• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Evaluation of infiltration, run-off and sediment mobilisation using rainfall simulations in the Riebeek-Kasteel Area, Western Cape - South Africa

Joseph Twahirwa January 2010 (has links)
<p>The project was conducted on a small-scale catchment at Goedertrou in the Riebeek- Kasteel district. The focus of this study was to address some of the hydrological processes active in the research catchment, namely infiltration, run-off and sediment mobilisation on different soil types. It was done to investigate the origin of Berg River pollutants. To answer the overall question about what influence the natural salt load of the Berg River, a number of subprojects have been identified, one of which is to understand the hydrological processes in the soil mantle and vadose zone. Hence, the study aimed to answer the research questions mentioned and discussed in section 1.3 of Chapter 1. Considering the results, it could be suggested that decayed root systems from the rows of plants, soil cracks, small channels and openings created by small animals, as well as slope orientation and, therefore, soil composition, all played a major role in influencing the ability of the soil to absorb the simulated rainfall. In this study, the factors that influenced run-off are micro topography, soil moisture, root system, animal activities in soil profile, soil crack dimensions and the hydraulic conductivity. The main factors that played a major role to influence sediments mobilisation are strongly believed to be the micro topography within the ring, slope gradient and length, vegetation cover and rainfall-simulation intensity. After using different techniques, the results show that farmers must be aware that with storm rainfall, particles smaller than 65 &mu / m are subject to mobilisation. It is important to let land-users know that they need proper and appropriate methods for land-use.</p>
22

Water and Heat Transport in Road Structures : Development of Mechanistic Models

Hansson, Klas January 2005 (has links)
The coupled transport of water and heat, involving freezing and thawing, in the road structure and its immediate environment is important to consider for optimal design and maintenance of roads and when assessing solute transport, of e.g. de-icing salt, from roads. The objective of this study was to develop mechanistic models, and measurement techniques, suitable to describe and understand water flow and heat flux in road structures exposed to a cold climate. Freezing and thawing was accounted for by implementing new routines in two numerical models (HYDRUS1D/2D). The sensitivity of the model output to changes in parameter values and operational hydrological data was investigated by uncertainty and sensitivity analyses. The effect of rainfall event characteristics and asphalt fractures on the subsurface flow pattern was investigated by scenario modelling. The performance of water content reflectometers (WCR), measuring water content, was evaluated using measurements in two road structure materials. A numerical model was used to simulate WCR sensor response. The freezing/thawing routines were stable and provided results in agreement with laboratory measurements. Frost depth, thawing period, and freezing-induced water redistribution in a model road was greatly affected by groundwater level and type of subgrade. The simulated subsurface flow patterns corresponded well with published field observations. A new method was successful in enabling the application of time domain reflectometer (TDR) calibration equations to WCR output. The observed distortion in sampling volume for one of the road materials could be explained by the WCR sensor numerical model. Soil physical, hydrological, and hydraulic modules proved successful in simulating the coupled transport of water and heat in and on the road structure. It was demonstrated in this thesis that numerical models can improve the interpretation and explanation of measurements. The HYDRUS model was an accurate and pedagogical tool, clearly useful in road design and management.
23

Contaminant fate and transport analysis in soil-plant systems

Goktas, Recep Kaya 20 January 2011 (has links)
The main objective of this study is to develop a modeling methodology that facilitates incorporating the plant pathway into environmental contamination models recognizing the fact that plants are dynamic entities that regulate their life cycle according to natural and anthropogenic environmental conditions. A modeling framework that incorporates the plant pathway into an integrated water flow and contaminant transport model in terrestrial systems is developed. The modeling framework is aimed to provide a tool to analyze the plant pathway of exposure to contaminants. The model developed using this framework describes the temporal and spatial variation of the contaminant concentration within the plant as it is interacting with the soil and the atmosphere. The first part of the study focuses on the integration of the dynamics of water and contaminant distribution and plant related processes within the vadose zone. A soil-plant system model is developed by coupling soil-water flow, contaminant transport, plant life-cycle, and plant pathway models. The outcome unifies single media continuous models with multimedia compartmental models in a flexible framework. The coupling of the models was established at multiple interfaces and at different levels of solution steps (i.e. model development phase vs. numerical solution phase). In the second part of the study, the soil-plant system model is extended to cover large spatial areas by describing the environmental system as a collection of soil-plant systems connected through overland flow and transport processes on the ground surface and through lateral interactions in the subsurface. An overland flow model is integrated with the previously coupled model of unsaturated zone soil-water flow and plant life-cycle by solving the flow model equations simultaneously within a single global matrix structure. An overland / subsurface interaction algorithm is developed to handle the ground surface conditions. The simultaneous solution, single-matrix approach is also adopted when integrating the overland transport model with the previously coupled models of vadose zone transport and plant pathway. The model developed is applied to various environmental contamination scenarios where the effect of the presence of plants on the contaminant migration within environmental systems is investigated.
24

Evaluation of infiltration, run-off and sediment mobilisation using rainfall simulations in the Riebeek-Kasteel Area, Western Cape - South Africa

Joseph Twahirwa January 2010 (has links)
<p>The project was conducted on a small-scale catchment at Goedertrou in the Riebeek- Kasteel district. The focus of this study was to address some of the hydrological processes active in the research catchment, namely infiltration, run-off and sediment mobilisation on different soil types. It was done to investigate the origin of Berg River pollutants. To answer the overall question about what influence the natural salt load of the Berg River, a number of subprojects have been identified, one of which is to understand the hydrological processes in the soil mantle and vadose zone. Hence, the study aimed to answer the research questions mentioned and discussed in section 1.3 of Chapter 1. Considering the results, it could be suggested that decayed root systems from the rows of plants, soil cracks, small channels and openings created by small animals, as well as slope orientation and, therefore, soil composition, all played a major role in influencing the ability of the soil to absorb the simulated rainfall. In this study, the factors that influenced run-off are micro topography, soil moisture, root system, animal activities in soil profile, soil crack dimensions and the hydraulic conductivity. The main factors that played a major role to influence sediments mobilisation are strongly believed to be the micro topography within the ring, slope gradient and length, vegetation cover and rainfall-simulation intensity. After using different techniques, the results show that farmers must be aware that with storm rainfall, particles smaller than 65 &mu / m are subject to mobilisation. It is important to let land-users know that they need proper and appropriate methods for land-use.</p>
25

Adjoint-based approach for estimation & sensor location on 1D hyperbolic systems with applications in hydrology & traffic / Approche à base d’adjoint pour estimation et placement de capteurs dans les systèmes hyperboliques 1D avec application à l’hydrologie et au trafic

Nguyen, Van Tri 03 November 2016 (has links)
Ce travail de thèse propose une approche générique pour l'estimation de l'état/ des paramètres et pour le placement de capteurs de systèmes hyperboliques non linéaires en dimension infinie. Le travail est donc divisé en deux parties principales : une partie consacrée à l'estimation optimale et une partie dédiée au placement optimal de capteurs. La méthode d'estimation optimale utilise une approche par calcul des variations et utilise la méthode des multiplicateurs de Lagrange. Ces multiplicateurs jouent un rôle important en donnant accès aux sensibilités des mesures par rapport aux variables qui doivent être estimées. Ces sensibilités, décrites par les équations adjointes, sont aussi à l'origine d'une nouvelle approche, dite méthode de l'adjoint, pour le placement optimal de capteurs. Divers exemples, construits sur la base de simulations mais également de données réelles et pour différents scénarios, sont aussi étudiées afin d'illustrer l'efficacité des approches développées. Ces exemples concernent les écoulements à surface libre (en hydrologie des bassins versants) et le trafic routier représentés par des équations aux dérivées partielles hyperboliques non linéaires. / The thesis proposes a general framework for both state/parameters estimation and sensor placement in nonlinear infinite dimensional hyperbolic systems. The work is therefore divided into two main parts: a first part devoted to the optimal estimation and a second one to optimal sensor location. The estimation method is based on the calculus of variations and the use of Lagrange multipliers. The Lagrange multipliers play an important role in giving access to the sensitivities of the measurements with respect to the variables to be estimated. These sensitivities, described by the adjoint equations, are also the key idea of a new approach, so-called the adjoint-based approach, for the optimal sensor placement. Various examples, either based on some simulations with synthetic measurements or real data sets and for different scenarios, are also studied to illustrate the effectiveness of the developed approaches. Theses examples concern the overland flow systems and the traffic flow, which are both governed by nonlinear hyperbolic partial differential equations.
26

Evaluation of infiltration, run-off and sediment mobilisation using rainfall simulations in the Riebeek-Kasteel Area, Western Cape - South Africa

Twahirwa, Joseph January 2010 (has links)
Magister Scientiae - MSc / The project was conducted on a small-scale catchment at Goedertrou in the Riebeek- Kasteel district. The focus of this study was to address some of the hydrological processes active in the research catchment, namely infiltration, run-off and sediment mobilisation on different soil types. It was done to investigate the origin of Berg River pollutants. To answer the overall question about what influence the natural salt load of the Berg River, a number of subprojects have been identified, one of which is to understand the hydrological processes in the soil mantle and vadose zone. Hence, the study aimed to answer the research questions mentioned and discussed in section 1.3 of Chapter 1. Considering the results, it could be suggested that decayed root systems from the rows of plants, soil cracks, small channels and openings created by small animals, as well as slope orientation and, therefore, soil composition, all played a major role in influencing the ability of the soil to absorb the simulated rainfall. In this study, the factors that influenced run-off are micro topography, soil moisture, root system, animal activities in soil profile, soil crack dimensions and the hydraulic conductivity. The main factors that played a major role to influence sediments mobilisation are strongly believed to be the micro topography within the ring, slope gradient and length, vegetation cover and rainfall-simulation intensity. After using different techniques, the results show that farmers must be aware that with storm rainfall, particles smaller than 65 μm are subject to mobilisation. It is important to let land-users know that they need proper and appropriate methods for land-use. / South Africa
27

A Sediment Yield Equation from an Erosion Simulation Model

Shirley, E. D., Lane, L. J. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Sediment is widely recognized as a significant pollutant affecting water quality. To assess the impact of land use and management practices upon sediment yield from upland areas, it is necessary to predict erosion and sediment yield as functions of runoff, soil characteristics such as erodibility, and watershed characteristics. The combined runoff-erosion process on upland areas was modeled as overland flow on a plane, with rill and interrill erosion. Solutions to the model were previously obtained for sediment concentration in overland flow, and the combined runoff-erosion model was tested using observed runoff and sediment data. In this paper, the equations are integrated to produce a relationship between volume of runoff and total sediment yield for a given storm. The sediment yield equation is linear in runoff volume, but nonlinear in distance and, thus, watershed area. Parameters of the sediment yield equation include the hydraulic resistance parameter, rill and interrill erodibility terms, and flow depth-detachment coefficient and exponent.
28

Modélisation multi-échelle et simulation numérique de l’érosion des sols de la parcelle au bassin versant / Multiscale modelling and numerical simulation of soil erosion by water from the plot scale to the catchment scale

Le, Minh Hoang 26 November 2012 (has links)
L’objectif global de ce travail est d’étudier une modélisation multi échelle et de développer une méthode adaptée pour la simulation numérique du processus d’érosion à l’échelle du bassin versant. Après avoir passé en revue les différents modèles existants, nous dérivons une solution analytique non triviale pour le système couplé modélisant le transport de sédiments par charriage. Ensuite, nous étudions l’hyperbolicité de ce système avec diverses lois de sédimentation proposées dans la littérature. Concernant le schéma numérique, nous présentons le domaine de validité de la méthode de splitting, pour les équations modélisant l’écoulement et celle décrivant l’évolution du fond. Pour la modélisation du transport en suspension à l’échelle de la parcelle, nous présentons un système d’équations couplant les mécanismes d’infiltration, de ruissellement et le transport de plusieurs classes de sédiments. L’implémentation et des tests de validation d’un schéma d’ordre élevé et de volumes finis bien équilibré sont également présentés. Ensuite, nous discutons sur l’application et la calibration du modèle avec des données expérimentales sur dix parcelles au Niger. Dans le but d’aboutir la simulation à l’échelle du bassin versant, nous développons une modélisation multi échelle dans laquelle nous intégrons le taux d’inondation dans les équations d’évolution afin de prendre en compte l’effet à petite échelle de la microtopographie. Au niveau numérique, nous étudions deux schémas bien équilibrés : le schéma de Roe basé sur un chemin conservatif, et le schéma avec reconstruction hydrostatique généralisée. Enfin, nous présentons une première application du modèle avec les données expérimentales du bassin versant de Ganspoel qui nécessite la parallélisation du code. / The overall objective of this thesis is to study a multiscale modelling and to develop a suitable method for the numerical simulation of soil erosion on catchment scale. After reviewing the various existing models, we derive an analytical solution for the non-trivial coupled system modelling the bedload transport. Next, we study the hyperbolicity of the system with different sedimentation laws found in the literature. Relating to the numerical method, we present the validity domain of the time splitting method, consisting in solving separately the Shallow-Water system (modelling the flow routing) during a first time step for a fixed bed and updating afterward the topography on a second step using the Exner equation. On the modelling of transport in suspension at the plot scale, we present a system coupling the mechanisms of infiltration, runoff and transport of several classes of sediment. Numerical implementation and validation tests of a high order wellbalanced finite volume scheme are also presented. Then, we discuss on the model application and calibration using experimental data on ten 1 m2 plots of crusted soil in Niger. In order to achieve the simulation at the catchment scale, we develop a multiscale modelling in which we integrate the inundation ratio in the evolution equations to take into account the small-scale effect of the microtopography. On the numerical method, we study two well-balanced schemes : the first one is the Roe scheme based on a path conservative, and the second one is the scheme using a generalized hydrostatic reconstruction. Finally, we present a first model application with experimental data of the Ganspoel catchment where the parallel computing is also motived.

Page generated in 0.0524 seconds