• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 196
  • 95
  • 56
  • 36
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 4
  • 2
  • 2
  • Tagged with
  • 532
  • 232
  • 135
  • 75
  • 68
  • 63
  • 46
  • 39
  • 39
  • 38
  • 35
  • 33
  • 32
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Kompiuterinio automatizuoto projektavimo posistemė pastato sienoms su angomis formuoti / CAD subsystem for creating of the building's walls with the openings

Šliaužytė, Brigita 05 June 2006 (has links)
Many architects is working with AutoCAD system. But it is very time consuming work when it is needed to do such a work like drawing 3D models of walls with openings. This can be solved because of AutoCAD open architecture. Advantages of this would be less of errors in drawings and more time for other work for architects. Created software is able from 2D draft of lines make 3D walls and, if was chossed, openings. The user describes dimensions of wall and / or opening and the program will change selected line by set of planes with the opening inside. There are a few aviable options for user choise: openings may have a form of triangle or rectangular, walls maybe be like surfaces or lines, it is possible to create a wall with an array of rectangular openings, and delete already created walls leaving primary lines. For software creation was choosen Visual Basic for Aplication programing language because of it is object – oriented and easy comunication with standart AutoCAD’s classes and graphical objects. User‘s dialog’s form was choosen nearly these, what apear in such software like Architectural Desktop because of its logical simplicity. Supposing created software will be developed further in these ways: o Adding more opening’s shapes o Creating library of opening’s o Supporting all standarts needed for professional.
132

Ruthenium-Catalyzed [2+2] Cycloaddition Reactions between a 3-Aza-2-oxabicyclo[2.2.1]hept-5-ene and Unsymmetrical Alkynes

Durham, Robin 12 August 2011 (has links)
This thesis is an investigation of ruthenium-catalyzed [2+2] cycloaddition reactions of a 3-aza-2-oxabicyclo[2.2.1]hept-5-ene with unsymmetrical alkynes. Yields of up to 90% were obtained though regioselectivity was modest. Select cycloadducts could be separated and used to access a highly functionalized [3.2.0] bicyclic structure through reductive cleavage of the N-O bond. These ring-opened products displayed a chemical exchange phenomenon in 1D carbon NMR and required characterization by 2D NMR techniques. In addition, a haloalkynylation reaction was found to occur when 1-iodo-2-phenylethyne and the 3-aza-2-oxabicyclo[2.2.1]hept-5-ene were submitted to the cycloaddition conditions. An effort was made to optimize the reaction between 1-iodo-2-phenylethyne and norbornadiene in favour of the addition product. / Government of Ontario, NSERC
133

TRANSITION METAL CATALYZED RING-OPENING REACTIONS OF UNSYMMETRICAL OXABICYCLIC ALKENES

Mohammed Abdul, Raheem 27 August 2013 (has links)
This report is an investigation of regioselectivity in transition metal catalyzed ring-opening reactions involving unsymmetrical oxabicycles, specifically with a substituent at the C1 position. This report also provides the details of the work conducted towards the preparation of various oxanorbornadienes and their precursors. A large number of reactions have been developed using various transition metal catalysts on oxabicyclic alkenes to form functionalized organic scaffolds. However, most of the literature is limited to symmetrical substrates. Introduction of a substituent at the bridgehead carbon of the bicyclic ring makes the molecule unsymmetrical. The implications of loss of the plane of symmetry in C1 substituted oxabicyclic ring are manifested in interesting ways during various metal catalyzed reactions. The fundamental basis for the current work is to study the consequences of transition metal catalyzed ring opening reactions of unsymmetrical bicyclic alkenes. The reactivity of a wide range of C1 substituted benzoxanorbornadienes and oxanorbornadienes in palladium and nickel-catalyzed ring opening reactions was explored. The palladium catalyzed ring opening reaction of both electron rich and electron deficient C1 substituted benzoxanorbornadienes are optimized. The ring opening reactions with electron withdrawing C1 substituent resulted in formation of substituted naphthalene-1-carboxylic acid methyl ester derivatives in up to 85% yield. Electron donating substituents on the C1 position of benzoxanorbornadiene led to the formation of substituted cis-1,2-dihydronaphthol rings in excellent yields. Palladium catalyzed ring opening reactions were also explored with a wide range of aryl iodides and halobenzenes. The electronic and steric effects of the substituent at the C1 position of oxabicyles were also investigated. The nickel catalyzed ring opening reactions resulted in formation of inseparable regioisomeric mixtures of products. However, it was found that the nickel catalyzed ring opening of 1-methoxycarbonyl-7-oxabenzonorbornadiene occurred regioselectively affording a single product. A scalable procedure for preparation of large quantities of 2-bromofuran was developed. 2-Aryl furans were prepared using Suzuki cross coupling protocols of 2-bromofuran with aryl boronic acids whereas 2-alkyl furans were prepared by iron catalyzed cross coupling reaction of 2-bromofuran with various alkyl and cycloalkyl Grignard reagents. The 2-substituted furans were used for the preparation of novel C1 substituted benzoxanorbornadiene and oxanorbornadienes.
134

Solid-state nuclear magnetic resonance spectroscopy of phosphazene polymers

Borisov, Alexey S., University of Lethbridge. Faculty of Arts and Science January 2009 (has links)
High-resolution one-dimensional 1H, 19F, 31P and 13C MAS NMR experiments were used in a morphological study of solvent-cast and heat-treated poly[bis(trifluoroethoxy)phosphazene] (PBFP). Deconvolution analyses performed on all Nuclear Magnetic Resonance (NMR) spectra are presented. These results suggest the presence of broad and narrow overlapping components at ambient temperature, which were assigned to the crystalline, amorphous and the mesophase regions within the polymer, respectively. The number of signals in the spectra was independently verified using 1H, 19F and 13C Discrimination Induced by Variable Amplitude Minipulses (DIVAM) nutation experiments. Deconvolution analyses showed that heat-treatment increases the overall crystallinity of the solvent-cast PBFP. Further studies conducted on two preparations of the polymer showed significant differences in crystallinity due to variations in the reaction conditions. Magic-Angle Spinning (MAS) NMR spectra of PBFP obtained via living cationic polymerization at ambient temperature indicated that the polymer contains mostly amorphous and mesophase regions with only a small contribution from the crystalline domain. Variable-temperature 31P NMR experiments suggested that the thermotropic transition occurs in a temperature range of 80ºC to 90ºC, where the crystalline signal disappears and a new signal due to a liquid crystalline phase emerges. Spin-lock 31P experiments provided rates of the transverse relaxation in the rotating frame for each signal, showing that the crystalline and the amorphous regions within the polymer are characterized by significantly different mobilities at ambient temperatures, while the v comparable degree of motion occurs between the amorphous and mesophase environments at temperatures above 90ºC. The process of thermal ring-opening polymerization of hexachlorocyclotriphosphazene was monitored using one-dimensional 31P MAS NMR at different stages of the reaction. The ratio between cyclic species and the high molecular weight poly(dichlorophosphazene) was seen to change over time. 31P NMR was seen to be a potentially valuable tool in monitoring rates of chain propagation, branching and cross-linking. Two-dimensional 31P homonuclear Radio-Frequency Driven Recoupling (RFDR) and Incredible Natural Abundance Double Quantum Transfer (INADEQUATE) MAS NMR experiments were first tested on the partially phenoxy-substituted hexachlorocyclotriphosphazene, and subsequently applied in the study of a preparation of the partially trifluoroethoxy-substituted poly(dichlorophosphazene). Very high resolution was obtained in the direct dimension due to the presence of low molecular weight species. Preliminary spectral assignments of all of the observed signals were made on the basis of both known chemical shifts of the related species, and the through-space and through-bond phosphorous-phosphorous connectivities. / xiii, 188 leaves : ill. ; 29 cm
135

Developing Glycopeptide based nanocarriers by ring opening polymerization for drug delivery applications

Hasan, Mohammad Nazmul January 2014 (has links)
Synthetic glycopeptides have attracted much interest in the biomedical field due to their structural similarities to the natural glycopeptides or glycoproteins. It is still difficult to synthesize glycopeptides with greater efficiency and ring opening polymerization remains an effective way to do so. Proteoglycans are a special class of glycoproteins with glycosaminoglycan chains. In this study, I tried to do controlled ring opening polymerization of Hyaluronic acid derivatives with smaller to higher molecular weight while avoiding side reactions. It is challenging to work with higher molecular weight molecules and do a click reaction in water effectively. Making nanopolymers with a desired size, studies of the characteristics, and how to build nanocarriers for drug delivery application was the focus of this work. Polymeric characteristics, e.g., modification and polymer formation were studied by nuclear magnetic resonance technique; Particle size was studied by dynamic light scattering and the loading of rhodamine B encapsulated into the polymer was measured by confocal imaging technique.
136

Eye opening monitor for optimized self-adaptation of low-power equalizers in multi-gigabit serial links

Narayanan, Anand January 2013 (has links)
In modern day communication systems, there is a constant demand for increase in transmission rates. This is however limited by the bandwidth limitation of the channel. Inter symbol interference (ISI) imposes a great threat to increasing data rates by degrading the signal quality. Equalizers are used at the receiver to compensate for the losses in the channel and thereby greatly mitigate ISI. Further, an adaptive equalizer is desired which can be used over a channel whose response is unknown or is time-varying. A low power equalizing solution in a moderately attenuated channel is an analog peaking filter which boosts the signal high frequency components. Such conventional continuous time linear equalizers (CTLE) provide a single degree of controllability over the high frequency boost. A more complex CTLE has been designed which has two degrees of freedom by controlling the high frequency boost as well as the range of frequencies over which the boost is applied. This extra degree of controllability over the equalizer response is desired to better adapt to the varying channel response and result in an equalized signal with a wider eye opening. A robust adaptation technique is necessary to tune the equalizer characteristics. Some of the commonly used techniques for adaptation of CTLEs are based on energy comparison criterion in the frequency domain. But the adaptation achieved using these techniques might not be optimal especially for an equalizer with two degrees of controllability. In such cases an eye opening monitor (EOM) could be used which evaluates the actual signal quality in time domain. The EOM gives an estimate on the signal quality by measuring the eye opening of the equalized signal in horizontal and vertical domain. In this thesis work a CTLE with two degrees of freedom with an EOM based adaptation system has been implemented.
137

Studies of Metathesis for Materials Applications: Present and Future Possibilities

Marleau-Gillette, Joshua 23 January 2013 (has links)
Compounds containing multiple metal-carbon bonds are now widely used as catalysts for organic and materials synthesis. Among such transformations, olefin metathesis (OM) occupies a position of pre-eminent significance. Alkyne metathesis holds great promise, but remains in a much lower state of development. The OM-directed work in this thesis sought to advance the state of the art in living, Ru-catalyzed ringopening metathesis polymerizations (ROMP). Currently, the first- and third-generation Grubbs initiators, which exhibit the ease of handling characteristic of the late metal ruthenium, dominate ROMP applications. These initiators are characterized by extremes of reactivity, however. We describe the first ruthenium initiator capable of living ROMP at RT, irrespective of monomer bulk. Polydispersity indices as low as 1.03 are routinely attainable, and excellent control is maintained in synthesis of diblock copolymers from sterically demanding and sterically unencumbered monomers. Work on alkyne metathesis sought to expand existing understanding of the features that influence stability and reactivity in ruthenium carbynes. A classification system was developed in which Class A carbynes were defined as those that readily undergo conversion into an M=C entity (e.g. vinylidene, allenylidene, or alkylidene); Class B carbynes those that have a stable carbyne functionality. Four Ru carbyne complexes, all initially regarded as prospective Class B carbynes, were selected for study. Investigation of their reactivity resulted in categorization of several as Class A species, and development of design criteria that may open the door to assembly of stable, well-defined carbyne complexes of ruthenium.
138

Synthesis of selected cage alkenes and their attempted ring-opening metathesis polymerisation with well-defined ruthenium carbene catalysts / Justus Röscher

Röscher, Justus January 2011 (has links)
In this study a number of cage alkenes were synthesised and tested for activity towards ringopening metathesis polymerisation (ROMP) with the commercially available catalysts 55 (Grubbs-I) and 56 (Grubbs-II). The first group of monomers are derivatives of tetracyclo[6.3.0.04,1105,9]undec-2-en-6-one (1). The synthesis of these cage alkenes are summarised in Scheme 7.1. The cage alkene 126b was synthesised by a Diels-Alder reaction between 1 and hexachlorocyclopentadiene (9, Scheme 7.2). The geometry of 126b was determined from XRD data. Knowledge of the geometry of 126b also established the geometry of 127 since conformational changes during the conversion from 126b to 127 are unlikely. Synthesis of the cage alkene 125 by the cycloaddition of 9 to 118 failed. The cage alkene exo-11- hydroxy-4,5,6,7,16,16-hexachlorohexacyclo[7.6.1.03,8.02,13.010,14]hexa-dec-5-ene (124, Scheme 7.3) could therefore not be prepared. Synthesis of 125 by reduction of 126b with various reduction systems was not successful. Theoretical aspects of these reactions were investigated with molecular modelling. A possible explanation for the unreactive nature of 126b towards reduction is presented, but the lack of reactivity of 118 towards 9 eluded clear explanations. The synthesis of cage alkenes from 4-isopropylidenepentacyclo[5.4.0.02,6.03,10.05,9]-undecane-8,11- dione (23) did not meet with much success (Scheme 7.4). Numerous synthetic methods were investigated to affect the transformation from 134a/134b to 135 (Scheme 7.5). These attempts evolved into theoretical investigations to uncover the reasons for the observed reactivity. Possible explanations were established by considering the differences and similarities between the geometries and electronic structures of reactive and unreactive cage alcohols. ROMP of cage monomers based on 1 were mostly unsuccessful. Only the cage monomer 127 showed some reactivity. Endocyclic cage monomers with a tetracycloundecane (TCU) framework showed no reactivity. The results from NMR experiments verified the experimental results. Hexacyclo[8.4.0.02,9.03,13.04,7.04,12]tetradec-5-en-11,14-dione (3) exhibited notable ROMP reactivity. Examination of the orbitals of the cage alkenes used in this study suggested that the reactivity of 1 and 3 could possibly be enhanced by removal of the carbonyl groups. Decarbonylation of 1 and 3 yielded the cage hydrocarbons 159 and 175, respectively. ROMP tests revealed that 175 is an excellent monomer, but 159 was unreactive. The results obtained for the ROMP reactions in this study was rationalised by considering aspects such as ring strain, energy profiles, steric constraints, and frontier orbital theory. The concept of ring strain is less useful when describing the reactivity of cage alkenes towards ROMP and therefore the concepts of fractional ring strain and fractional ring strain energy (RSEf) were developed. A possible link between RSEf and the ROMP reactivity of cage alkenes was also established. The following criteria were put forth to predict the reactivity or explain the lack of reactivity of cage alkenes towards ROMP reactions with Grubbs-I and Grubbs-II. The criteria for ROMP of cage monomers: 1. Sufficient fractional ring strain energy (RSEf). 2. A reasonable energy profile when compared to a reference compound such as cyclopentene. 3. Ability to form a metallacyclobutane intermediate with reasonable distances between different parts of the cage fragment. 4. Sufficient ability of the polymer fragment to take on a conformation that exposes the catalytic site. 5. Sufficient size, shape, orientation and energy of HOMO and/or NHOMO at the alkene functionality of the cage monomer and of the LUMO at the catalytic site. / Thesis (Ph.D. (Chemistry))--North-West University, Potchefstroom Campus, 2012
139

A modification to the convective constraint release mechanism in the Molecular Stress Function model giving enhanced vortex growth

Olley, Peter, Wagner, M.H. 14 July 2009 (has links)
The molecular stress function model with convective constraint release (MSF with CCR) constitutive model [M.H. Wagner, P. Rubio, H. Bastian, The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release, J. Rheol. 45 (2001) 1387] is capable of fitting all viscometric data for IUPAC LDPE, with only two adjustable parameters (with difference found only on reported ¿steady-state¿ elongational viscosities). The full MSF with CCR model is implemented in a backwards particle-tracking implementation, using an adaptive method for the computation of relative stretch that reduces simulation time many-fold, with insignificant loss of accuracy. The model is shown to give improved results over earlier versions of the MSF (without CCR) when compared to well-known experimental data from White and Kondo [J.L. White, A. Kondo, Flow patterns in polyethylene and polystyrene melts during extrusion through a die entry region: measurement and interpretation, J. Non-Newtonian Fluid Mech. 3 (1977) 41]; but still to under-predict contraction flow opening angles. The discrepancy is traced to the interaction between the rotational dissipative function and the large stretch levels caused by the contraction flow. A modified combination of dissipative functions in the constraint release mechanism is proposed, which aims to reduce this interaction to allow greater strain hardening in a mixed flow. The modified constraint release mechanism is shown to fit viscometric rheological data equally well, but to give opening angles in the complex contraction flow that are much closer to the experimental data from White and Kondo. It is shown (we believe for the first time) that a constitutive model demonstrates an accurate fit to all planar elongational, uniaxial elongational and shear viscometric data, with a simultaneous agreement with this well-known experimental opening angle data. The sensitivity of results to inaccuracies caused by representing the components of the deformation gradient tensor to finite precision is examined; results are found to be insensitive to even large reductions in the precision used for the representation of components. It is shown that two models that give identical response in elongational flow, and a very similar fit to available shear data, give significantly different results in flows containing a mix of deformation modes. The implication for constitutive models is that evaluation against mixed deformation mode flow data is desirable in addition to evaluation against viscometric measurements.
140

Development of real-time mechanistic tools for the elucidation of catalytic reaction mechanisms

Stoddard, Rhonda Louise 15 August 2014 (has links)
The mechanism of a conjugate addition of an alcohol to an alkynic acid ester using a phosphine catalyst was investigated using pressurized sample infusion electrospray ionization mass spectrometry (PSI-ESI-MS) and proton and phosphorus nuclear magnetic resonance (NMR) experiments. Since ESI-MS only detects charged species, and only the phosphonium intermediates and by-products were visible by ESI-MS, 1H NMR was used to track the disappearance of the starting alkyne and the appearance of the conjugate addition product over time. 31P NMR was used to quantify the ESI-MS results. By-product formation was shown to out-compete product formation upon fast addition of alkyne, but with dropwise addition of alkyne, product was shown to dominate. A detailed numerical model was developed using PowerSim software to test mechanistic hypotheses. The experimental results were shown to be consistent with the mechanism proposed by Inanaga, and the cycle was elaborated to account for by-product formation. Piers’catalyst, a ruthenium complex with a phosphonium-functionalized carbene ligand, is a fast-initiating living catalyst for a number of olefin metathesis reactions, including ring-opening metathesis polymerization (ROMP) and cross metathesis (CM). Catalyst speciation was monitored in real-time for the ROMP of norbornene and the CM of 1-hexene using PSI-ESI-MS. The expected mass distribution of charged polymer-catalyst species were not observed, but merely catalyst and decomposition species were visible by ESI-MS. NMR and gel permeation chromatography (GPC) were used to determine quantitatively the presence of polymer and the polydispersity index, respectively. The results suggest that while Piers’ catalyst is indeed fast-initiating, the propagation rate greatly outstrips the initiation rate. In a foray into the area of chemical education, a well-known pH-induced colour change exhibited by the anthocyanins in red cabbage was developed into a simple – and ingestible – classroom demonstration. / Graduate / 0485

Page generated in 0.0537 seconds