• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 33
  • 18
  • 13
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 214
  • 53
  • 51
  • 50
  • 30
  • 29
  • 28
  • 28
  • 23
  • 22
  • 21
  • 20
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Cislunar Trajectory Design Methodologies Incorporating Quasi-Periodic Structures With Applications

Brian P. McCarthy (5930747) 29 April 2022 (has links)
<p> </p> <p>In the coming decades, numerous missions plan to exploit multi-body orbits for operations. Given the complex nature of multi-body systems, trajectory designers must possess effective tools that leverage aspects of the dynamical environment to streamline the design process and enable these missions. In this investigation, a particular class of dynamical structures, quasi-periodic orbits, are examined. This work summarizes a computational framework to construct quasi-periodic orbits and a design framework to leverage quasi-periodic motion within the path planning process. First, quasi-periodic orbit computation in the Circular Restricted Three-Body Problem (CR3BP) and the Bicircular Restricted Four-Body Problem (BCR4BP) is summarized. The CR3BP and BCR4BP serve as preliminary models to capture fundamental motion that is leveraged for end-to-end designs. Additionally, the relationship between the Earth-Moon CR3BP and the BCR4BP is explored to provide insight into the effect of solar acceleration on multi-body structures in the lunar vicinity. Characterization of families of quasi-periodic orbits in the CR3BP and BCR4BP is also summarized. Families of quasi-periodic orbits prove to be particularly insightful in the BCR4BP, where periodic orbits only exist as isolated solutions. Computation of three-dimensional quasi-periodic tori is also summarized to demonstrate the extensibility of the computational framework to higher-dimensional quasi-periodic orbits. Lastly, a design framework to incorporate quasi-periodic orbits into the trajectory design process is demonstrated through a series of applications. First, several applications were examined for transfer design in the vicinity of the Moon. The first application leverages a single quasi-periodic trajectory arc as an initial guess to transfer between two periodic orbits. Next, several quasi-periodic arcs are leveraged to construct transfer between a planar periodic orbit and a spatial periodic orbit. Lastly, transfers between two quasi-periodic orbits are demonstrated by leveraging heteroclinic connections between orbits at the same energy. These transfer applications are all constructed in the CR3BP and validated in a higher-fidelity ephemeris model to ensure the geometry persists. Applications to ballistic lunar transfers are also constructed by leveraging quasi-periodic motion in the BCR4BP. Stable manifold trajectories of four-body quasi-periodic orbits supply an initial guess to generate families of ballistic lunar transfers to a single quasi-periodic orbit. Poincare mapping techniques are used to isolate transfer solutions that possess a low time of flight or an outbound lunar flyby. Additionally, impulsive maneuvers are introduced to expand the solution space. This strategy is extended to additional orbits in a single family to demonstrate "corridors" of transfers exist to reach a type of destination motion. To ensure these transfers exist in a higher fidelity model, several solutions are transitioned to a Sun-Earth-Moon ephemeris model using a differential corrections process to show that the geometries persist.</p>
202

Okounkov Bodies of Borel Orbit Closures in Wonderful Group Compactifications

Miller, Jason A. 09 July 2014 (has links)
No description available.
203

Navigating Chaos: Resonant Orbits for Sustaining Cislunar Operations

Maaninee Gupta (8770355) 26 April 2024 (has links)
<p dir="ltr">The recent and upcoming increase in spaceflight missions to the lunar vicinity necessitates methodologies to enable operations beyond the Earth. In particular, there is a pressing need for a Space Domain Awareness (SDA) and Space Situational Awareness (SSA) architecture that encompasses the realm of space beyond the sub-geosynchronous region to sustain humanity's long-term presence in that region. Naturally, the large distances in the cislunar domain restrict access rapid and economical access from the Earth. In addition, due to the long ranges and inconsistent visibility, the volume contained within the orbit of the Moon is inadequately observed from Earth-based instruments. As such, space-based assets to supplement ground-based infrastructure are required. The need for space-based assets to support a sustained presence is further complicated by the challenging dynamics that manifest in cislunar space. Multi-body dynamical models are necessary to sufficiently model and predict the motion of any objects that operate in the space between the Earth and the Moon. The current work seeks to address these challenges in dynamical modeling and cislunar accessibility via the exploration of resonant orbits. These types of orbits, that are commensurate with the lunar sidereal period, are constructed in the Earth-Moon Circular Restricted Three-Body Problem (CR3BP) and validated in the Higher-Fidelity Ephemeris Model (HFEM). The expansive geometries and energy options supplied by the orbits are favorable for achieving recurring access between the Earth and the lunar vicinity. Sample orbits in prograde resonance are explored to accommodate circumlunar access from underlying cislunar orbit structures via Poincaré mapping techniques. Orbits in retrograde resonance, due to their operational stability, are employed in the design of space-based observer constellations that naturally maintain their relative configuration over successive revolutions. </p><p dir="ltr"> Sidereal resonant orbits that are additionally commensurate with the lunar synodic period are identified. Such orbits, along with possessing geometries inherent to sidereal resonant behavior, exhibit periodic alignments with respect to the Sun in the Earth-Moon rotating frame. This characteristic renders the orbits suitable for hosting space-based sensors that, in addition to naturally avoiding eclipses, maintain visual custody of targets in the cislunar domain. For orbits that are not eclipse-favorable, a penumbra-avoidance path constraint is implemented to compute baseline trajectories that avoid Earth and Moon eclipse events. Constellations of observers in both sidereal and sidereal-synodic resonant orbits are designed for cislunar SSA applications. Sample trajectories are assessed for the visibility of various targets in the cislunar volume, and connectivity relative to zones of interest in Earth-Moon plane. The sample constellations and observer trajectories demonstrate the utility of resonant orbits for various applications to sustain operations in cislunar space. </p>
204

The Spatial 2:1 Resonant Orbits in Multibody Models: Analysis and Applications

Andrew Joseph Binder (18848701) 24 June 2024 (has links)
<p dir="ltr">Within the aerospace community in recent years, there has been a marked increase in interest in cislunar space. To this end, the study of the dynamics of this regime has flourished in both quantity and quality in recent years, spearheaded by the use of simplified dynamical models to gain insight into the dynamics and to generate viable mission concepts. The most popular and simple of these models, the Circular Restricted Three-Body Problem, has been thoroughly explored to meet these goals (even well-prior to the recent spike in interest). Much work has been done investigating periodic orbits within these models, and similarly has been performed on non-periodic transfers into periodic orbits. Studied less is the superposition of these two concepts, or using periodic orbits as a way to transit, for example, cislunar space. In this thesis, the development of periodic orbits amenable to transiting is accomplished. Beginning from periodic orbit families already present in the literature, this research finds a novel and useful family of periodic orbits, here dubbed the spatial 2:1-resonant orbit family. Within this newly-discovered family, multitudes of qualitative behaviors interesting to the astrodynamics community are found. Many family members seem accommadating to a diverse set of mission profiles, from purely-unstable family members best suited to use as transfers, to marginally stable ones best suited to longer-term use. This family as a whole is analyzed and catalogued with thorough descriptions of behavior, both quantitative and qualitative. While the Circular Restricted Three-Body Problem serves as an excellent starting point for analysis, trajectories found there must be generalized to higher-fidelity modeling. In this spirit, this thesis also focuses on demonstrating such generalization and putting it into practice using the more sophisticated Elliptic-Restricted Three-Body Problem. Documentation of the numerical tools necessary and helpful in accomplishing this generalization is included in this work. Prototypically, the truly 2:1 sidereally-resonant unstable member of the 2:1 family is transitioned into the elliptic problem, as is a nearly-stable L2 Halo orbit family member. This new trajectory is paired with a more classically-present example to show the validity of the methodology. To aid this analysis, symmetries present within the elliptic model are also explored and explained. With this analysis completed, this orbit family is demonstrated to be both interesting and useful, when considered under even more realistic modelling. Further work to mature this novel family of orbits is merited, both for use as the fundamental building block for transfers and for use for more-permanent habitation. More broadly, this work aims to achieve a further proliferation of the merger between transfer and orbit, concepts which seem distinct at first, but deserve more gradual consideration as different flavors of the same idea.</p>
205

Analyse de structures vibrantes dotées de non-linéarités localisées à jeu à l'aide des modes non-linéaires / Analysis of vibrating structures with localized nonlinearities using nonlinear normal modes

Moussi, El hadi 17 December 2013 (has links)
Le travail de cette thèse a été réalisé dans le cadre d'une collaboration entre EDF R&D et le LMA de Marseille (CNRS). Le but était de développer des outils théoriques et numériques pour le calcul de modes non-linéaires de structures industrielles possédant des non-linéarités localisées à jeu. La méthode de calcul utilisée est une combinaison de la méthode d'équilibrage harmonique (EH) et de la méthode asymptotique numérique (MAN), appelée EHMAN. Elle est réputée pour sa robustesse sur les problèmes réguliers. L'enjeu de ce travail de thèse est de l'appliquer sur des problèmes non-réguliers régularisés de type butée à jeu pour lequel un grand nombre d'harmonique est nécessaire. Des améliorations ont été apportées à la méthode de base pour rendre effectif le traitement de modèles à "grand" nombre de degrés de liberté (DDL). Les développements réalisés pendant la thèse ont été capitalisés par la création de nouveaux opérateurs dans Code_Aster.Une étude approfondie d'un système à 2 degrés de liberté a permis de faire émerger quelques caractéristiques des systèmes non-linéaires à jeu. Celles-ci ont servi entre autre à établir une méthodologie pour l'étude de systèmes à grand nombre de DDL. Pour finir, la potentialité des modes non-linéaires comme outil de diagnostic vibratoire est démontrée avec l'étude d'un tube cintré de générateur de vapeur. Le calcul des modes non-linéaires a monté l'existence d'une interaction entre un mode hors-plan (basse fréquence) et un mode plan (haute fréquence) expliquant des régimes vibratoires non-standards. Ce résultat, impossible à obtenir avec les outils de l'analyse modale linéaire, est confirmé expérimentalement. / This work is a collaboration between EDF R&D and the Laboratory of Mechanics and Acoustics. The objective is to develop theoretical and numerical tools to compute nonlinear normal modes (NNMs) of structures with localized nonlinearities.We use an approach combining the harmonic balance and the asymptotic numerical methods, known for its robustness principally for smooth systems. Regularization techniques are used to apply this approach for the study of nonsmooth problems. Moreover, several aspects of the method are improved to allow the computation of NNMs for systems with a high number of degrees of freedom (DOF). Finally, the method is implemented in Code_Aster, an open-source finite element solver developed by EDF R&D.The nonlinear normal modes of a two degrees-of-freedom system are studied and some original characteristics are observed. These observations are then used to develop a methodology for the study of systems with a high number of DOFs. The developed method is finally used to compute the NNMs for a model U-tube of a nuclear plant steam generator. The analysis of the NNMs reveals the presence of an interaction between an out-of-plane (low frequency) and an in-plane (high frequency) modes, a result also confirmed by the experiment. This modal interaction is not possible using linear modal analysis and confirms the interest of NNMs as a diagnostic tool in structural dynamics.
206

Stabilization of periodic orbits in discrete and continuous-time systems / Stabilisation d'orbites périodiques pour des systèmes en temps discret et en temps continu

Perreira Das Chagas, Thiago 25 June 2013 (has links)
Le problème principalement étudié dans ce manuscrit est la stabilisation d’orbites périodiques de systèmes dynamiques non linéaires à l’aide d’une commande de rétroaction (feedback). Le but des méthodes de contrôle proposées ici est d’obtenir une oscillation périodique stable. Ces méthodes de contrôle sont appliquées à des systèmes présentant des orbites périodiques instables dans l’espace d’état, et ces dernières sont les orbites destinées à être stabilisées.Les méthodes proposées ici sont telles que l’oscillation stable qui en résulte est obtenue avec un effort de contrôle faible, et que la valeur de la commande tend vers zéro lorsque la trajectoire tend vers l’orbite stabilisée. La stabilité locale des orbites périodiques est analysée par l’étude de la stabilité des systèmes linéaires périodiques à l’aide de la théorie de Floquet. Ces systèmes linéaires sont obtenus par linéarisation des trajectoires au voisinage de l’orbite périodique.Les méthodes de contrôle utilisées ici pour la stabilisation des orbites périodiques sont une loi de commande proportionnelle, une loi de commande de rétroaction retardée et une loi de commande de rétroaction basée sur une prédiction. Ces méthodes sont appliquées aux systèmes en temps discret et aux systèmes en temps continu avec les modifications nécessaires. Les contributions principales de cette thèse sont associées à ces méthodes, proposant une méthode alternative de design de gain, une nouvelle loi de commande et des résultats associés. / The main problem evaluated in this manuscript is the stabilization of periodic orbits of non-linear dynamical systems by use of feedback control. The goal of the control methods proposed in this work is to achieve a stable periodic oscillation. These control methods are applied to systems that present unstable periodic orbits in the state space, and the latter are the orbits to be stabilized.The methods proposed here are such that the resulting stable oscillation is obtained with low control effort, and the control signal is designed to converge to zero when the trajectory tends to the stabilized orbit. Local stability of the periodic orbits is analyzed by studying the stability of some linear time-periodic systems, using the Floquet stability theory. These linear systems are obtained by linearizing the trajectories in the vicinity of the periodic orbits.The control methods used for stabilization of periodic orbits here are the proportional feedback control, the delayed feedback control and the prediction-based feedback control. These methods are applied to discrete and continuous-time systems with the necessary modifications. The main contributions of the thesis are related to these methods, proposing an alternative control gain design, a new control law and related results. / O principal problema avaliado neste manuscrito é a estabilização de órbitas periódicas em sistemas dinâmicos não-lineares utilizando controle por realimentação. O objetivo dos métodos de controle propostos neste trabalho é obter uma oscilação periódica estável. Estes métodos de controle são aplicados a sistemas que apresentam órbitas periódicas instáveis no espaço de estados, estas são as órbitas a serem estabilizadas.Os métodos propostos aqui são tais que a oscilação periódica estável resultante é obtida utilizando um baixo esforço de controle, e o sinal de controle é projetado de forma a convergir para zero quanto a trajetória tende à órbita estabilizada. A estabilidade local de órbitas periódicas é analisada através do estudo da estabilidade de alguns sistemas lineares periódicos no tempo, utilizando a teoria de estabilidade de Floquet. Estes sistemas lineares são obtidos por linearização das trajetórias na vizinhança da órbita periódica.Os métodos de controle utilizados aqui para estabilização de órbitas periódicas são o proportional feedback control, o delayed feedback control e o prediction-based feedback control (controle por realimentação baseado em predição). Estes métodos são aplicados a sistemas de tempo discreto e de tempo contínuo, com as modificações necessárias. As principais contribuições da tese são relacionadas a esses métodos, propondo um projeto de ganho de controle alternativo, uma nova lei de controle e resultados relacionados.
207

Gravitational Waves From Inspiralling Compact Binaries : 3PN Polarisations, Angular Momentum Flux And Applications To Astrophysics And Cosmology

Sinha, Siddhartha January 2008 (has links)
Binary systems comprising of compact objects like neutron stars (NS) and/or black holes (BH) lose their energy and angular momentum via gravitational waves (GW). Radiation reaction due to the emission of GW results in a gradual shrinking of the binary orbit and an accompanying gradual increase in the orbital frequency. The preliminary phase of the binary evolution when the radiation-reaction time-scale is much larger than the orbital time-scale is called the inspiral phase. GW emitted during the final stages of the inspiral phase constitute one of the most important sources for the ground-based laser interferometric GW detectors like LIGO, VIRGO and the proposed space-based detector LISA. For the ground-based detectors, NS and/or stellar mass BH binaries are primary sources, while for LISA super-massive BH (SMBH) binaries are potential targets. Inspiralling compact binaries (ICB) are among the prime targets for interferometric detectors because using approximation schemes in general relativity (GR) like the post-Minkowskian (PM) and the post-Newtonian (PN) approximations one can compute the GW emitted by them with sufficient accuracy both for their detection and parameter estimation leading to GW astronomy. The extreme weakness of gravitational interactions implies that if a GW signal from an ICB is incident on a detector, it will be buried in the noisy detector output. Therefore, sophisticated data analysis techniques are required for detecting the signal in presence of the dominant noise and also estimating the parameters of the signal. From the pre-calculated theoretical waveforms called templates, one already knows the structure of the waveform from an ICB. The technique for detecting signals which are of known form in a noisy detector is matched filtering. This technique consists of cross-correlating the output of a noisy detector assumed to contain the signal of known form with a set of templates. It then finds an ‘optimal’ template that would produce, on average, the highest signal-to-noise ratio (SNR). The efficient performance of matched filtering as a data-analysis strategy for GW signals from ICB presupposes very accurate theoretical templates. Slight mismatches between the signal and the template will result in a loss of signal to noise ratio. Computing very accurate theoretical templates and including effects such as eccentricity are challenging tasks for the theoreticians. This thesis addresses some of the issues related to the waveform modelling of the ICB and their implications for GW data analysis. It is known theoretically that compact binaries reduce their eccentricity through the emission of GW. When GW signals from prototype ICB reach the GW detector bandwidth, their orbits are almost circular. Hence one usually models the binary orbit to be circular for computation of the search templates. The waveform from an ICB in a circular orbit is, at any given PN order of approximation, a linear combination of a finite number of harmonics of the orbital frequency. At the lowest order of approximation, called the Newtonian order, the waveform comprises a single harmonic at twice the orbital frequency. Inclusion of higher order PN corrections lead to the appearance of higher harmonics of the orbital frequency. Since the amplitudes of the higher harmonics contain higher powers of the PN expansion parameter, relative to the Newtonian order, they are referred to as amplitude corrections. The phase of each harmonic, determined by the orbital phase, is known upto 3.5PN order (nPN is the order of approximation equivalent to terms ~(v/c)2n beyond the Newtonian order, where v denotes the binary’s orbital velocity and c is the speed of light). Matched filtering is more sensitive to the phase of the signal rather than its amplitude, since the correlation builds up as long as the signal and the template remain in phase. Motivated by this fact, search templates so far have been a waveform model involving only the dominant harmonic (at twice the orbital frequency), although the phase evolution itself is included upto the maximum available PN order. Such waveforms, in which all amplitude corrections are neglected, but the phase is treated to the maximum available order, are called restricted waveforms (RWF) and these are generally used in the data-analysis of ground-based detectors and also simulated searches for the planned LISA. However, recent studies, in the case of ground-based interferometers, showed that going beyond the RWF approximation could improve the efficiency of detection as well as parameter estimation of the inspiral signal. After a brief overview of the properties of GW and their detection strategies in chapter 1, in chapters 2 and 3, we investigate the implications of going beyond the RWF, in the context of the planned space-based Laser Interferometric Space Antenna (LISA). The sensitivity of ground-based detectors is limited by seismic noise below 20Hz. On the other hand, the space-based LISA will be designed to be sensitive to GWs of frequency (10−4 _1)Hz. The most important source in this frequency band are supermassive BH (SMBH) binaries. There is strong observational evidence for the existence of SMBH with masses in the range of in most galactic nuclei. Mergers of such galaxies result in SMBH binaries whose evolution is governed by the emission of GW. Observation of the GW from SMBH binaries at high redshifts is one of the major science goals of LISA. These observations will allow us to probe the evolution of SMBHs and structure formation and provide an unique opportunity to test General Relativity (and its alternatives) in the strong field regime of the theory. Observing SMBH coalescences with high (100-1000) SNR is crucial for performing all the aforementioned tests. The LISA bandwidth (10−4_ 1)Hz determines the range of masses accessible to LISA because the inspiral signal would end when the system’s orbital frequency reaches the mass-dependent last stable orbit (LSO). In the test-mass approximation, the angular velocity ι at LSO is given by where M is the total mass of the binary. Search templates using the RWF, which contains only the dominant harmonic at twice the orbital frequency, cannot extract power in the signal beyond This further implies that the frequency range [0.1, 100] mHz corresponds to the range for the total mass of BH binaries that would be accessible to LISA. In chapter 2, we show that inclusion of higher harmonics will enhance the mass-range of LISA (for the same frequency range) and allow for the detection of SMBH binaries with total masses higher than The template employed in chapter 2 includes amplitude corrections upto 2.5PN order, while keeping the phase upto 3.5PN order. We call this template the full waveform (FWF). The FWF defined above contains higher harmonics of the orbital frequency, the highest of them being 7 times the orbital frequency. For a SMBH binary with total mass the dominant harmonic at LSO is less than the lower cut-off of the LISA bandwidth. Therefore, if one uses the RWF as a search template, this system is ‘invisible’ to LISA. However, the seventh harmonic can still enter the LISA bandwidth and produce a significant SNR and thus allow its detection. With the FWF, LISA can observe sources which are favoured by astronomical observations, but not observable with the RWF. More specifically, with the inclusion of all known harmonics LISA will be able to observe SMBH coalescences with total mass (and mass-ratio 0.1) for a low frequency cut-off of 10−4Hz (10−5Hz) with an SNR up to ~ 60 (~30) at a distance of 3 Gpc. The orbital motion of LISA around the Sun induces frequency, phase and amplitude modulations in the observed GW signal. These modulations carry information about both the source’s location and orientation. Determination of the angular coordinates of the source also allows determination of the luminosity distance of SMBH binaries. Therefore, SMBH binaries are often referred to as GW “standard sirens” (analogous to the electromagnetic “standard candles”). LISA would also be able to measure the “redshifted” masses of the component black holes with good accuracy for sources up to redshifts of a few. However, GW observations alone cannot provide any information about the redshift of the source. If the host galaxy or galaxy cluster is known one can disentangle the redshift from the masses by optical measurement of the redshift. This would not only allow one to extract the “physical” masses, but also provide an exciting possibility to study the luminosity distance-redshift relation providing a totally independent confirmation of the cosmological parameters. Further, this combined observation can be used to map the distribution of black hole masses as a function of redshift. Another outstanding issue in present day cosmology in which LISA can play a role is the dark energy and its physical origin. Probing the equation-of-state-ratio (w(z)) provides an important clue to the question of whether dark energy is truly a cosmological constant (i.e., w = -1). Assuming the Universe to be spatially flat, a combination of WMAP and Supernova Legacy Survey (SNLS) data yields significant constraints on Without including the spatial flatness as a prior, WMAP, large-scale structure and supernova data place a stringent constraint on the dark energy equation of state, For this to be possible, LISA should (a) measure the luminosity distance to the source with a good accuracy and (b) localize the coalescence event on the sky with good angular resolution so that the host galaxy/galaxy cluster can be uniquely identified. Based on analysis with the RWF, it is found that LISA’s angular resolution is not good enough to identify the source galaxy or galaxy cluster, and that other forms of identification would be needed. Secondly, weak lensing effects would corrupt the distance estimation to the same level as LISA’s systematic error. In chapter 3, we study the problem of parameter estimation in the context of LISA, but using the FWF. We investigate systematically the variation in parameter estimation with PN orders by critically examining the role of higher harmonics in the fast GW phasing and their interplay with the slow modulations induced due to LISA’s motion. More importantly, we explore the improvement in the estimation of the luminosity distance and the angular parameters due to the inclusion of higher harmonics in the waveform. We translate the error in the angular resolution to obtain the number of galaxies (or galaxy clusters) within the error box on the sky. We find that independent of the angular position of the source on the sky, higher harmonics improve LISA’s performance on both counts raised in earlier works based on the RWF. We show that the angular resolution enhances typically by a factor of ~2-500 (greater at higher masses) and the error on the estimation of the luminosity distance goes down by a factor of ~ 2-100 (again, larger at higher masses). For many possible sky positions and orientations of the source, the inaccuracy in our measurement of the dark energy would be at the level of a few percent, so that it would only be limited by weak lensing. We conclude that LISA could provide interesting constraints on cosmological parameters, especially the dark energy equation-of-state, and yet circumvent all the lower rungs of the cosmic distance ladder. Having emphasized the need to consider the FWF as a more powerful template, in chapter 4 we calculate a higher order term in the amplitude corrections of the waveform. In chapters 2 & 3, the FWF incorporated amplitude corrections upto 2.5PN order. In chapter 4 the waveform is calculated upto 3PN order. Recent progress in Numerical Relativity (NR) has resulted in computation of the late inspiral and subsequent merger and ringdown phases of the binary evolution (where PN theory does not hold good) by a full-fledged numerical integration of the Einstein field equations. A new field has emerged recently consisting of high-accuracy comparisons between the PN predictions and the numerically-generated waveforms. Such comparisons and matching to the PN results have proved currently to be very successful. They clearly show the need to include high PN corrections not only for the evolution of the binary’s orbital phase but also for the modulation of the gravitational amplitude. This leads to one more motivation for the work in this chapter: providing the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high PN prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. For the computation of waveforms from the inspiralling compact binaries one needs to solve the two-body problem in general relativity. The nonlinear structure of general relativity prevents one from obtaining a general solution to this problem. The two-body problem is tackled using the multipolar post-Minkowskian (MPM) wave generation formalism. The MPM formalism describes the radiation field of any isolated post-Newtonian source. The radiation field is first of all parametrized by means of two sets of radiative multipole moments. These moments are then related (by means of an algorithm for solving the non-linearities of the field equations) to the so-called canonical moments which constitute some useful intermediaries for describing the external field of the source. The canonical moments are then expressed in terms of the operational source moments obtained by matching to a PN source and are given by explicit integrals extending over the matter source and gravitational field. The extension of the waveform by half a PN order requires as inputs the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also require the 3PN extension of the source multipole moments in the case of compact binaries. The waveform in the far-zone consists of two types of terms, instantaneous and hereditary. The instantaneous terms are determined by the dynamical state of the binary at the retarded time. The hereditary terms, on the other hand, depend on the entire past history of the source. These terms originate from the nonlinear interactions between the various multipole moments and also from backscattering off the curved spacetime generated by the waves themselves. In this chapter, we compute the contributions of all the instantaneous and hereditary terms (which include tails, tails-of-tails and memory integrals) up to 3PN order. The end results of this chapter are given in terms of both the 3PN plus and cross polarizations and the separate spin-weighted spherical harmonic modes. Though most of the sources will be in circular orbits by the time the GWs emitted by the system enter the sensitivity band of the laser interferometers, astrophysical scenarios such as Kozai mechanism could produce binaries which have nonzero eccentricity. Studies have shown that filtering the signal from an eccentric binary with circular orbit templates could significantly degrade the SNR. For constructing a phasing formula for eccentric binaries one has to compute the energy and angular momentum fluxes carried away by the GWs and then compute how the orbital elements evolve with time under gravitational radiation reaction. The far-zone energy and angular momentum fluxes, like the waveform, contain both instantaneous and hereditary contributions. The complete 3PN energy flux and instantaneous terms in the 3PN angular momentum flux are already known. In chapter 5, the hereditary terms in the 3PN angular momentum flux from an ICB moving in quasi-elliptical orbits are computed. A semi-analytic method in the frequency domain is used to compute the hereditary contributions. At 3PN order, the quasi-Keplerian representation of elliptical orbits at 1PN order is required. To calculate the tail contributions we exploit the doubly periodic nature of the motion to average the 3PN fluxes over the binary’s orbit. The hereditary part of the angular momentum flux provided here has to be supplemented with the instantaneous part to obtain the final input needed for the construction of templates for binaries moving in elliptical orbits, a class of sources for both the space based detectors and the ground based ones. Using the hereditary contributions in the 3PN energy flux, we also compute the 3PN accurate hereditary contributions to the secular evolution of the orbital elements of the quasi-Keplerian orbit description.
208

A new invariant of quadratic lie algebras and quadratic lie superalgebras

Duong, Minh-Thanh 06 July 2011 (has links) (PDF)
In this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie superalgebras and give a complete study and classification of singular quadratic Lie algebras and singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an isomorphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra and 2-step nilpotent pseudo-Euclidean Jordan algebras, in the same manner as it was done for singular quadratic Lie algebras and 2-step nilpotent quadratic Lie algebras. Finally, we focus on the case of a symmetric Novikov algebra and study it up to dimension 7.
209

Use of two-way time transfer measurements to improve geostationary satellite navigation :

Dainty, Benjamin G. 2007 March 1900 (has links)
Thesis (M.S.)-- Air Force Institute of Technology. / The original document contains color images.
210

Équation des ondes sur les espaces symétriques riemanniens de type non compact / Wave equation on Riemannian symmetric spaces of the non compact type

Hassani, Ali 06 June 2011 (has links)
Ce mémoire porte sur l’étude des équations d’évolution sur des variétés à coubure non nulle, plus particulièrement l’équation des ondes sur les espaces symétriques riemanniens de type non compact.Des propriétés de dispersion des solutions du problème de Cauchy homogène sont démontrées. Ces propriétés sont ensuite utilisées pour établir des estimations dites estimations de Strichartz. L’examen de ces estimées permet de déduire que le problème de Cauchy non linéaire avec des non-linéarités de type puissance est globalement bien posé pour des données initiales petites et localement bien posé pour des données arbitraires.Après un chapitre introductif dédié aux définitions, propriétés algébriques et géométriques des espaces symétriques et à quelques aspects élémentaires d’analyse harmonique sphérique sur ces espaces, un article est présenté : Wave equation on Riemannian symmetric spaces. Cet article contient nos résultats principaux. Dans le dernier chapitre nous présentons en détail deux problèmes ouverts qui prolongent nos travaux. Il s’agit respectivement d’établir le lien entre le comportement asymptotique des estimées et les orbites nilpotentes, et l’étude de l’équation des ondes pour les formes différentielles sur les espaces symétriques. / In this memoir we study evolution equations on curved manifolds. In particular we are interested in the wave equation on Riemannian symmetric spaces of the noncompact type.Dispersive properties of solutions of homogeneous Cauchy problem are proved. These properties are then used to establish Strichartz-type estimates. A closer study of these estimates shows that the nonlinear Cauchy problem with power-like nonlinearities is globally well posed for small initial data and locally well posed for arbitrary initial data.The first chapter is devoted to definitions, algebraic and geometric properties of symmetric spaces and to few elementary aspects of spherical analysis on these spaces. Then our main results are represented in an article : Wave equation on Riemannian symmetric spaces. In the last chapter we present in detail two open problems for future work. One issue is to establish a link between the asymptotic behavior of the estimates and nilpotent orbits, while another issue is the study of wave equation for differential forms on symmetric spaces.

Page generated in 0.0585 seconds