilisé pour extraire les GPs, αε(Q²) et βM(Q²), ainsi que deux combinaisons linéaires P¿ (Q²) – 1/ε PTT (Q²) et P¿ (Q²). Ces dernières ont été extraites, pour les mêmes données, en utilisant l'approche de basse énergie (LEX) sous le seuil de production du pion. Nos résultats préliminaires montrent un bon accord entre les deux méthodes et offrent une nouvelle contrainte sur la structure du proton à basse énergie. La deuxième partie est dédiée à la mesure de la section efficace totale du processus de diffusion Compton profondément virtuelle (DVCS) sur le neutron à Q²=1.75 GeV² et xB=0.36. Le processus DVCS permet d'extraire des fonctions universelles "distributions généralisées de partons (GPDs)" permettant de comprendre la structure interne du nucléon en terme de partons. Le DVCS sur le neutron est sensible à la GPD E qui est la moins contrainte à ce jour et dont la connaissance est indispensable pour remonter au moment orbital des quarks. Les données analysées proviennent de l'expérience E08-025 effectuée dans le Hall A de JLab (USA) avec un faisceau d'électrons polarisés d'énergie de l'ordre de 6 GeV et deux cibles d'hydrogène et de deutérium. Nos résultats préliminaires montrent, pour la première fois, une contribution (neutron-DVCS + deuton cohérent-DVCS) non nulle et sont très prometteuses en vue d'une extraction de la GPD "E". / The first part presents the measurement of the generalized αε(Q²) electric and magnetic βM(Q²) polarisabilities (GPs) of the proton which depend on the four-momentum transfer Q². The experiment was performed in Hall A1 at MAMI (Mainz) with a 1 GeV beam energy at Q² =0.45 GeV² (qcm=714 MeV/c and ε=0.63). The dispersion relations model was used to extract the GPs, αε(Q²) and βM(Q²), and two linear combinations P¿ (Q²) – 1/ε PTT (Q²) and P¿ (Q²). These last ones were extracted, for the same data, using the low-energy approach (LEX) under the pion production threshold. Our preliminary results show a good agreement between both methods and provide a new constraint on the proton structure at low-energy. The second part is dedicated to the measurement of the total cross section of deeply virtual Compton scattering (DVCS) on the neutron at Q²=1.75 GeV² and xB=0.36. The DVCS process allows to extract the universal functions "generalized parton distributions (GPDs)" which provide a new understanding the nucleon in terms of partons. The DVCS on the neutron is sensitive to E, the less constrained GPD, which allows to access the orbital momentum of the quarks. The analyzed data were taken in the E08-025 experiment performed in Hall A at JLab (USA) with a polarized electron beam with energy around 6 GeV and two hydrogen and deuterium targets. Our preliminary results show, for the first time, a nonzero (neutron-DVCS + coherent-deuteron-DVCS) contribution and are very promising for the extraction of the GPD "E".
|
16 |
Generalized Parton Distributions and their covariant extension : towards nucleon tomography / Distributions de Partons Généralisées et extension covariante : vers une tomographie du nucléonChouika, Nabil 17 September 2018 (has links)
Les Distributions de Partons Généralisées (GPDs) encodent les corrélations entre impulsion longitudinale et position transverse des partons dans les hadrons et permettent d'imager la structure du nucléon en 2+1 dimensions. Elles ont été étudiées théoriquement et expérimentalement pendant deux décennies et une nouvelle ère expérimentale débute actuellement (à Jefferson Lab et COMPASS, mais aussi à l'avenir à un collisionneur électron-ion) pour les extraire avec grande précision. La difficulté est que seul un accès expérimental indirect est possible, à travers divers canaux de diffusion exclusive et les observables associés. Cela implique de prendre nécessairement en compte les nombreuses contraintes théoriques si l'on veut concevoir des modèles fiables pour la phénoménologie. En particulier, deux contraintes cruciales sont les propriétés de "polynomialité" et de "positivité". L'approche de cette thèse consiste à tirer partie des deux propriétés en modélisant d'abord les fonctions d'onde sur le cône de lumière des premiers états de Fock du nucléon, permettant d'obtenir une GPD dans la région appelée DGLAP via overlap où le nombre de partons est conservé, puis l'étendre de manière covariante à la région ERBL, avec une inversion de transformée de Radon. In fine, le but est d'appliquer cette procédure à un modèle de quark-constituant pour GPDs de valence, ce qui permettrait de produire de manière inédite pour ce genre de modèle des résultats à comparer à l'expérience (sur le processus de diffusion Compton profondément virtuelle en l’occurrence). Pour atteindre cette objectif, on utilise la librairie PARTONS sous différentes hypothèses perturbatives. / Generalized Parton Distributions (GPDs) encode the correlations between longitudinal momentum and transverse position of partons inside hadrons and can give access to a picture of the nucleon structure in 2+1 dimensions. They have been studied theoretically and experimentally for almost two decades and a new experimental era is starting (at JLab and COMPASS currently, and in the future at an EIC) to extract them. The difficulty is that only an indirect experimental access is so far possible, through different exclusive channels and various observables. Therefore, one has to take into account the many theoretical constraints to be able to produce accurate models and rely on their phenomenology. Two important constraints are called the polynomiality and positivity properties. The approach of this thesis is to make use of both of them by first modeling low Fock states light-front wave-functions, which gives a GPD in the DGLAP region by a parton number conserved overlap, and then covariantly extending this GPD to the ERBL region, through an inverse radon transform. In fine, the goal is to apply this on a constituent quark-like model for valence GPDs, which would allow to produce a phenomenological output (on DVCS data for instance) from this kind of models, which was impossible before. We make use of the versatile PARTONS framework to achieve this under various perturbative QCD assumptions.
|
17 |
Mesure de la section efficace de l'électroproduction de photons à JLAB dans le but d'effectuer une Séparation Rosenbluth de la contribution DVCS / Measurement of the photon electroproduction cross section at JLAB with the goal of performing a Rosenbluth separation of the DVCS contributionMartí Jiménez-Argüello, Alejandro Miguel 11 July 2014 (has links)
L'étude de la structure interne des hadrons nous permet de comprendre la nature des interactions entre les partons, les quarks et les gluons, décrites par la Chromodynamique Quantique. Les processus de diffusion élastique, qui ont été utilisés avec succès pour mesurer les facteurs de forme des nucléons, sont inclus dans ce cadre. Les processus inélastiques sont également inclus dans ce cadre, ils nous permettent d'extraire beaucoup d'information grâce au développement des distributions de partons (PDFs). Par conséquent, tandis que la diffusion élastique d'électrons par le nucléon nous fournit des informations sur la répartition des charges, et donc de la distribution spatiale des composants du nucléon, la diffusion inélastique présente des informations sur la distribution d'impulsions au moyen des PDFs. Cependant, dans les processus inélastiques, il est possible d'étudier les processus exclusifs tels que la Diffusion Compton Profondément Virtuelle (DVCS), qui nous permet d'accéder aux distributions spatiale et d'impulsions des quarks simultanément. Ceci est possible grâce aux fonctions généralisées des distributions de partons (GPDS), qui nous permettent de corréler les deux types de distributions. Le processus connu sous le nom DVCS est le moyen le plus facile pour accéder aux GPDS. Ce procédé implique la diffusion d'un électron par un proton, au moyen de l'échange d'un photon virtuel, qui entraîne la diffusion des particules initiales et l'émission d'un photon réel. Ce processus est en concurrence avec le processus dit Bethe-Heitler, dans lequel le photon réel est émis par l'électron initial ou final. En raison de la faible section efficace de ce type de procédé, de l'ordre du nb, il est nécessaire d'utiliser une installation capable de fournir une haute luminosité pour réaliser les expériences. L'une de ces installations est le Thomas Jefferson National Accelerator Facility, où l'expérience appelée “Complete Separation of Virtual Photon and π⁰ Electroproduction Observables of Unpolarized Proton” a été réalisée au cours de la période entre Octobre et Décembre de 2010. Le principal objectif de cette expérience est la séparation de la contribution du terme provenant du DVCS à partir du terme d'interférence, résultant de la contribution du BH. Cette séparation est appelée “Séparation Rosenbluth”. Cette thèse porte sur le calorimètre électromagnétique qui a été utilisé pour détecter le photon dans l'expérience E07-007 à Jefferson Lab. Il y a aussi une introduction théorique à l'étude de la structure du nucléon, en révisant les concepts de facteurs de forme et des distributions de partons à travers des processus élastiques et inélastiques. Le calcul de la section efficace de la leptoproduction de photons est décrite en détail, ainsi que les buts de l'expérience E07-007. Dans cette thèse on décrit l'analyse des données enregistrées par le calorimètre électromagnétique, avec le but d'obtenir les variables cinématiques des photons réels résultants des réactions DVCS. Finalement, on décrit la sélection des événements à partir des données stockées, les réductions appliquées aux variables cinématiques et la soustraction de fond. En outre, le processus d'extraction des observables nécessaires pour le calcul de la section efficace de la leptoproduction de photons est décrite, ainsi que les principales étapes suivies pour effectuer la simulation Monte-Carlo utilisée dans ce calcul. Les sections efficaces obtenues sont indiquées à la fin de cette thèse. / The study of the inner structure of hadrons allows us to understand the nature of the interactions between partons, quarks and gluons, described by Quantum Chromodynamics. The elastic scattering reactions, which have been studied in order to measure the nucleon form factors, are included in this frame. The inelastic scattering reactions are also included in this frame, they allow us to obtain information about the nucleon structure thanks to the development of the parton distribution functions (PDFs). While through elastic scattering we can obtain information about the charge distribution of the nucleon, and hence, about the spatial distribution of the partons, through inelastic scattering we obtain information about the momentum distributions of partons, by employing the PDFs. However, we can study the exclusive inelastic scattering reactions, such as the Deeply Virtual Compton Scattering (DVCS), wich allow us to access to the spatial and momentum distributions simultaneously. This is possible thanks to the generalized parton distributions (GPDs), which allow us to correlate both types of distributions. The process known as DVCS is the easiest way to access the GPDs. This process can be expressed as the scattering of an electron by a proton by means of a virtual photon with the result of the scattered initial particles plus a real photon. We find a process competing with DVCS known as Bethe-Heitler (BH), in which the real photon is radiated by the lepton rather than the quark. Due to the small cross section of DVCS, of the order of nb, in order to conduct these kind of experiments it is necessary to make use of facilities capable of providing high beam intensities. One of these facilities is the Thomas Jefferson National Accelerator Facility , where the experiment JLab E07-007, “Complete Separation of Virtual Photon and π⁰ Electroproduction Observables of Unpolarized Protons”, took place during the months of October to December of 2010. The main goal of this experiment is the isolation of the contribution from the term coming form the DVCS from the interference term, resulting from the BH contribution. This isolation is known as “Rosenbluth Separation”. The work presented in this thesis focuses on the analysis of the data stored by the electromagnetic calorimeter, employed for the detection of real photons. There is also a a theoretical introduction to the study of the nucleon structure, reviewing the concepts of form factors and parton distributions through elastic and inelastic processes. The computation of the photon leptoproduction cross section is described in detail, as well as the goals of experiment E07-007. This thesis also describes the analysis of the data stored by the electromagnetic calorimeter, with the purpose of obtaining the kinematic variables of the real photons resulting from DVCS reactions. Finally, it describes the selection of events from stored data, the applied cuts to kinematical variables and the background subtraction. Also, the process of extraction of the necessary observables for computing the photon leptoproduction cross section is described, along with the main steps followed to perform the Monte Carlo simulation used in this computation. The resulting cross sections are shown at the end of this thesis.
|
18 |
Deeply virtual Compton scattering at Jefferson Lab / Diffusion Compton profondément virtuelle au Jefferson laboratoryGeorges, Frédéric 25 October 2018 (has links)
Introduites au milieu des années 90, les Distributions Généralisées de Partons (GPD) sont aujourd'hui un élément clé dans l'étude de la structure interne du nucléon. Les GPD sont la généralisation des Facteurs de Forme et des Fonctions de Distribution de Partons. Elles englobent la distribution spatiale et la distribution en impulsion des partons à l'intérieur du nucléon, ce qui permet d'en effectuer une tomographie en trois dimensions. De plus, elles permettent d'obtenir le moment orbital angulaire total des quarks grâce à la règle de somme de Ji, ce qui est un élément crucial dans l'élucidation de l'énigme de la structure en spin du nucléon. En décrivant de manière plus complète la structure des hadrons en termes de quarks et gluons, il est possible d'approfondir notre compréhension de la Chromodynamique Quantique. Les GPD sont accessibles expérimentalement à travers les processus d'électro-production exclusifs profonds, et l'un des canaux les plus simples est la Diffusion Compton Profondément Virtuelle (DVCS). Un programme expérimental mondial a été lancé au début des années 2000 afin d'extraire ces GPD. L'expérience DVCS E12-06-114 qui a été effectuée dans le Hall A du Jefferson Laboratory (Virginie, Etats-Unis) entre 2014 et 2016 est incluse dans ce programme. Le but de cette expérience est de mesurer avec grande précision la section efficace DVCS dépendante de l'hélicité en fonction du transfert d'impulsion Q², pour des valeurs fixes de la variable de Bjorken xBj, sur une cible de proton. La récente amélioration à 12 GeV de l'accélérateur permet d'obtenir un bras de levier en Q² plus important que lors des expériences précédentes et de sonder des régions cinématiques encore inexplorées, tandis que le faisceau polarisé d'électrons permet de séparer les contributions des parties réelles et imaginaires de l'amplitude DVCS à la section efficace totale. Dans ce document, un bref résumé du programme expérimental mondial sur l'étude des GPD va être fourni, suivi par la description de l'appareillage et l'analyse des données de l'expérience E12-06-114. Enfin, les résultats des mesures de sections efficaces polarisées et non-polarisées sont présentés et comparés à une sélection de modèles. / Introduced in the mid 90’s, Generalized Parton Distributions (GPDs) are now a key element in the study of the nucleon internal structure. GPDs are a generalization of Form Factors and Parton Distribution Functions. They encapsulate both spatial and momentum distributions of partons inside a nucleon, allowing to perform its three-dimensional tomography. Furthermore, they allow to derive the total orbital angular momentum of quarks through the Ji sum rule, which is a crucial point to unravel the nucleon spin structure. By providing a more complete description of hadrons in terms of quarks and gluons, a deeper understanding of Quantum Chromodynamics can be reached.GPDs are experimentally accessible through deeply exclusive electro-production processes, and one of the simplest channels available is Deeply Virtual Compton Scattering (DVCS). A worldwide experimental program was started in the early 2000’s to extract these GPDs. The DVCS experiment E12-06-114 performed at Jefferson Laboratory Hall A (Virginia, USA) between 2014 and 2016, is encompassed in this program. The aim of this experiment is to extract with high precision the DVCS helicity-dependent cross sections as a function of the momentum transfer Q², for fixed values of the Bjorken variable xBj, on a proton target. The recent upgrade of the accelerator facility to 12 GeV allows to cover a larger Q² range than in previous measurements and probe yet unexplored kinematic regions, while the polarized electron beam allows the separation of the contributions from the real and imaginary parts of the DVCS amplitude to the total cross section. In this document, a brief summary of the worldwide experimental program for the study of GPDs will be provided, followed by a description of the E12-06-114 apparatus and data analysis. Finally, the results of the unpolarized and polarized cross-section measurements are presented and compared to a few selected models.
|
19 |
Etude des Distributions de Parton Généralisées avec la Diffusion Compton Profondément Virtuelle "genre espace" et "genre temps" / Generalized Parton Distributions with spacelike and timelike Deeply Virtual Compton ScatteringBoër, Marie 28 November 2014 (has links)
Plus de quarante ans après la découverte de constituants ponctuels dans le nucléon, sa structure en quarks et gluons (partons) fait toujours l'objet d'études intenses. Certains processus exclusifs (où tous les produits de l'état final sont connus) de leptoproduction ou de photoproduction exclusive de photon ou de méson sur le nucléon permettent d'accéder aux Distributions de Parton Généralisées (GPDs). Ces fonctions paramétrisent la structure complexe du nucléon et contiennent des informations sur l'impulsion longitudinale et la position transverse des partons dans le nucléon. De tels processus exclusifs sont la Diffusion Compton Profondément Virtuelle "genre espace" et "genre temps" (DVCS et TCS respectivement) qui correspondent à la diffusion d'un photon de haute énergie sur un quark du nucléon et sont mesurés respectivement à partir des réactions lN⇾l'N'γ (N = proton ou neutron, l = lepton) et γN⇾N'l+l-. La première partie de cette thèse est une étude expérimentale du DVCS avec les données 2009 de l'expérience COMPASS au CERN. Dans un premier temps, la section efficace de diffusion profondément inélastique est mesurée, de façon à valider la mesure du flux de muons et à déterminer certains effets systématiques dans la recontruction des traces. Ensuite, la section efficace de production exclusive d'un photon est mesurée. Elle contient le processus DVCS (photon émis par un quark du nucléon) et le processus Bethe-Heitler (photon émis par le lepton diffusé) qui ont le même état final. L'étude des bruits de fond a aussi conduit à estimer une limite à la section efficace de production exclusive d'un pion neutre. La seconde partie de la thèse est dédiée à une étude phénoménologique du TCS aux énergies typiques de JLab 12 GeV. Les amplitudes du TCS et du Bethe-Heitler associé sont d'abord calculées. Puis, toutes les asymétries de simple et de double polarisation de la cible et/ou du faisceau linéairement ou circulairement polarisé sont calculées en fonction de diverses contributions de GPDs. Enfin, une méthode d'ajustement est présentée pour extraire les Facteurs de Forme Compton (qui sont des fonctions des GPDs) avec des données et/ou des simulations de DVCS et/ou de TCS. / More than forty years after the discovery of pointlike constituents inside the nucleon, its quarks and gluons structure is still intensively studied. Some exclusive processes (where all the final state products are known) of leptoproduction or of photoproduction of photon or meson off the nucleon provide access to the Generalized Parton Distributions (GPDs). These functions parameterize the complex structure of the nucleon and contain informations about the longitudinal momentum and the spatial transverse distribution of partons inside the nucleon. Such exclusive processes are the "Spacelike" and the "Timelike" Deeply Virtual Compton Scattering processes (DVCS and TCS respectively) which correspond to the scattering of a high-energy photon off a quark in the nucleon and are respectively measured in the reactions lN⇾l'N'γ (N = proton or neutron, l' = lepton) and γN⇾N'l+l- The first part of this thesis is devoted to the experimental study of DVCS, using the 2009 data from the COMPASS experiment at CERN. In a first step, the Deep Inelastic Scattering cross section is measured in order to check the muon flux measurement and to evaluate some systematic effects. Then, the cross section for the exclusive production of a photon is measured. It is made up of the DVCS process (the photon is emitted by a quark) and of the Bethe-Heitler process (the photon is emitted by the scattered lepton) which has the same final state. The study of the background has allowed to estimate in parallel an upper limit for the cross section of the exclusive production of a π° meson. The second part of the thesis is devoted to a phenomenological study of TCS at typical energies for the JLab 12 GeV upgrade. Firstly, the amplitudes for the TCS and for the associated Bethe-Heitler process are derived. Then, all single and double polarization (beam and/or target) observables are calculated as a function of different GPD contributions. Finally, a method is presented to extract the Compton Form Factors (functions of GPDs) from fits on DVCS and/or TCS data and/or simulations.
|
Page generated in 0.0701 seconds