• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 3
  • Tagged with
  • 16
  • 15
  • 14
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Einfluss von NaF auf die Nukleation von β-NaSEF4-Nanokristallen der Seltenen Erden SE=Sm-Lu,Y

Czerny, Jacqueline 08 June 2021 (has links)
Lumineszierende Nanopartikel auf Basis von β-NaSEF4-Verbindungen (SE=Seltene Erden), die das Phänomen der Aufwärtskonversion zeigen, werden weltweit intensiv untersucht, da unter anderem Anwendungen in den Bereichen Fluoreszenzmarkierung in der Biologie, Sicherheitstinte und Photovoltaik möglich sind. Obwohl viele Syntheseverfahren für nahezu monodisperse Partikel beschrieben wurden, sind die Syntheseparameter, die die Keimbildung und damit die Größe der Partikel bestimmen, weitgehend unklar. In dieser Arbeit wird auf Basis eines drastisch vereinfachten Syntheseverfahrens für β-NaSEF4 -Partikel gezeigt, dass der erste Parameter die Gesamtoberfläche des in der Synthese zugesetzten (oder intermediär gebildeten) NaF-Feststoffs ist. Der zweite Parameter ist die Wahl des Seltenerdions selbst, wobei die Zahl der gebildeten Keime an β-NaSEF4-Partikeln von Gd nach Lu stark und von Gd nach Sm schwach abnimmt. Diese Abhängigkeit vom Seltenerdion erklärt auch den Einfluss einer Dotierung mit anderen Seltenerdionen auf eine Partikelgröße. Werden die in dieser Arbeit bestimmten Syntheseparameter so gewählt, dass möglichst geringe Keimbildung auftritt, kann das Verfahren nicht nur zur Synthese sehr großer β-NaSEF4-Partikel verwendet werden, sondern auch vorteilhaft zur Umhüllung von β-NaSEF4-Partikeln mit einer aus zum Beispiel β-NaYF4, die die Fluoreszenzeigenschaften des β-NaSEF4-Kerns deutlich verbessern.
2

A novel view on the early stage of crystallization

Gebauer, Denis January 2008 (has links)
This thesis provides a novel view on the early stage of crystallization utilizing calcium carbonate as a model system. Calcium carbonate is of great economical, scientific and ecological importance, because it is a major part of water hardness, the most abundant Biomineral and forms huge amounts of geological sediments thus binding large amounts of carbon dioxide. The primary experiments base on the evolution of supersaturation via slow addition of dilute calcium chloride solution into dilute carbonate buffer. The time-dependent measurement of the Ca2+ potential and concurrent pH = constant titration facilitate the calculation of the amount of calcium and carbonate ions bound in pre-nucleation stage clusters, which have never been detected experimentally so far, and in the new phase after nucleation, respectively. Analytical Ultracentrifugation independently proves the existence of pre-nucleation stage clusters, and shows that the clusters forming at pH = 9.00 have a proximately time-averaged size of altogether 70 calcium and carbonate ions. Both experiments show that pre-nucleation stage cluster formation can be described by means of equilibrium thermodynamics. Effectively, the cluster formation equilibrium is physico-chemically characterized by means of a multiple-binding equilibrium of calcium ions to a ‘lattice’ of carbonate ions. The evaluation gives GIBBS standard energy for the formation of calcium/carbonate ion pairs in clusters, which exhibits a maximal value of approximately 17.2 kJ mol^-1 at pH = 9.75 and relates to a minimal binding strength in clusters at this pH-value. Nucleated calcium carbonate particles are amorphous at first and subsequently become crystalline. At high binding strength in clusters, only calcite (the thermodynamically stable polymorph) is finally obtained, while with decreasing binding strength in clusters, vaterite (the thermodynamically least stable polymorph) and presumably aragonite (the thermodynamically intermediate stable polymorph) are obtained additionally. Concurrently, two different solubility products of nucleated amorphous calcium carbonate (ACC) are detected at low binding strength and high binding strength in clusters (ACC I 3.1EE-8 M^2, ACC II 3.8EE-8 M^2), respectively, indicating the precipitation of at least two different ACC species, while the clusters provide the precursor species of ACC. It is proximate that ACC I may relate to calcitic ACC –i.e. ACC exhibiting short range order similar to the long range order of calcite and that ACC II may relate to vateritic ACC, which will subsequently transform into the particular crystalline polymorph as discussed in the literature, respectively. Detailed analysis of nucleated particles forming at minimal binding strength in clusters (pH = 9.75) by means of SEM, TEM, WAXS and light microscopy shows that predominantly vaterite with traces of calcite forms. The crystalline particles of early stages are composed of nano-crystallites of approximately 5 to 10 nm size, respectively, which are aligned in high mutual order as in mesocrystals. The analyses of precipitation at pH = 9.75 in presence of additives –polyacrylic acid (pAA) as a model compound for scale inhibitors and peptides exhibiting calcium carbonate binding affinity as model compounds for crystal modifiers- shows that ACC I and ACC II are precipitated in parallel: pAA stabilizes ACC II particles against crystallization leading to their dissolution for the benefit of crystals that form from ACC I and exclusively calcite is finally obtained. Concurrently, the peptide additives analogously inhibit the formation of calcite and exclusively vaterite is finally obtained in case of one of the peptide additives. These findings show that classical nucleation theory is hardly applicable for the nucleation of calcium carbonate. The metastable system is stabilized remarkably due to cluster formation, while clusters forming by means of equilibrium thermodynamics are the nucleation relevant species and not ions. Most likely, the concept of cluster formation is a common phenomenon occurring during the precipitation of hardly soluble compounds as qualitatively shown for calcium oxalate and calcium phosphate. This finding is important for the fundamental understanding of crystallization and nucleation-inhibition and modification by additives with impact on materials of huge scientific and industrial importance as well as for better understanding of the mass transport in crystallization. It can provide a novel basis for simulation and modelling approaches. New mechanisms of scale formation in Bio- and Geomineralization and also in scale inhibition on the basis of the newly reported reaction channel need to be considered. / Die vorliegende Arbeit zeichnet ein neuartiges Bild der frühen Kristallisationsphase von Calciumcarbonat. Calciumcarbonat hat als Hauptbestandteil der Wasserhärte und als weit verbreitetes Biomineral und Geomineral, das als Sediment in den Ozeanen große Mengen Kohlendioxid bindet, große Bedeutung. Die grundlegenden Experimente basieren auf der sehr langsamen Einstellung von Übersättigung, die durch langsame Zugabe verdünnter Calciumlösung in verdünnten Carbonatpuffer erreicht wird. Zeitabhängige Messung des Ca2+ Potentials bei gleichzeitiger pH = konstant Titration zeigt, dass zeitgemittelt vor der Nukleation gleiche Stoffmengen von Calcium- und Carbonat Ionen in Clustern gebunden sind, die bis jetzt noch nicht experimentell nachgewiesen werden konnten. Analytische Ultrazentrifugation belegt unabhängig die Existenz der Cluster, und es zeigt sich, dass sich die bei pH = 9,00 bildenden Cluster zeitgemittelt aus insgesamt etwa 70 Calcium und Carbonat Ionen bestehen. Die Experimente weisen darauf hin, dass sich die Clusterbildung auf der Grundlage von Gleichgewichtsthermodynamik beschreiben lässt. Ein multiples Bindungsgleichgewichtsmodell ermöglicht die Bestimmung der freien Standard Reaktionsenthalpie für die Bildung von Calcium/Carbonat Ionenpaaren in den Clustern, die ein Maß für die Bindungsstärke in Clustern darstellt. Die Bindungsstärke weist ein Minimum bei pH = 9,75 auf, und es zeigt sich, dass außerhalb dieses Minimums amorphes Calciumcarbonat ausfällt, das sich letztendlich in Calcit (das thermodynamisch stabile Calciumcarbonat Polymorph) umwandelt, während im Minimum und in der Nähe des Minimums amorphes Calciumcarbonat ausfällt, das sich letztendlich hauptsächlich in Vaterit (das thermodynamisch am wenigsten stabile Polymorph), Calcit und möglicherweise Spuren von Aragonit (das Polymorph mittlerer Stabilität) umwandelt. Gleichzeitig treten zwei unterschiedliche Löslichkeitsprodukte für das bei hoher und niedriger Bindungsstärke in Clustern ausgefällte, amorphe Calciumcarbonat auf (ACC I 3,1EE-8 M^2, ACC II 3,8EE-8 M^2). Das zeigt, dass die sich vor der Nukleation bildenden Cluster Vorläuferspezies (Precursor) des ausgefällten, amorphen Calciumcarbonats darstellen, wobei ACC I in der Literatur diskutiertem, calcitischem ACC entsprechen und ACC II vateritischem Calcit entsprechen kann. Eine detaillierte SEM, TEM, WAXS und Lichtmikroskopie Untersuchung der bei minimaler Bindungsstärke in Clustern (pH = 9,75) ausgefällten Partikel zeigt, dass sich hauptsächlich Vaterit mit Spuren von Calcit und möglicherweise Aragonit bildet. Die sich früh bildenden, kristallinen Partikel sind jeweils aus nano-Kristalliten von etwa 5 bis 10 nm Größe aufgebaut, die wie in Mesokristallen eine hohe wechselseitige Ordnung aufweisen. Die Untersuchung der frühen Kristallisation in Gegenwart von Additiven wurde ebenfalls bei minimaler Bindungsstärke in Clustern durchgeführt. Als Additive wurden Polyacrylsäure (PAA) als Beispiel für einen Hemmstoff gegen die Bildung von Verkalkungen und drei Peptide, die Bindungsaffinität zu Calciumcarbonat zeigen, als Beispiel für Kristallisations-Modifikatoren untersucht. Die Analyse zeigt, dass ACC I und ACC II parallel ausfallen; pAA stabilisiert ACC II gegenüber Kristallisation und führt dazu, dass es sich zugunsten von Kristallen, die sich aus ACC I bilden, auflöst, wobei letztendlich reines Calcit erhalten wird. Die Peptide hingegen hemmen die Bildung von Calcit in analoger Weise, wobei in einem Fall letztendlich reines Vaterit entsteht. Die Ergebnisse zeigen, dass die klassische Nukleationstheorie auf die Nukleation von Calciumcarbonat kaum anwendbar ist. Das metastabile System wird durch die Clusterbildung deutlich stabilisiert, und nicht Ionen, sondern Cluster sind die relevanten Spezies in der Nukleation. Wahrscheinlich ist das gefundene Konzept der Clusterbildung ein allgemeines Phänomen, das während der Kristallisation aller schwer löslichen Substanzen auftritt, da es auch für Calciumoxalat und Calciumphosphat qualitativ gezeigt werden konnte. Das Ergebnis ist wichtig für das fundamentale Verständnis der Nukleation, von Nukleationshemmung und der Modifikation von Kristallen mit Auswirkungen auf Materialen von großer industrieller und auch wissenschaftlicher Bedeutung. Ferner gibt es einen Hinweis, wie Masse während der Kristallisation –auch in Lebewesen transportiert werden kann und es kann einen neuen Ansatz für Kristallisationssimulationen liefern. Auf der Basis dieses neuartigen Reaktionskanals müssen neue Kristallisations-Mechanismen in Bio- und Geomineralization in Betracht gezogen werden.
3

Untersuchung der Versetzungsnukleation in Gold-Nanodrähten durch in-situ Elektronenmikroskopie / Investigation of dislocation nucleation in gold nanowires by in situ electron microscopy

Kapelle, Bahne 12 February 2016 (has links)
Die mechanischen Eigenschaften eines Materials spielen eine entscheidende Rolle für mögliche Anwendungen. Für nanoskalige Metalle ist lange bekannt, dass sich deren mechanischen Eigenschaften von ihren bulk-Gegenstücken stark unterscheiden. In bulk-Metallen wird die Verformung durch die Wechselwirkung vorhandener Versetzungen kontrolliert. Dies erweist sich scheinbar auf der Nanoebene als weniger zutreffend, da nur wenige oder keine Versetzungen in nanoskaligen Proben vorhanden sind und diese einfach aus der Probe herauslaufen können, ohne dass es vorher zu einer Wechselwirkung kommt. Die Verformung wird dann bestimmt durch die Nukleation neuer Versetzungen. In dieser Arbeit wurde die Verformung von Gold-Nanodrähten mit einem Durchmesser zwischen 50 und 150nm, die entweder einkristallin oder entlang ihrer Länge verzwillingt waren, untersucht. Auf der einen Seite erfolgte die Durchführung der Versuche in-situ im Transmissionselektronenmikroskop, um die Entwicklung der Defektmorphologie direkt beobachten zu können. Auf der anderen Seite wurden ebenfalls Tests in-situ im Rasterelektronenmikroskop mit einem neu entwickelten Aufbau durchgeführt und dabei das Spannungs-Dehnungs-Verhalten der Nanodrähte analysiert. Sämtliche Nanodrähte zeigten anfänglich ein elastisches Verhalten mit einem Elastizitätsmodul, das größenunabhängig war und nahe an dem entsprechenden Wert für Bulk-Gold lag. Mit Beginn der plastischen Verformung entstehen planare Defekte homogen verteilt entlang der Drähte, sowohl bei einkristallinen als auch verzwillingten Drähten. Zusammen mit der gemessenen Nukleationsspannung zeigte dies eine gute Übereinstimmung mit existierenden Modellen für die Oberflächennukleation von leading-Partialversetzungen, die auf klassischer Nukleationstheorie basieren. Mit weiterer Verformung kommt es ebenfalls zur Nukleation von trailing-Partialversetzungen, wodurch bereits entstandene planare Defekte wieder verschwinden und im Fall von verzwillingten Drähten volle Versetzungen gespeichert werden. Da die Nukleation von trailing-Partialversetzungen durch die existierenden Modelle nicht vorhergesagt wird, öffnet diese Beobachtung neue Fragen, ob klassische Nukleationstheorie in der Lage ist, die Nukleation von Versetzungen korrekt darzustellen.
4

Nucleation and growth of group III-nitride nanowires

Knelangen, Matthias 19 November 2013 (has links)
Diese Arbeit beschreibt das MBE-Wachstum und die Charakterisierung von Gruppe-III-Nitrid-Nanostrukturen. Die Arbeit beginnt mit dem katalysatorfreien Wachstum von GaN-Nanowires (NW) auf Si(111) mittels MBE. Es wird gezeigt, dass GaN NW als sph\"arische Inseln nukleieren und im weiteren Wachstum in eine NW-Geometrie übergehen. Die amorphe Zwischenschicht führt zum Verlust der epitaktischen Ausrichtung und somit zu gekippten Säulen und Koaleszenz. Diese Koaleszenz führt zur Enstehung von Versetzungen und Stapelfehlern in den Nanosäulen, welche einen starken Einfluss auf die optischen Eigenschaften haben: Während Versetzungen die Säulen optisch passivieren, haben Stapelfehler charakteristische Emissionen. Durch Kombination von Elektronenmikroskopie und Cathodolumineszenz wird die charateristische Wellenlänge eines Stapelfehlers gemessen. Epitaktisches Wachstum von GaN auf Si(111) kann durch die Verwendung einer AlN-Pufferschicht erreicht werden. Die Nukleation von GaN auf AlN/Si geschieht als linsenförmige Inseln. Im weiteren Verlauf des Wachstums erfolgen mehrere charakteristische Formübergänge, bei denen Facetten gebildet werden, um die Verspannung durch Gitterfehlanpassung elastisch zu relaxieren. Bei einer kritischen Inselgröße (und damit bei einem kritischen Spannungszustand) tritt eine platische Relaxation ein und es wird eine Versetzung an der AlN/GaN-Grenzfläche gebildet. Daraufhin tritt ein Übergang zur NW-Geometrie ein. Der dritte Teil dieser Arbeit beschreibt das Wachstum von (In,Ga)N/GaN NW Heterostrukturen. Mit MBE werden GaN NW mit zwei (In,Ga)N-Einschlüssen gewachsen. Die chemische Zusammensetzung wird mittels einer Kombination von hochauflösender Röntgenbeugung und einer Gitterverzerrungsanalyse von hochaufgelösten transmissionselektronenmikroskopischen Aufnahmen bestimmt. Die Strukturanalyse zeigt, dass die (In,Ga)N-Einschlüsse vollkommen in die GaN-Matrix eingebettet sind, und dass keine plastische Relaxation stattfindet. / This work covers the MBE growth and characterization of group III-nitride nanostructures. The work begins with the catalyst-free growth of GaN nanowires (NWs) on Si(111) by plasma-assisted MBE. The importance of substrate preparation and the formation of an amorphous SiN interlayer are described. GaN NWs are shown to nucleate as spherical islands and to furhter undergo a shape transition towards the NW geometry. The amorphous interlayer leads to a loss in epitaxial alignment and thus to NW tilt and coalescence. Coalescence leads to the formation of dislocations and stacking faults (SFs) in the NWs which greatly affect their optical properties. Dislocations are shown to have a detrimental effect on the optical quality, whereas SFs are shown to have a characteristic emission wavelength. Epitaxial growth of GaN on Si(111) can be achieved by using an AlN buffer layer. The nucleation and growth GaN NWs on AlN-buffered Si(111) is shown to happen via the pseudomorphical nucleation of spherical islands. As these islands grow, they undergo several characteristical shape changes, with the formation of facets in order to elastically relieve the lattice-mismatch induced strain. At a critical island size (and thus strain level), plastic relaxation happens by the formation of a misfit dislocation at the AlN/GaN interface. A subsequent transition to the NW geometry is observed, driven by the anisotropy of surface energies. The third part of this work covers the growth of (In,Ga)N/GaN NW heterostructures. GaN NWs with two stacked (In,Ga)N insertions are grown by MBE. The chemical composition is assessed by combining synchrotron-based HRXRD and a geometrical phase analysis of HRTEM micrographs. The structural analysis reveals that the (In,Ga)N insertions are embedded in the GaN matrix and that no plastic relaxation happens. The In content is shown to vary within a single insertion: The top region is more In rich due to In segretation during growth.
5

Nukleation und Wachstum des adaptiven Martensits in epitaktischen Schichten der Formgedächtnislegierung Ni-Mn-Ga

Niemann, Robert Ingo 21 October 2015 (has links) (PDF)
Magnetische Formgedächtnislegierungen sind Festkörper, die eine Phasenumwandlung erster Ordnung von einer hochsymmetrischen Phase (Austenit) zu einer niedersymmetrischen Phase (Martensit) durchlaufen. Dies kann in der Nähe von Raumtemperatur stattfinden und sowohl durch Temperaturänderung, als auch durch äußere Magnetfelder, mechanische Spannungen oder hydrostatischen Druck induziert werden. Daraus ergeben sich funktionale Eigenschaften, wie der magnetokalorische und der elastokalorische Effekt, eine magnetfeldinduzierte Dehnung und ein großer Magnetowiderstand. Zwillingsgrenzen im Martensit können durch äußere Magnetfelder bewegt werden, was zu großen reversiblen Längenänderungen führt. Der Ablauf der Phasenumwandlung und das Gefüge des Martensits werden dabei durch die elastischen Randbedingungen an der Phasengrenze bestimmt. In dieser Arbeit werden deshalb die Nukleation und das Wachstum des Martensits untersucht. Als Modellsystem werden epitaktische Schichten der Heuslerlegierung Ni-Mn-Ga verwendet. In der martensitischen Phase weist diese Legierung eine modulierte Kristallstruktur auf, die im Konzept des adaptiven Martensits durch eine Verzwillingung auf der atomaren Skala interpretiert werden kann. Im ersten Teil wird mit Röntgenbeugung die modulierte Struktur untersucht. Die Intensität der Überstrukturreflexe wird mit einer kinematischen Beugungssimulation verglichen. Dabei wird nachgewiesen, dass es sich um ein nanoverzwillingtes Gefüge mit einer hohen Dichte an Stapelfehlern handelt. Im zweiten Teil wird das martensitische Gefüge mit Elektronenbeugung im Rasterelektronenmikroskop und Texturmessungen durch Röntgenbeugung untersucht. Das martensitische Gefüge kann im Rahmen der phänomenologischen Martensittheorie quantitativ erklärt werden. Daraus ergibt sich ein geometrisches Modell des martensitischen Nukleus und seiner Wachstumsstadien. Die Phasenumwandlung wird temperaturabhängig im Elektronen- und im Atomkraftmikroskop untersucht und mit dem geometrischen Modell verglichen. Die begrenzte Gültigkeit des geometrischen Modells an makroskopischen Zwillingsgrenzen und an der Grenzfläche zum Schichtsubstrat werden diskutiert. Schließlich kann die Bildung des gesamten hierarchischen Zwillingsgefüges erklärt werden. Im dritten Teil wird die Energiebarriere der Nukleation untersucht. Da die Umwandlung bei konstanter Temperatur abläuft, wird geschlussfolgert, dass Autonukleationsprozesse zu einer starken Verringerung der Nukleationsbarrieren führen. Schließlich wird gezeigt, dass durch Nanoindentation die Nukleation gezielt beeinflusst werden kann. / Magnetic shape memory alloys are solids that undergo a first order phase transition from a high symmetry phase (austenite) into a low symmetry phase (martensite). This can happen close to room temperature and can be induced by changes of temperature, external magnetic fields, mechanical stresses or hydrostatic pressure. This leads to functional properties like the magnetocaloric and elastocaloric effect, a magnetic-field-induced strain and giant magnetoresistance. Twin boundaries in the martensite can be moved by external magnetic fields, which leads to giant reversible length changes. The process of the phase transition and the microstructure of martensite are determined by the elastic boundary conditions at the phase interface. In this work, nucleation and growth of the martensite are studied. Epitaxial films of the Heusler alloy Ni-Mn-Ga are used as a model system. This alloy exhibits a modulated crystal structure which is interpreted as twinning on the atomic scale in the framework of adaptive martensite. In the first part, the modulated structure is studied by X-ray diffraction. The intensity of the superstructure is compared to a kinematic diffraction simulation and it is shown that it is a nanotwinned microstructure with a high density of stacking faults. In the seond part, the martensitic microstructure is studied by electron diffraction in the scanning electron microscope and by texture measurements using X-ray diffraction. The martensitic microstructure can be explained quantitatively in the framework of the phenomenological theory of martensite. This leads to a geometrical model of the martensitic nucleus and its growth stages. The phase transformation is studied as a function of temperature in the scanning electron microscope and atomic force microscope and is compared to the geometric model. The limits of the geometrical model at macroscopic twin boundaries and at interfaces to the substrate are discussed. Finally, the formation of the entire twin microstructure can be explained. In the third part, the energy barrier of nucleation is studied. The transformation is isothermal which leads to the conclusion that autonucleation processes decrease the nucleation barrier significantly. Finally, the influence of nanoindentation on the nucleation is shown.
6

Nukleation und Wachstum des adaptiven Martensits in epitaktischen Schichten der Formgedächtnislegierung Ni-Mn-Ga

Niemann, Robert Ingo 18 September 2015 (has links)
Magnetische Formgedächtnislegierungen sind Festkörper, die eine Phasenumwandlung erster Ordnung von einer hochsymmetrischen Phase (Austenit) zu einer niedersymmetrischen Phase (Martensit) durchlaufen. Dies kann in der Nähe von Raumtemperatur stattfinden und sowohl durch Temperaturänderung, als auch durch äußere Magnetfelder, mechanische Spannungen oder hydrostatischen Druck induziert werden. Daraus ergeben sich funktionale Eigenschaften, wie der magnetokalorische und der elastokalorische Effekt, eine magnetfeldinduzierte Dehnung und ein großer Magnetowiderstand. Zwillingsgrenzen im Martensit können durch äußere Magnetfelder bewegt werden, was zu großen reversiblen Längenänderungen führt. Der Ablauf der Phasenumwandlung und das Gefüge des Martensits werden dabei durch die elastischen Randbedingungen an der Phasengrenze bestimmt. In dieser Arbeit werden deshalb die Nukleation und das Wachstum des Martensits untersucht. Als Modellsystem werden epitaktische Schichten der Heuslerlegierung Ni-Mn-Ga verwendet. In der martensitischen Phase weist diese Legierung eine modulierte Kristallstruktur auf, die im Konzept des adaptiven Martensits durch eine Verzwillingung auf der atomaren Skala interpretiert werden kann. Im ersten Teil wird mit Röntgenbeugung die modulierte Struktur untersucht. Die Intensität der Überstrukturreflexe wird mit einer kinematischen Beugungssimulation verglichen. Dabei wird nachgewiesen, dass es sich um ein nanoverzwillingtes Gefüge mit einer hohen Dichte an Stapelfehlern handelt. Im zweiten Teil wird das martensitische Gefüge mit Elektronenbeugung im Rasterelektronenmikroskop und Texturmessungen durch Röntgenbeugung untersucht. Das martensitische Gefüge kann im Rahmen der phänomenologischen Martensittheorie quantitativ erklärt werden. Daraus ergibt sich ein geometrisches Modell des martensitischen Nukleus und seiner Wachstumsstadien. Die Phasenumwandlung wird temperaturabhängig im Elektronen- und im Atomkraftmikroskop untersucht und mit dem geometrischen Modell verglichen. Die begrenzte Gültigkeit des geometrischen Modells an makroskopischen Zwillingsgrenzen und an der Grenzfläche zum Schichtsubstrat werden diskutiert. Schließlich kann die Bildung des gesamten hierarchischen Zwillingsgefüges erklärt werden. Im dritten Teil wird die Energiebarriere der Nukleation untersucht. Da die Umwandlung bei konstanter Temperatur abläuft, wird geschlussfolgert, dass Autonukleationsprozesse zu einer starken Verringerung der Nukleationsbarrieren führen. Schließlich wird gezeigt, dass durch Nanoindentation die Nukleation gezielt beeinflusst werden kann. / Magnetic shape memory alloys are solids that undergo a first order phase transition from a high symmetry phase (austenite) into a low symmetry phase (martensite). This can happen close to room temperature and can be induced by changes of temperature, external magnetic fields, mechanical stresses or hydrostatic pressure. This leads to functional properties like the magnetocaloric and elastocaloric effect, a magnetic-field-induced strain and giant magnetoresistance. Twin boundaries in the martensite can be moved by external magnetic fields, which leads to giant reversible length changes. The process of the phase transition and the microstructure of martensite are determined by the elastic boundary conditions at the phase interface. In this work, nucleation and growth of the martensite are studied. Epitaxial films of the Heusler alloy Ni-Mn-Ga are used as a model system. This alloy exhibits a modulated crystal structure which is interpreted as twinning on the atomic scale in the framework of adaptive martensite. In the first part, the modulated structure is studied by X-ray diffraction. The intensity of the superstructure is compared to a kinematic diffraction simulation and it is shown that it is a nanotwinned microstructure with a high density of stacking faults. In the seond part, the martensitic microstructure is studied by electron diffraction in the scanning electron microscope and by texture measurements using X-ray diffraction. The martensitic microstructure can be explained quantitatively in the framework of the phenomenological theory of martensite. This leads to a geometrical model of the martensitic nucleus and its growth stages. The phase transformation is studied as a function of temperature in the scanning electron microscope and atomic force microscope and is compared to the geometric model. The limits of the geometrical model at macroscopic twin boundaries and at interfaces to the substrate are discussed. Finally, the formation of the entire twin microstructure can be explained. In the third part, the energy barrier of nucleation is studied. The transformation is isothermal which leads to the conclusion that autonucleation processes decrease the nucleation barrier significantly. Finally, the influence of nanoindentation on the nucleation is shown.
7

Mechanisms of microtubule nucleation in metaphase spindles and how they set spindle size

Decker, Franziska 25 September 2018 (has links)
Regulation of size and growth is a fundamental problem in biology and often closely related to functionality and fitness. A prominent example is the mitotic spindle, whose size needs to be perfectly tuned to ensure proper chromosome segregation during cell division. It is known that spindle size generally scales with cell volume, most likely as a result of limiting components. However, this relation breaks down in very large cells where spindles have a maximum size. How the size and microtubule mass are set and why spindles show an upper size limit in large cells is still not understood. Spindles mainly consist of highly dynamic short microtubules that turn over very quickly in comparison to the lifetime of the entire structure. Thus, microtubules need to be constantly created throughout the spindle, a process called nucleation. Understanding the role of microtubule nucleation in setting the size of spindles is limited by the fact that little is known about the rate, distribution, and regulation of microtubule nucleation in these structures. This is partly due to the lack of methods to measure microtubule nucleation in spindles. During this work, I developed an assay based on laser ablation to probe microtubule nucleation in monopolar spindles assembled in Xenopus laevis egg extract. Using this new method in combination with quantitative microscopy, I found that microtubule nucleation in these structures is spatially regulated. Furthermore, I observed that nucleation is stimulated by pre-existing microtubules leading to new microtubule growth in their physical proximity. Combining my experimental results on nucleation with theory and further biochemical perturbations, I show that this autocatalytic nucleation mechanism is limited by the availability of active nucleators. In spindles, the amount of active nucleators decreases with distance from the chromosomes. Thus, this mechanism provides an upper limit to spindle size even when resources are not limiting.
8

On the understanding of organic thin film growth and the changes in structure formation induced by molecular chemical tuning

Zykov, Anton 24 February 2017 (has links)
Funktionale organische Moleküle bergen ein hohes Potential für den Einsatz in zukunftsprägenden Technologien wie organischen Leuchtdioden (OLED), Solarzellen, Transistoren und Bio-Sensoren. Eines der Herstellungsverfahren beruht auf der Gasphasenabscheidung der Moleküle, die auf dem Substrat mittels Selbstorganisation zu dünnen Schichten wachsen. Auf Grund der komplexen Wechselwirkungen und des Einflusses der Schichtmorphologie auf die Funktionalität der dünnen Schichten stellt der Wachstumsprozess sowohl für die anwendungsorientierte als auch für die Grundlagenforschung eine hochinteressante und wichtige wissenschaftliche Herausforderung dar, mit der sich die vorliegende Arbeit auseinandersetzt. Die experimentellen Resultate und Konzepte, die in dieser Arbeit vorgestellt werden, leisten neue Beiträge für das Verständnis von organischem Wachstum. Der demonstrierte Einfluss von chemischer Modifikation auf verschiedene Aspekte des Strukturwachstums, wie z.B. auf die Filmrauigkeit, Kristallphasenreinheit und molekulare Diffusivität, zeigt zudem das hohe Potential dieser Methode zur Steuerung des organischen Wachstums. Aus den genannten Gründen kann diese Arbeit neue Impulse für die Erforschung und spätere Anwendung von funktionalen organischen Dünnschichtsystemen setzen. / Functional organic molecules are promising for the application in future relevant technologies such as organic light emitting diodes (OLEDs), solar cells, transistors and bio-sensors. One of the processing methods to fabricate organic devices is organic molecular beam deposition. In this process, the complexly interacting molecules grow via self-assembly as thin films on a substrate. Due to the close structure-property relationship, the growth process constitutes a highly interesting and important scientific challenge for both application oriented as well as fundamental research and is the topic of the present thesis. The experimental results and conceptual methods presented in this thesis contribute new stimuli to the understanding of the molecular self-assembly. The demonstrated influence of chemical tuning on various facets of structure formation, such as film roughness, crystal phase purity and molecular diffusivities, uncovers the strong potential of this approach for steering organic growth. Therefore, the present work has implications for future research and application of functional organic thin films.
9

Physical Description of Centrosomes as Active Droplets / Physikalische Beschreibung von Zentrosomen als Aktive Tropfen

Zwicker, David 14 November 2013 (has links) (PDF)
Biological cells consist of many subunits that form distinct compartments and work together to allow for life. These compartments are clearly separated from each other and their sizes are often strongly correlated with cell size. Examples for those structures are centrosomes, which we consider in this thesis. Centrosomes are essential for many processes inside cells, most importantly for organizing cell division, and they provide an interesting example of cellular compartments without a membrane. Experiments suggest that such compartments can be described as liquid-like droplets. In this thesis, we suggest a theoretical description of the growth phase of centrosomes. We identify a possible mechanism based on phase separation by which the centrosome may be organized. Specifically, we propose that the centrosome material exists in a soluble and in a phase separating form. Chemical reactions controlling the transitions between these forms then determine the temporal evolution of the system. We investigate various possible reaction schemes and generally find that droplet sizes and nucleation properties deviate from the known equilibrium results. Additionally, the non-equilibrium effects of the chemical reactions can stabilize multiple droplets and thus counteract the destabilizing effect of surface tension. Interestingly, only a reaction scheme with autocatalytic growth can account for the experimental data of centrosomes. Here, it is important that the centrioles found at the center of all centrosomes also catalyze the production of droplet material. This catalytic activity allows the centrioles to control the onset of centrosome growth, to stabilize multiple centrosomes, and to center themselves inside the centrosome. We also investigate a stochastic version of the model, where we find that the autocatalytic growth amplifies noise. Our theory explains the growth dynamics of the centrosomes of the round worm Caenorhabditis elegans for all embryonic cells down to the eight-cell stage. It also accounts for data acquired in experiments with aberrant numbers of centrosomes and altered cell volumes. Furthermore, the model can describe unequal centrosome sizes observed in cells with disturbed centrioles. Our example thus suggests a general picture of the organization of membrane-less organelles. / Biologische Zellen bestehen aus vielen Unterstrukturen, die zusammen arbeiten um Leben zu ermöglichen. Die Größe dieser meist klar voneinander abgegrenzten Strukturen korreliert oft mit der Zellgröße. In der vorliegenden Arbeit werden als Beispiel für solche Strukturen Zentrosomen untersucht. Zentrosomen sind für viele Prozesse innerhalb der Zelle, insbesondere für die Zellteilung, unverzichtbar und sie besitzen keine Membran, welche ihnen eine feste Struktur verleihen könnte. Experimentelle Untersuchungen legen nahe, dass solche membranlose Strukturen als Flüssigkeitstropfen beschrieben werden können. In dieser Arbeit wird eine theoretische Beschreibung der Wachstumsphase von Zentrosomen hergeleitet, welche auf Phasenseparation beruht. Im Modell wird angenommen, dass das Zentrosomenmaterial in einer löslichen und einer phasenseparierenden Form existiert, wobei der Übergang zwischen diesen Formen durch chemische Reaktionen gesteuert wird. Die drei verschiedenen in dieser Arbeit untersuchten Reaktionen führen unter anderem zu Tropfengrößen und Nukleationseigenschaften, welche von den bekannten Ergebnissen im thermodynamischen Gleichgewicht abweichen. Insbesondere verursachen die chemischen Reaktionen ein thermisches Nichtgleichgewicht, in dem mehrere Tropfen stabil sein können und der destabilisierende Effekt der Oberflächenspannung unterdrückt wird. Konkret kann die Wachstumsdynamik der Zentrosomen nur durch eine selbstverstärkende Produktion der phasenseparierenden Form des Zentrosomenmaterials erklärt werden. Hierbei ist zusätzlich wichtig, dass die Zentriolen, die im Inneren jedes Zentrosoms vorhanden sind, ebenfalls diese Produktion katalysieren. Dadurch können die Zentriolen den Beginn des Zentrosomwachstums kontrollieren, mehrere Zentrosomen stabilisieren und sich selbst im Zentrosom zentrieren. Des Weiteren führt das selbstverstärkende Wachstum zu einer Verstärkung von Fluktuationen der Zentrosomgröße. Unsere Theorie erklärt die Wachstumsdynamik der Zentrosomen des Fadenwurms Caenorhabditis elegans für alle Embryonalzellen bis zum Achtzellstadium und deckt dabei auch Fälle mit anormaler Zentrosomenanzahl und veränderter Zellgröße ab. Das Modell kann auch Situationen mit unterschiedlich großen Zentrosomen erklären, welche auftreten, wenn die Struktur der Zentriolen verändert wird. Unser Beispiel beschreibt damit eine generelle Möglichkeit, wie membranlose Zellstrukturen organisiert sein können.
10

Physical Description of Centrosomes as Active Droplets

Zwicker, David 30 October 2013 (has links)
Biological cells consist of many subunits that form distinct compartments and work together to allow for life. These compartments are clearly separated from each other and their sizes are often strongly correlated with cell size. Examples for those structures are centrosomes, which we consider in this thesis. Centrosomes are essential for many processes inside cells, most importantly for organizing cell division, and they provide an interesting example of cellular compartments without a membrane. Experiments suggest that such compartments can be described as liquid-like droplets. In this thesis, we suggest a theoretical description of the growth phase of centrosomes. We identify a possible mechanism based on phase separation by which the centrosome may be organized. Specifically, we propose that the centrosome material exists in a soluble and in a phase separating form. Chemical reactions controlling the transitions between these forms then determine the temporal evolution of the system. We investigate various possible reaction schemes and generally find that droplet sizes and nucleation properties deviate from the known equilibrium results. Additionally, the non-equilibrium effects of the chemical reactions can stabilize multiple droplets and thus counteract the destabilizing effect of surface tension. Interestingly, only a reaction scheme with autocatalytic growth can account for the experimental data of centrosomes. Here, it is important that the centrioles found at the center of all centrosomes also catalyze the production of droplet material. This catalytic activity allows the centrioles to control the onset of centrosome growth, to stabilize multiple centrosomes, and to center themselves inside the centrosome. We also investigate a stochastic version of the model, where we find that the autocatalytic growth amplifies noise. Our theory explains the growth dynamics of the centrosomes of the round worm Caenorhabditis elegans for all embryonic cells down to the eight-cell stage. It also accounts for data acquired in experiments with aberrant numbers of centrosomes and altered cell volumes. Furthermore, the model can describe unequal centrosome sizes observed in cells with disturbed centrioles. Our example thus suggests a general picture of the organization of membrane-less organelles.:1 Introduction 1.1 Organization of the cell interior 1.2 Biology of centrosomes 1.2.1 The model organism Caenorhabditis elegans 1.2.2 Cellular functions of centrosomes 1.2.3 The centriole pair is the core structure of a centrosome 1.2.4 Pericentriolar material accumulates around the centrioles 1.3 Other membrane-less organelles and their organization 1.4 Phase separation as an organization principle 1.5 Equilibrium physics of liquid-liquid phase separation 1.5.1 Spinodal decomposition and droplet formation 1.5.2 Formation of a single droplet 1.5.3 Ostwald ripening destabilizes multiple droplets 1.6 Non-equilibrium phase separation caused by chemical reactions 1.7 Overview of this thesis 2 Physical Description of Centrosomes as Active Droplets 2.1 Physical description of centrosomes as liquid-like droplets 2.1.1 Pericentriolar material as a complex fluid 2.1.2 Reaction-diffusion kinetics of the components 2.1.3 Centrioles described as catalytic active cores 2.1.4 Droplet formation and growth kinetics 2.1.5 Complete set of the dynamical equations 2.2 Three simple growth scenarios 2.2.1 Scenario A: First-order kinetics 2.2.2 Scenario B: Autocatalytic growth 2.2.3 Scenario C: Incorporation at the centrioles 2.3 Diffusion-limited droplet growth 2.4 Discussion 3 Isolated Active Droplets 3.1 Compositional fluxes in the stationary state 3.2 Critical droplet size: Instability of small droplets 3.3 Droplet nucleation facilitated by the active core 3.4 Interplay of critical droplet size and nucleation 3.5 Perturbations of the spherical droplet shape 3.5.1 Linear stability analysis of the spherical droplet shape 3.5.2 Active cores can center themselves in droplets 3.5.3 Surface tension stabilizes the spherical shape 3.5.4 First-order kinetics destabilize large droplets 3.6 Discussion 4 Multiple Interacting Active Droplets 4.1 Approximate description of multiple droplets 4.2 Linear stability analysis of the symmetric state 4.3 Late stage droplet dynamics and Ostwald ripening 4.4 Active droplets can suppress Ostwald ripening 4.4.1 Perturbation growth rate in the simple growth scenarios 4.4.2 Parameter dependence of the stability of multiple droplets 4.4.3 Stability of more than two droplets 4.5 Discussion 5 Active Droplets with Fluctuations 5.1 Stochastic version of the active droplet model 5.1.1 Comparison with the deterministic model 5.1.2 Ensemble statistics and ergodicity 5.1.3 Quantification of fluctuations by the standard deviation 5.2 Noise amplification by the autocatalytic reaction 5.3 Transient growth regime of multiple droplets 5.4 Influence of the system geometry on the droplet growth 5.5 Discussion 6 Comparison Between Theory and Experiment 6.1 Summary of the experimental observations 6.2 Estimation of key model parameters 6.3 Fits to experimental data 6.4 Dependence of centrosome size on cell volume and centrosome count 6.5 Nucleation and stability of centrosomes 6.6 Multiple centrosomes with unequal sizes 6.7 Disintegration phase of centrosomes 7 Summary and Outlook Appendix A Coexistence conditions in a ternary fluid B Instability of multiple equilibrium droplets C Numerical solution of the droplet growth D Diffusion-limited growth of a single droplet E Approximate efflux of droplet material F Determining stationary states of single droplets G Droplet size including surface tension effects H Distortions of the spherical droplet shape H.1 Harmonic distortions of a sphere H.2 Physical description of the perturbed droplet H.3 Volume fraction profiles in the perturbed droplet H.4 Perturbation growth rates I Multiple droplets with gradients inside droplets J Numerical stability analysis of multiple droplets K Numerical implementation of the stochastic model / Biologische Zellen bestehen aus vielen Unterstrukturen, die zusammen arbeiten um Leben zu ermöglichen. Die Größe dieser meist klar voneinander abgegrenzten Strukturen korreliert oft mit der Zellgröße. In der vorliegenden Arbeit werden als Beispiel für solche Strukturen Zentrosomen untersucht. Zentrosomen sind für viele Prozesse innerhalb der Zelle, insbesondere für die Zellteilung, unverzichtbar und sie besitzen keine Membran, welche ihnen eine feste Struktur verleihen könnte. Experimentelle Untersuchungen legen nahe, dass solche membranlose Strukturen als Flüssigkeitstropfen beschrieben werden können. In dieser Arbeit wird eine theoretische Beschreibung der Wachstumsphase von Zentrosomen hergeleitet, welche auf Phasenseparation beruht. Im Modell wird angenommen, dass das Zentrosomenmaterial in einer löslichen und einer phasenseparierenden Form existiert, wobei der Übergang zwischen diesen Formen durch chemische Reaktionen gesteuert wird. Die drei verschiedenen in dieser Arbeit untersuchten Reaktionen führen unter anderem zu Tropfengrößen und Nukleationseigenschaften, welche von den bekannten Ergebnissen im thermodynamischen Gleichgewicht abweichen. Insbesondere verursachen die chemischen Reaktionen ein thermisches Nichtgleichgewicht, in dem mehrere Tropfen stabil sein können und der destabilisierende Effekt der Oberflächenspannung unterdrückt wird. Konkret kann die Wachstumsdynamik der Zentrosomen nur durch eine selbstverstärkende Produktion der phasenseparierenden Form des Zentrosomenmaterials erklärt werden. Hierbei ist zusätzlich wichtig, dass die Zentriolen, die im Inneren jedes Zentrosoms vorhanden sind, ebenfalls diese Produktion katalysieren. Dadurch können die Zentriolen den Beginn des Zentrosomwachstums kontrollieren, mehrere Zentrosomen stabilisieren und sich selbst im Zentrosom zentrieren. Des Weiteren führt das selbstverstärkende Wachstum zu einer Verstärkung von Fluktuationen der Zentrosomgröße. Unsere Theorie erklärt die Wachstumsdynamik der Zentrosomen des Fadenwurms Caenorhabditis elegans für alle Embryonalzellen bis zum Achtzellstadium und deckt dabei auch Fälle mit anormaler Zentrosomenanzahl und veränderter Zellgröße ab. Das Modell kann auch Situationen mit unterschiedlich großen Zentrosomen erklären, welche auftreten, wenn die Struktur der Zentriolen verändert wird. Unser Beispiel beschreibt damit eine generelle Möglichkeit, wie membranlose Zellstrukturen organisiert sein können.:1 Introduction 1.1 Organization of the cell interior 1.2 Biology of centrosomes 1.2.1 The model organism Caenorhabditis elegans 1.2.2 Cellular functions of centrosomes 1.2.3 The centriole pair is the core structure of a centrosome 1.2.4 Pericentriolar material accumulates around the centrioles 1.3 Other membrane-less organelles and their organization 1.4 Phase separation as an organization principle 1.5 Equilibrium physics of liquid-liquid phase separation 1.5.1 Spinodal decomposition and droplet formation 1.5.2 Formation of a single droplet 1.5.3 Ostwald ripening destabilizes multiple droplets 1.6 Non-equilibrium phase separation caused by chemical reactions 1.7 Overview of this thesis 2 Physical Description of Centrosomes as Active Droplets 2.1 Physical description of centrosomes as liquid-like droplets 2.1.1 Pericentriolar material as a complex fluid 2.1.2 Reaction-diffusion kinetics of the components 2.1.3 Centrioles described as catalytic active cores 2.1.4 Droplet formation and growth kinetics 2.1.5 Complete set of the dynamical equations 2.2 Three simple growth scenarios 2.2.1 Scenario A: First-order kinetics 2.2.2 Scenario B: Autocatalytic growth 2.2.3 Scenario C: Incorporation at the centrioles 2.3 Diffusion-limited droplet growth 2.4 Discussion 3 Isolated Active Droplets 3.1 Compositional fluxes in the stationary state 3.2 Critical droplet size: Instability of small droplets 3.3 Droplet nucleation facilitated by the active core 3.4 Interplay of critical droplet size and nucleation 3.5 Perturbations of the spherical droplet shape 3.5.1 Linear stability analysis of the spherical droplet shape 3.5.2 Active cores can center themselves in droplets 3.5.3 Surface tension stabilizes the spherical shape 3.5.4 First-order kinetics destabilize large droplets 3.6 Discussion 4 Multiple Interacting Active Droplets 4.1 Approximate description of multiple droplets 4.2 Linear stability analysis of the symmetric state 4.3 Late stage droplet dynamics and Ostwald ripening 4.4 Active droplets can suppress Ostwald ripening 4.4.1 Perturbation growth rate in the simple growth scenarios 4.4.2 Parameter dependence of the stability of multiple droplets 4.4.3 Stability of more than two droplets 4.5 Discussion 5 Active Droplets with Fluctuations 5.1 Stochastic version of the active droplet model 5.1.1 Comparison with the deterministic model 5.1.2 Ensemble statistics and ergodicity 5.1.3 Quantification of fluctuations by the standard deviation 5.2 Noise amplification by the autocatalytic reaction 5.3 Transient growth regime of multiple droplets 5.4 Influence of the system geometry on the droplet growth 5.5 Discussion 6 Comparison Between Theory and Experiment 6.1 Summary of the experimental observations 6.2 Estimation of key model parameters 6.3 Fits to experimental data 6.4 Dependence of centrosome size on cell volume and centrosome count 6.5 Nucleation and stability of centrosomes 6.6 Multiple centrosomes with unequal sizes 6.7 Disintegration phase of centrosomes 7 Summary and Outlook Appendix A Coexistence conditions in a ternary fluid B Instability of multiple equilibrium droplets C Numerical solution of the droplet growth D Diffusion-limited growth of a single droplet E Approximate efflux of droplet material F Determining stationary states of single droplets G Droplet size including surface tension effects H Distortions of the spherical droplet shape H.1 Harmonic distortions of a sphere H.2 Physical description of the perturbed droplet H.3 Volume fraction profiles in the perturbed droplet H.4 Perturbation growth rates I Multiple droplets with gradients inside droplets J Numerical stability analysis of multiple droplets K Numerical implementation of the stochastic model

Page generated in 0.0874 seconds