• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 36
  • 11
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Development of a Miniature, Fiber-optic Temperature Compensated Pressure Sensor

Al-Mamun, Mohammad Shah 11 December 2014 (has links)
Since the invention of Laser (in 1960) and low loss optical fiber (in 1966) [1], extensive research in fiber-optic sensing technology has made it a well-defined and matured field [1]. The measurement of physical parameters (such as temperature and pressure) in extremely harsh environment is one of the most intriguing challenges of this field, and is highly valued in the automobile industry, aerospace research, industrial process monitoring, etc. [2]. Although the semiconductor based sensors can operate at around 500oC, sapphire fiber sensors were demonstrated at even higher temperatures [3]. In this research, a novel sensor structure is proposed that can measure both pressure and temperature simultaneously. This work effort consists of design, fabrication, calibration, and laboratory testing of a novel structured temperature compensated pressure sensor. The aim of this research is to demonstrate an accurate temperature measurement, and pressure measurement using a composite Fabry-Perot interferometer. One interferometer measures the temperature and the other accurately measures pressure after temperature compensation using the temperature data from the first sensor. / Master of Science
22

Power Transformer Partial Discharge (PD) Acoustic Signal Detection using Fiber Sensors and Wavelet Analysis, Modeling, and Simulation

Tsai, Shu-Jen Steven 12 December 2002 (has links)
In this work, we first analyze the behavior of the acoustic wave from the theoretical point of view using a simplified 1-dimensional model. The model was developed based on the conservation of mass, the conservation of momentum, and the state equation; in addition, the fluid medium obeys Stokes assumption and it is homogeneous, adiabatic and isentropic. Experiment and simulation results show consistency to theoretical calculation. The second part of this thesis focuses on the PD signal analysis from an on-site PD measurement of the in-house design fiber optic sensors (by Virginia Tech, Center for Photonics Technology). Several commercial piezoelectric transducers (PZTs) were also used to compare the measurement results. The signal analysis employs the application of wavelet-based denoising technique to remove the noises, which mainly came from vibration, EMI, and light sources, embedded in the PD signal. The denoising technique includes the discrete wavelet transform (DWT) decomposition, thresh-holding of wavelet coefficients, and signal recovery by inverse discrete wavelet transform. Several approaches were compared to determine the optimal mother wavelet. The threshold limits are selected to remove the maximum Gaussian noises for each level of wavelet coefficients. The results indicate that this method could extract the PD spike from the noisy measurement effectively. The frequency of the PD pulse is also analyzed; it is shown that the frequencies lie in the range of 70 kHz to 250 kHz. In addition, with the assumed acoustic wave propagation delay between PD source and sensors, it was found that all PD activities occur in the first and third quadrant in reference to the applied sinusoidal transformer voltage. / Master of Science
23

Development of coated fibre-optic sensors to monitor carbon dioxide

Melo, Luis 22 July 2016 (has links)
This dissertation presents a fibre-optic sensing approach to provide continuous measurements of CO2 concentration at discrete points under typical conditions of geological CO2 storage. Carbon capture and storage is considered to have potential for a large-scale reduction in CO2 emissions in a relatively short period of time while other solutions to replace fossil fuels are being investigated. One significant drawback of carbon capture and storage is the possibility of long-term CO2 leakage. Therefore, the development of reliable technology for monitoring, verification, and accounting of geological CO2 storage is critical to fulfill safety regulations and achieve public acceptance. The major limitations of current technology include relatively low resolutions, high costs, and the lack of continuous monitoring for long periods of time. To address these limitations, two types of fibre-optic sensors are investigated, namely long period gratings and Mach-Zehnder interferometers. The sensing principle for CO2 detection is based on the sensitivity of these sensors to the refractive index of the medium that surrounds the fibre. Fibre-optic sensors are attractive for downhole applications due to the possibility of fabricating inexpensive high resolution devices that are able to operate in harsh environments over long periods of time. This dissertation focuses on increasing the refractive index sensitivity of long period gratings and Mach-Zehnder interferometers by applying coatings that have a high refractive index. The dip-coating method is used to coat long period gratings with polystyrene, and the sensitivity at low refractive indices is increased by tuning coating thickness. The results show that long period gratings coated with polystyrene are able to detect CO2 in gaseous and aqueous media. This work reports the first measurement of CO2 dissolution in water at high pressure with a fibre-optic sensor. Additionally, atomic layer deposition is investigated to coat long period gratings and Mach-Zehnder interferometers with hafnium oxide. The study of this coating technique aims to address the main limitation of the dip-coating method: the challenge to achieve precise control over coating thickness. The results show that atomic layer deposition is suitable to maximize the sensitivity of long period gratings and Mach-Zehnder interferometers at a target refractive index. / Graduate / 0548 / 0752 / 0799 / luismelo@uvic.ca
24

Structural and Thermal Behaviour of Insulated FRP-Strengthened Reinforced Concrete Beams and Slabs in Fire

Adelzadeh, Masoud 17 September 2013 (has links)
Despite the superior properties of Fibre Reinforced Polymer (FRP) materials, the use of FRPs in buildings is limited. A key cause of concern for their use in buildings arises from their poor performance in fire occurrences. This thesis presents the results of fire performance of Reinforced Concrete (RC) beams and slabs strengthened with externally bonded FRP sheets. The performance and effectiveness of insulation materials and techniques are also investigated in this thesis. Two full-scale reinforced concrete T-beams and two intermediate-scale slabs were strengthened in flexure with carbon and glass fibre reinforced polymer sheets and insulated with a layer of spray-on material. The T-beams and slabs were then exposed to a standard fire. Fire test results show that fire endurances of more than 4 h can be achieved using an appropriate insulation system. Tests were performed in order to understand the behaviour of FRP concrete bond at high temperatures. An empirical model was then formulated to describe the bond strength deterioration due to temperature rise. Innovative measurement techniques were employed throughout the experiments to measure important observables like strain and temperature. Meanwhile, the effectiveness and practicality of techniques such as Fibre Optic Sensing (FOS) and Particle Image Velocimetry (PIV) for high temperature applications were investigated. A numerical finite-volume heat transfer model was developed to simulate the heat transfer phenomenon. The validity of the numerical model was verified by comparing the results with the results from the fire tests. By using this model, parametric analyses were performed to investigate the effect of different fire scenarios on the performance of the insulated beams. To simulate the structural performance of the T-beams a numerical model which was capable of predicting stresses and strains and deflections of a heated beam was developed. The model is capable of incorporating the effects of axial forces in the response of a restrained beam. This model was verified and used in combination with the thermal model to simulate the deflections of T-beams in fire. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2013-09-17 15:11:16.185
25

MULTIMODE DEVICES IN COMMUNICATION AND SENSING SYSTEMS

Gong, Xiaoyu 13 May 2014 (has links)
Multimode devices play an increasingly important role in both communication and sensing systems. Mode division multiplexing (MDM) in multimode fiber (MMF) is becoming a promising method to further increase the capacity of optical transmission link with a controllable mode coupler. Similarly, optic sensors based on core-cladding-mode interference can be widely used in measurement of refractive index (RI), temperature and strain. Fiber Bragg gratings (FBGs) in single mode operation have been extensively studied as in-line optical components for both communication and sensing applications. In recent years, research has been extended to FBGs in few-mode operation as mode couplers in MDM applications. Experimentally, mode conversion from fundamental linear polarization (LP) mode LP01 to higher order LP11 mode in two-mode FBG (TMFBG) has been observed. Index asymmetry and electric field distortion induced by ultraviolet (UV) side illumination in fabrication of FBG make the two modes no longer orthogonal. However, its spectrum analysis mainly depends on experimental data and software simulation using the complex finite element method (FEM). Here a simpler theoretical model based on coupled mode theory (CMT) and Runge-Kutta method (RKM) is proposed. An analytical expression of the mode coupling coefficient is derived and the modeling results match very well with experimental data. Abrupt fiber tapers allow power transfer between core and cladding modes and show promise as RI sensing components when two abrupt tapers are cascaded into an in-line Mach-Zehnder interferometer (MZI). The main advantage of the MZI taper sensor is its low manufacturing cost. However, the optical spectrum analyzer (OSA) used as the receiver and demodulation device in the conventional setup is still expensive. Three simplified schemes of fiber taper MZI RI sensor systems are designed and demonstrated experimentally. The transmitter and the demodulation devices for the three schemes are a single wavelength laser and a photodetector (PD), two modulated lasers and a PD together with data acquisition and processing module, and a broadband source (BBS) and a PD together with matched MZI, respectively. In all those implementations OSA is not required, which significantly lowers the cost and leads to easy integration. Although extra modulation/demodulation devices are required, the second implementation has the best performance. Automatic operation is realized by LabVIEW programming. High sensitivity (2371 mV/RI unit (RIU)) and high stability are achieved experimentally. Those new schemes have great potential to be applied to other interferometric optic sensor systems. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2014-05-09 11:44:44.837
26

Sensor em fibra óptica aplicado à caracterização de atuadores piezoelétricos flextensionais

Sakamoto, João Marcos Salvi [UNESP] 28 April 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:35Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-04-28Bitstream added on 2014-06-13T18:06:43Z : No. of bitstreams: 1 sakamoto_jms_me_ilha.pdf: 6608858 bytes, checksum: 00cb410d8ba756148ea0f5626f2c8f3b (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A interferometria a laser é uma técnica consolidada para a caracterização de atuadores piezoelétricos. No entanto, este método requer um alinhamento óptico preciso e uma operação meticulosa. Há um grande interesse no desenvolvimento de sistemas de medição de deslocamento e vibração usando sensores reflexivos em fibra óptica devido a sua inerente simplicidade, tamanho reduzido, largura de banda ampla, limite de detecção extremamente baixo e capacidade de realizar medições sem contato ou afetar o sistema a ser ensaiado. Neste trabalho apresenta-se um arranjo simples do sensor reflexivo para se atingir resolução sub-micrométrica, utilizando-se fibras e componentes ópticos de baixo custo e circuitos eletrônicos simples. O sistema é constituído por duas fibras ópticas adjacentes (uma transmissora e outra receptora) e com extremidades emparelhadas, posicionadas na frente de uma superfície reflexiva vibratória. A luz proveniente de uma fonte óptica (no caso um laser) é acoplada à fibra transmissora e parte dos raios refletidos pela superfície móvel é capturada pela fibra receptora, que conduz a luz para um fotodetector. A tensão de saída do fotodetector é função da distância entre as extremidades das fibras e a superfície reflexiva. Apresenta-se uma formulação teórica da função de intensidade óptica refletida no plano a uma distância qualquer, juntamente com comparações entre características experimentais e teóricas do sensor reflexivo. Finalmente, atuadores piezoelétricos flextensionais, projetados com o método de otimização topológica, são caracterizados experimentalmente através da medição de seus deslocamentos sub-micrométricos, utilizando o sensor reflexivo. As respostas em freqüência dos piezoatuadores flextensionais são levantadas e o fenômeno de erro de trajetória e linearidade são discutidos. / The laser interferometer method is a well-established technique for the characterization of piezoelectric actuators. However, this method requires precise optical alignment and meticulous operation. There is great interest in developing displacement and vibration measurement systems using reflective fiber optic displacement sensors (RFODS) because of their inherent simplicity, small size, wide frequency range, extremely low displacement detection limit, and ability to perform measurements without contact or affecting the vibrating system. This work presents a simple arrangement of RFODS to achieve sub-micrometer resolution, using low-cost fibers and optical components, and simple electronic circuits. The system is composed of two adjacent transmitting and receiving fibers at one end, located in front of a reflecting vibrating surface. The transmitting fiber is connected to a laser source, and part of the reflected rays by the moving surface is captured by the receiving fiber, which is connected to a light detector. The output voltage is a function of the distance between probe and vibrating surface. A theoretical formulation of the reflected light intensity function at distal end plane is presented, together with comparisons of experimental and ideal RFODS characteristics. Finally, piezoelectric flextensional actuators (PFAs), designed with the topology optimization method, are experimentally characterized by the measurement of their sub micrometric displacements using a RFODS. The frequency responses of the PFAs are evaluated, and the tracking error phenomenon and linearity are discussed.
27

Aplikace optických vláknových senzorů / Applications of optical fibre sensors

Ráboňová, Jana January 2021 (has links)
This master's thesis deals with the measurement of soil temperature. In the theoretical part, optical fiber systems were explained, with a focus on DSTS systems and their use. In the practical part, a functional system was created to measure the soil temperature at depths of 0.1-1~m using the Arduino platform. Furthermore, the temperature measurement was demonstrated on the test polygon using the optical fiber of the FTB 2505 instrument in laboratories.
28

Modélisation des propriétés photophysiques de capteurs chimiques pour des applications de détection de cations par fibre optique / Chemical Sensors : Modelling the Photophysics of Cation Detection by Organic Dyes

Tonnelé, Claire 24 September 2013 (has links)
La présence croissante de diverses substances dans notre environnement, conséquencedes activités anthropiques de ces dernières décennies, a entraîné un besoingrandissant et urgent de nouveaux matériaux et dispositifs dans la quête de senseurschimiques efficaces et fiables. D'énormes progrès technologiques ont permis de mettreà disposition toute une gamme d'outils techniques pour leur développement, enprenant en compte les exigences à respecter en terme de sélectivité ou de rapidité deréponse, entre autres. Dans ce contexte, les méthodes de chimie quantique permettentune compréhension fondamentale des processus en jeu dans la détection des espèceschimiques, et par extension, l'élaboration de manière rationnelle de nouveauxmatériaux sensibles. Certaines molécules organiques pouvant être largementfonctionnalisées, elles constituent un point de départ idéal en raison des importantesmodulations possibles de leurs propriétés par des modifications structuralesappropriées.Cette étude vise à développer de manière rationnelle des chromoionophores pour lacomplexation de cations par une approche combinant méthodes de chimiecomputationnelles et caractérisation par spectroscopie optique. Deux pointsprincipaux ont été traités à l'aide de la Théorie de la Fonctionnelle de la Densité(DFT) et son extension dépendante du temps (TD-DFT): d'une part les relationsstructure moléculaire-propriétés optiques de chromophores, d'autre part le phénomènede complexation. En particulier, la détection de l'ion Zn2+, démontrée de manièrethéorique et expérimentale, est finalement réalisée après intégration du senseurmoléculaire dans un dispositif à fibre optique. / The increasing presence of various substances in our environment has brought abouta growing need for rapid emergence of new materials and devices in the quest forefficient and reliable chemical sensors. Massive technological progress have madeavailable an extensive range of technical tools to serve their development, accountingfor the requirements to be fulfilled (selectivity, quick response..). In this context,quantum chemistry methods provide a fundamental understanding of the processes atstake in the detection of chemical species and allow for rational design of sensingmaterials. Certain organic molecules can be extensively functionalised and thusconstitute an evident starting point owing to the tunability of their propertiesprovided by appropriate choice of structural modifications. The versatility of somechromophores associated to the selectivity offered by receptor units constitute theresearch playground for the development of ever better chemosensors.The present research aims at the rational development of chromoionophores for thecomplexation of cations, combining computational chemistry methods with basicspectroscopic characterisation. Using Density Functional Theory (DFT) and its timedependentextension (TD-DFT), two main aspects were treated, namely therelationship between molecular structure and optical properties of organicchromophores featuring valuable characteristics, and the complexation phenomenon.Photophysics of Zn2+ ion detection were more specifically studied, and recognitionwas demonstrated with both quantum-chemical calculations and experiments,accounting for the future integration of the chemical sensor in an optical fibre device.
29

Anticorpos Monoclonais contra Listeria spp.: Produção, Caracterização e Aplicação em Métodos Diagnósticos / Monoclonal Antibodies againstListeria spp.: Production, Characterization and Application in Diagnostic Methods

Mendonça, Marcelo 01 December 2011 (has links)
Made available in DSpace on 2014-08-20T13:33:00Z (GMT). No. of bitstreams: 1 tese_marcelo_mendonca.PDF: 4204978 bytes, checksum: e41a9490cdb350a5e7add8e129afdd82 (MD5) Previous issue date: 2011-12-01 / The conventional methods used to detect the Listeria monocytogenes in foods are laborious and expensive, requiring several days for final identification. Monoclonal antibody (MAb) based immunoassays are highly specific and rapid to perform, especially when MAbs are raised to conserved virulence factors in the pathogen. Among diverse virulence factors of L. monocytogenes, the surface protein internalin A (InlA) is one of the most well-known and characterized protein, being an excellent target as it is highly exposed on the surface and exclusive of pathogenic species. In this work we report the production, characterization and use of a panel of MAbs against InlA (2D12, 3B7, 4E4), and a MAb (3F8) which specifically recognizes all bacteria belonging the genus Listeria. MAbs were produced by the immunization of BALB/c mice with a recombinant InlA together with heat killed L. monocytogenes. The MAbs produced showed excellent reativities by indirect ELISA, Western blot and immunofluorescence. A Cy5 conjugated anti-InlA MAb-2D12 was used as detection antibody for L. monocytogenes in a sandwich-like fiber optic immunoassay. Using MAb-2D12 as capture antibody on the waveguides, the limit of detection was ~3 x 102 CFU.mL-1, and when MAb-3F8 was used for capture the limit of detection was ~1 x 105 CFU.mL-1. Furthermore, MAbs 2D12 and 3F8 were used to coat paramagnetic beads and tested in the immunomagnetic separation (IMS) of L. monocytogenes from pure cultures, and artificially contaminated cheeses and hotdogs. After IMS capture, bacteria were released from the beads, used in the fiber optic assay or plated on agar for counting. In parallel, the capture of L. monocytogenes was confirmed by real-time qPCR and light-scattering technology (BARDOT). Using IMS to concentrate and separate L. monocytogenes, followed by a fiber optic platform, it was possible to detect in less than 22 h, approximately 40 CFU/g of L. monocytogenesi, even in the presence of L. innocua in cheese and hot dogs artificially contaminated. In addition, using mass spectrometry (MALDI-TOF-MS) the protein to which MAb-3F8 binds, was identified as fructose 1,6-bisphosphate aldolase (FBA). The results presented in this work indicate that using both systems together, the IMS and fiber optic immunosensor, were more reliable and faster, and could be applied in the routinely for detection of L. monocytogenes in food. Moreover, both MAbs have the potential to useful in others biosensor platforms, as well as in other detection and functionality immunoassays for InlA and FBA in Listeria. / Os métodos convencionais empregados para detecção de Listeria monocytogenes em alimentos são laboriosos e onerosos, requerendo vários dias para sua identificação final. A utilização de anticorpos monoclonais (MAbs) em imunoensaios para detecção rápida de bactérias tem como vantagem a alta especificidade e rapidez, principalmente quando direcionados para fatores de virulência conservados. Dentre os diversos fatores de virulência de Listeria, a proteína de membrana internalina A (InlA), é umas das mais bem caracterizadas, sendo um excelente alvo por ser altamente exposta na superfície e exclusiva de espécies patogênicas. Neste trabalho é relatado a produção, caracterização e utilização em métodos de diagnósticos de um painel de MAbs contra a InlA (2D12, 3B7, 4E4), e de um MAb (3F8) que reconhece especificamente todas as bactérias do gênero Listeria. Na produção dos MAbs, camundongos BALB/c foram imunizados com uma proteína recombinante InlA (rInlA) concomitantemente com L. monocytogenes inativadas por fervura. Os MAbs gerados demonstraram excelente reatividade por ELISA indireto, Western blot e imunofluorescência. O MAb anti-InlA 2D12 marcado com Cy5 foi usado como anticorpo de detecção de L. monocytogenes, no sistema tipo sanduíche de sensor de fibra óptica. Usando MAb-2D12 como anticorpo de captura nas fibras ópticas, obteve-se um limite de detecção de ~3 x 102 CFU.mL-1, e um limite de detecção de ~1 x 105 CFU.mL-1 foi visualizado com MAb-3F8 como captura. Os MAbs anti-InlA 2D12 e anti-Listeria 3F8 foram posteriormente utilizados para sensibilizar esferas paramagnéticas e testados na separação imunomagnética (IMS) de L. monocytogenes em culturas puras, e em queijo e salsichas tipo hotdog artificialmente contaminados. Após a captura por IMS, as bactérias foram liberadas, incubadas com a fibra óptica ou plaqueadas em agares para contagem. Em paralelo, a confirmação da captura de L. monocytogenes foi realizada por PCR quantitativo em tempo real e por light-scattering technology (BARDOT). Utilizando IMS para separar e concentrar L. monocytogenes, seguido da utilização em plataforma de fibra óptica, foi possível realizar a detecção em menos de 22 horas, de aproximadamente 40 UFC/g de L. monocytogenes em presença de L. innocua, em queijo e salsicha artificialmente contaminados. Além disso, a proteína alvo do MAb3F8 foi identificado como frutose 1,6-bifosfato aldolase através de espectrometria de massa (MALDI-TOF-MS). Os resultados obtidos nesse trabalho indicam que a utilização em conjunto dos sistemas de IMS e fibra óptica com os MAb-2D12 e MAb3F8, foram confiáveis e rápidos, e assim, podendo ser empregados em imunoensaios de rotina para detecção de L. monocytogenes em alimentos. Contudo, ambos MAbs possuem ainda grande potencial para serem mais explorados em outras plataformas de biossensores, assim como, em outros imunoensaios de detecção e funcionalidade de InlA e FBA em Listeria
30

Entwurf und experimentelle Untersuchung eines faseroptischen Oberflächenplasmonenresonanz-Sensors

Schuster, Tobias 23 March 2017 (has links) (PDF)
In der medizinischen Diagnostik, Bioverfahrenstechnik und Umwelttechnik besteht ein steigender Bedarf an kompakten Analysegeräten für die schnelle Vor-Ort-Detektion spezifischer biochemischer Substanzen. Im Rahmen der Arbeit wurde daher ein neuartiger faseroptischer Sensor entwickelt, der in der Lage ist kleinste Brechzahländerungen, z.B. durch molekulare Bindungsprozesse, zu detektieren. Die hohe Empfindlichkeit an der vergoldeten Spitze der Sensorfaser beruht auf der Oberflächenplasmonenresonanz (SPR) einer einzelnen Mantelmode, die durch ein langperiodisches Fasergitter (LPG) ermöglicht wird. Die Übertragungsfunktion des Sensors wurde unter Verwendung eines Schichtwellenleitermodells schnell und präzise modelliert. Es konnte gezeigt werden, dass in einem wässrigen Umgebungsmedium die höchste Empfindlichkeit im Spektralbereich um 660 nm unter Annahme einer rund 35~nm dicken und 2~mm langen Goldbeschichtung erreicht wird. Weiterhin wurde nachgewiesen, dass mit einer intermediale Schicht aus Cadmiumsulfid die SPR der Mantelmode in einen höheren Spektralbereich verschoben und damit die Empfindlichkeit deutlich verbessert werden kann. Um eine geringe Polarisationsabhängigkeit des Sensors sicherzustellen, wurde ein nasschemisches Abscheidungsverfahren für die allseitige Goldbeschichtung der Sensorfaser entwickelt. Die spezifischen optischen Eigenschaften dieser Abscheidungen wurden mit Hilfe von LPGs untersucht, die durch eine spezielle UV-Belichtung hergestellt wurden. Die Experimente ergaben, dass die komplexe Permittivität nasschemischer Abscheidungen mit Schichtdicken oberhalb von 50~nm mit aufgedampften Goldschichten vergleichbar ist. Die Verluste der adressierten Mantelmoden wurden mit einer äquivalenten Sensoranordnung aus zwei identischen LPG untersucht. Dabei konnte ein Skalierfaktor abgeleitet werden, der die effiziente Berechnung der Mantelmodendämpfung erlaubt. Es wurde nachgewiesen, dass die Brechzahlauflösung etablierter volumenoptischer SPR-Sensoren mit einer einfachen Transmissionsmessung an einer geeigneten Wellenlänge erreicht werden kann. Die äußerst kompakte Sensorfläche des faseroptischen Sensors ermöglicht darüber hinaus die Untersuchung deutlich kleinerer Probenvolumina ohne ein zusätzliches mikrofluidisches System zu benötigen. Es wurde gezeigt, dass sekundäre Brechzahländerungen aufgrund von Temperaturschwankungen oder unspezifische Ablagerungen durch eine differentielle Auswertung zweier identischer Sensoren kompensiert werden können. Die verbleibende Querempfindlichkeit wird durch die Polarisationsabhängigkeit der Sensoren bestimmt. Die geringste Querempfindlichkeit konnte daher mit einer homogenen nasschemischen abgeschiedenen Sensorfläche nachgewiesen werden. / Compact analysis devices which facilitate the rapid detection of specific biochemical substances are in increasing demand in the fields of point-of-care medical diagnostics, bioprocess engineering and environmental engineering. The aim of this work was therefore to design a novel fiber-optic sensor able to detect small refractive index changes such as those caused by molecular binding processes. The high level of sensitivity at the gold-plated tip of the sensor fiber stems from the surface plasmon resonance (SPR) of a single cladding mode, which is the result of a long-period fiber grating (LPG). The transfer function of the sensor was calculated quickly and accurately using a slab waveguide model. It was observed that the highest level of sensitivity in an aqueous ambient medium is achieved at a wavelength of 660 nm assuming a gold coating of 35 nm in thickness and 2 mm in length. Furthermore, it was demonstrated that an intermedial cadmium sulfide layer shifts the SPR of the cladding mode towards higher wavelengths, thus leading to significantly enhanced sensitivity. An electroless plating process for the omnidirectional deposition of gold on the sensor fiber was developed in order to minimize the sensor\'s dependency on polarization. The specific optical properties of the gold layer deposited were investigated with the aid of LPGs fabricated using a special UV exposure method. The experiments showed the complex permittivity of electroless platings with a thickness of over 50 nm to be comparable with that of evaporated gold layers. The losses of the addressed cladding modes were investigated using an equivalent sensor setup consisting of two identical LPGs. This facilitated the determination of a scaling factor enabling the effcient calculation of cladding mode attenuation. It was demonstrated that it is possible to obtain the refractive index resolution of established volume optical SPR sensors with the aid of simple transmission measurements at a specific wavelength. Moreover, the extremely compact sensing area of the fiber-optic sensor enables the investigation of smaller sample volumes without the need for an additional microfluidic system. Secondary refractive index changes caused by temperature fluctuations or unspecific binding events can be compensated for by means of the differential interrogation of two identical fiber-optic sensors. The residual cross sensitivity is determined by the polarisation dependency of the sensor. The lowest cross sensitivity was therefore demonstrated in combination with a homogeneous electroless plated sensor surface.

Page generated in 0.0497 seconds