1 |
Synthesis, fabrication and characterisation of zinc oxide nanostructures for biomimetic, drug delivery and biosensing applicationsSyed, Atif January 2017 (has links)
A successful cancer treatment is a combination of early diagnosis and efficient use of anticancer drugs. There is a chance of approximately 70 - 90% of cancer patients surviving if the diagnosis is conducted early. That means if a diagnosis system is in place which can detect multiple types of cancer at an early stage, a potential cancer therapy is most likely to succeed. However, at present, the available biomedical sensors are unable to detect and differentiate between cancerous cells or tumours. They are also not able to provide continuous real-time monitoring of a patient. Additionally, oral anticancer drugs given during chemotherapy, at the moment, suffer from low bioavailability. Also, a variety of these drugs is not targeted in nature. That means the drug will potentially affect areas of the body which do not need it. The low bioavailability of the drug will not only increase the chemotherapy sessions but also makes the entire process more aggravating for the cancer patient. Therefore, there is an absolute need to have innovative and efficient anticancer drug delivery mechanisms. Finally, current biomedical sensors are primarily made up of silicon (Si) or hard substrates based materials. Even if the biomedical sensor is of a flexible material, the material is either a fragile film or flexible but not stretchable polymers such as polyimide (PI). By having a biomedical sensor which is moderately flexible or not flexible at all, a continuous on-body biomedical sensing is not possible in an efficient manner. That is because hard substrates based biomedical sensors would be difficult to be placed on a body at all times. Furthermore, the flexible biomedical sensors currently suffer from problems such as the electrode on top cracking and damaging after few uses rendering them unusable. Hence, a new fabrication process needs to be devised to solve the issues mentioned above. In this work, an attempt is made to utilise zinc oxide (ZnO) nanostructures for biomedical sensing, drug delivery and biomimetics. ZnO nanostructures are synthesised by using a low-cost wet chemistry process known as hydrothermal growth. Due to the inherent biocompatibility and unique electrical/ piezoelectric properties of ZnO, they acted as prime candidates for the applications outlined above. A high-throughput process is used to synthesise ZnO nanowires (NWs) on Si, polyimide-onsilicon (PI/Si) and directly on PI and polydimethylsiloxane (PDMS) substrates. The work utilises a variety of characterization tools. ZnO nanostructures' morphology is characterised by using a Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and Atomic Force Microscope (AFM). X-ray diffraction (XRD) was used to calculate the crystallite size and the crystalline orientation of the nanostructures. A novel fabrication process is developed to allow direct synthesis and direct patterning of metal electrodes on fully flexible, stretchable and bendable PDMS substrates by using standard photolithography. This novel fabrication process makes the PDMS substrates not expand when exposed to temperatures up to 110 °C. Also; the new fabrication process does not cause the PDMS to swell when exposed to various chemicals such as isopropyl alcohol (IPA) or acetone. The fabrication process has created a new paradigm shift in the field of patterning and producing devices directly on flexible and stretchable substrates. The PDMS substrate is further utilised as a sensitive bovine serum albumin (BSA) protein sensor which is capable of detecting up to femtomolar concentrations in just under 5 min of incubation time. Protein biosensing tests were carried out by measuring the change in resistance at 1V bias voltage. The PDMS based biosensor is tested as a protein sensor because proteins are important biomarkers in cancer diagnosis. Also, protein sensors are immensely useful in the detection of bacteria and viruses thereby allowing further expansion to the technology developed herewith. For the first time, ZnO NWs are used to deliver hydrophobic organic dye, Nile red, in a human body like environment. The Nile red simulates an anticancer drug as they share similar surface chemistry. There is an approximately 80% release of Nile red which shows that ZnO NWs can be used as an efficient anticancer drug delivery system with high bioavailability. For the drug delivery experiments, the dynamic dialysis based release of Nile red (Nr) from the ZnO nanowires is carried out by using UV-Visible (UV-Vis) spectroscopy. Fourier Transform Infrared (FTIR) was used to determine the coordination of Nr across the ZnO nanowires. Finally, a novel synthesis process is used to produce individual ZnO NWs on a single ZnO nanoplate (NP) which are named as ZNWNP nanostructures. ZNWNP nanostructures have high hydrophobicity without the need of any functionalization. The hydrophobicity of the hybrid ZnO nanowires on ZnO nanoplate nanostructures (ZNWNP) is characterised by using contact angle goniometry (CAG). Various contact angle theories have been used to calculate the surface free energy (SFE) of the ZNWNP nanostructures. The high hydrophobicity allows these nanostructures to be used for biomimetic applications such self-cleaning, bioinspired sensors and multimodal biosensing. Additionally, ZNWNP nanostructures can be used in biomedical sensors to create multimodal analysis. The multimodal analysis is immensely useful in cancer detection as at least three or more cancer biomarkers can be used to triangulate the diagnosis. The work presented in the thesis aims to utilise ZnO nanostructures for a variety of biomedical applications. The new fabrication process mentioned above has applications not only in biomedicine but also in the flexible electronics industry. The biomimetic nanostructures combined with the biomedical sensor gives rise to a robust multimodal analysis system which can change the course of the cancer diagnosis. That coupled with the usage of ZnO NWs as an effective anticancer drug delivery system gives an immense promise in advancing cancer therapy as a whole and making the entire treatment process less aggravating and less painful for cancer patients.
|
2 |
Zinc Oxide Nanotip and Nanorod on Titanium Oxide Heterojunction Gas Sensor Prepared by Aqueous Solution DepositionHong, Min-Hsuan 28 August 2011 (has links)
In this study, zinc oxide (ZnO) nanotip and nanorod were grown on glass substrate by aqueous solution deposition (ASD). Both characteristics of the two nanostructures were investigated. For fabrication of ZnO nanostructure UV photodetector, In-Zn inter-digitated metal electrode was evaporated on the top of the grown ZnO nanostructure to form the contact via. Compared with the common value (375 nm), both the peaks from the PL spectra of ZnO nanotip and nanorod are red-shifted (409 nm) due to the massive defects in nanotip and nanorod. In order to improve the photosensiblity, heterojunction of ZnO nanostructure/TiO2 film was prepared and were made into UV photodetector. Photoresponses of both nanotip and nanorod were improved after N2O annealing at 300oC. With the heterojunction of ZnO 1D nanostructure on TiO2 film, the photoresponses of both ZnO nanotip/TiO2 film can reach to 22.85, and the rise time and decay time are 40 and 82 seconds, respectively. On the other side, the photoresponses of both ZnO nanorod/TiO2 film can reach to 27.44, and the rise time and decay time are 22 and 133 seconds, respectively.
|
3 |
Growth and Characterization of ZnO NanostructuresSyed, Abdul Samad January 2011 (has links)
A close relation between structural and optical properties of any semiconductor material does exist. An adequate knowledge and understanding of this relationship is necessary for fabrication of devices with desired optical properties. The structural quality and hence the optical properties can be influenced by the growth method and the substrate used. The aim of this work was to investigate the change in optical properties caused by growth techniques and substrate modification. To study the influence of growth technique on optical properties, ZnO nanostructures were grown using atmospheric pressure metal organic chemical vapor deposition (APMOCVD) and chemical bath deposition (CBD) technique. The structural and optical investigations were performed using scanning electron microscopy (SEM) and micro photoluminescence (μ-PL), respectively. The results revealed that the grown structures were in the shape of nano-rods with slightly different shapes. Optical investigation revealed that low temperature PL spectrum for both the samples was dominated by neutral donor bound excitons emission and it tends to be replaced by free exciton (FX) emission in the temperature range of 60-140K. Both excitonic emissions show a typical red-shift with increase in temperature but with a different temperature dynamics for both the sample and this is due to difference in exciton-phonon interaction because of the different sizes of nano-rods. Defect level emission (DLE) is negligible in both the sample at low temperature but it increased linearly in intensity after 130 K up to the room temperature.Modification in substrate can also play a significant role on structural and optical properties of the material. Specially variation in the miscut angle of substrate can help to control the lateral sizes of the Nanostructures and thus can help to obtain better structural andoptical quality. Also optical quality is a key requirement for making blue and ultraviolet LEDs. Therefore, ZnO Nanostructures were grown on SiC on-axis and off-axis substrates having different off-cut angles. Morphological investigation revealed thatgrown structures are epitaxial for the case when substrate off-cut angle is higher and deposition rate is low. Low temperature PL spectrum of all the samples was dominated by neutral donor bound excitons and free exciton emission become dominant at 100 K for all the samples which completely eliminate the neutral donor bound excitonic emission at 160K. Two electron satellite of the neutral donor bound excitons and LO phonons of excitonic features are also present. A typical red-shift in excitonic features was evident in temperature dependence measurement. Red-shift behavior of free exciton for all the samples was treated by applying Varshni empirical expression and several important parameter, such as, the Debye temperature and the band gap energy value was extracted. Thermal quenching behavior was also observed and treated by thermal quenching expression and value of the activation energy for non-radiative channel was extracted. The results that are obtained demonstrate a significant contribution in the fields of ZnO based nano-optoelectronics and nano-electronics.
|
4 |
Development of Zinc Oxide Piezoelectric Nanogenerators for Low Frequency ApplicationsSatti Nour, Eiman January 2016 (has links)
Energy harvesting using piezoelectric nanomaterials provides an opportunity for advancement towards self-powered systems. Self-powered systems are a new emerging technology, which allows the use of a system or a device that perform a function without the need for external power source like for example, a battery or any other type of source. This technology can for example use harvested energy from sources around us such as ambient mechanical vibrations, noise, and human movement, etc. and convert it to electric energy using the piezoelectric effect. For nanoscale devices, the size of traditional batteries is not suitable and will lead to loss of the concept of “nano”. This is due to the large size and the relatively large magnitude of the delivered power from traditional sources. The development of a nanogenerator (NG) to convert energy from the environment into electric energy would facilitate the development of some self-powered systems relying on nano- devices. The main objective of this thesis is to fabricate a piezoelectric Zinc Oxide (ZnO) NGs for low frequency (˂ 100 Hz) energy harvesting applications. For that, different types of NGs based on ZnO nanostructures have been carefully developed, and studied for testing under different kinds of low frequency mechanical deformations. Well aligned ZnO nanowires (NWs) possessing high piezoelectric coefficient were synthesized on flexible substrates using the low temperature hydrothermal route. These ZnO NWs were then used in different configurations to demonstrate different low frequency energy harvesting devices. Using piezoelectric ZnO NWs, we started with the fabrication of sandwiched NG for hand writing enabled energy harvesting device based on a thin silver layer coated paper substrate. Such device configurations can be used for the development of electronic programmable smart paper. Further, we developed this NG to work as a triggered sensor for wireless system using foot-step pressure. These studies demonstrate the feasibility of using ZnO NWs piezoelectric NG as a low-frequency self-powered sensor, with potential applications in wireless sensor networks. After that, we investigated and fabricated a sensor on PEDOT: PSS plastic substrate either by one side growth technique or by using double sided growth. For the first growth technique, the fabricated NG has been used as a sensor for acceleration system; while the fabricated NG by the second technique has worked as anisotropic directional sensor. This fabricated configurations showed stability for sensing and can be used in surveillance, security, and auto-mobil applications. In addition to that, we investigated the fabrication of a sandwiched NG on plastic substrates. Finally, we demonstrated that doping ZnO NWs with extrinsic element (such as Ag) will lead to the reduction of the piezoelectric effect due to the loss of crystal symmetry. A brief summary into future opportunities and challenges are also presented in the last chapter of this thesis.
|
5 |
Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes.Sharma, V., Singh, Suman K., Anderson, Diana, Tobin, Desmond J., Dhawan, A. 05 1900 (has links)
No / Zinc oxide (ZnO) nanoparticles are widely used in cosmetics and sunscreens. Human epidermal keratinocytes may serve as the first portal of entry for these nanoparticles either directly through topically applied cosmetics or indirectly through any breaches in the skin integrity. Therefore, the objective of the present study was to assess the biological interactions of ZnO nanoparticles in primary human epidermal keratinocytes (HEK) as they are the most abundant cell type in the human epidermis. Cellular uptake of nanoparticles was investigated by scanning electron microscopy using back scattered electrons imaging as well as transmission electron microscopy. The electron microscopy revealed the internalization of ZnO nanoparticles in primary HEK after 6 h exposure at 14 microg/ml concentration. ZnO nanoparticles exhibited a time (6-24 h) as well as concentration (8-20 microg/ml) dependent inhibition of mitochondrial activity as evident by the MTT assay. A significant (p < 0.05) induction in DNA damage was observed in cells exposed to ZnO nanoparticles for 6 h at 8 and 14 microg/ml concentrations compared to control as evident in the Comet assay. This is the first study providing information on biological interactions of ZnO nanoparticles with primary human epidermal keratinocytes. Our findings demonstrate that ZnO nanoparticles are internalized by the human epidermal keratinocytes and elicit a cytotoxic and genotoxic response. Therefore, caution should be taken while using consumer products containing nanoparticles as any perturbation in the skin barrier could expose the underlying cells to nanoparticles.
|
6 |
Luminescence ultraviolette et dynamiques excitoniques dans l’oxyde de zinc massif et nano-structuré / Ultraviolet luminescence and exciton dynamics in massive and nano-structured zinc oxideDumergue, Mathieu 09 January 2015 (has links)
Cette thèse présente les travaux effectués au CELIA sur la luminescence ultraviolette et les dynamiques excitoniques dans l’oxyde de zinc (ZnO) sous forme massive et nano-structurée. Les mesures ont été effectuées en conditions expérimentales contrôlées (température, fluence d’excitation), pour différentes énergies de photon excitateur. Nous avons mesuré les spectres d’émission sous excitation à un photon UV (4,66 eV), ainsi que à 3 photons IR (1,55 eV), et proposé un schéma séquentiel de formation des excitons (avec simulations), en particulier pour les excitons DX. Nous avons obtenu une durée de vie nanoseconde de DX dans les deux cas, en désaccord avec la majorité des études publiées dans la littérature. / This thesis presents the work carried out at CELIA about ultraviolet luminescence and exciton dynamics in massive and nano-structured zinc oxide (ZnO). Measurements were carried out under controlled experimental conditions (temperature, excitation fluence), according to different excitation photon energies.We measured emission spectra under UV photon excitation (4.66 eV), and 3 IR photons (1.55 eV), and suggested a sequential exciton formation mechanism (with simulations), especially for DX excitons. We found a nanosecond lifetime for DX in both cases, in disagreement with most of the studies published in the literature. Relaxation dynamics of free and bound excitons are linked by the FX trapping process on donor defect and the DX thermal detrapping.Under VUV excitation (20-50 eV), surface effects and strong local excitation density greatly accelerate the relaxation of excitons. Under X excitation (1 keV), good conditions for the formation of DX seems to be close under excitation at 1.55 and 950 eV.The presence of core 2p band of zinc modifies the relaxation dynamics of excitons by the multiplication of local high density excitations zones and the change of the elementary excitations distribution. We have also conducted measurements on nano-particles. The significant surface effects induced by the small size of these system lead to a sharp acceleration of kinetics, masking the intrinsic exciton relaxation process.
|
7 |
Conception et réalisation de micro-résonateurs piezoélectriques sur substrat de silicium sur isolant / Design and realization of a piezoelectric micro-resonator on silicon on insulator substrateMortada, Oussama 25 October 2016 (has links)
Les ondes acoustiques, démontrées théoriquement en 1885 par le scientifique anglais Lord Rayleigh, constituent de nos jours un sujet de recherches très intéressant. Elles sont devenues indispensables à la fabrication des systèmes de télécommunication miniatures et performants, tels que par exemple les filtres, les oscillateurs ou encore les capteurs. Les dispositifs fonctionnant grâce aux ondes acoustiques sont connus sous le nom de « dispositifs piézoélectriques » puisqu’ils transforment les signaux RF en ondes acoustiques, et vice versa, grâce au phénomène piézoélectrique direct. Le développement de ces dispositifs piézoélectriques a été indispensable pour répondre aux exigences particulières et extrêmes des systèmes de télécommunication actuels (sélectivité, miniaturisation, faible coût, facilité de fabrication et d’intégration). Cette thèse s’inscrit dans une démarche générale de développement des dispositifs piézoélectriques, notamment des micro-résonateurs piézoélectriques qui en constituent la dernière génération. Deux axes principaux ont été développés au cours de ces travaux de recherches : l’étude théorique des micro-résonateurs piézoélectriques à travers une modélisation électrique d’une part, et, d’autre part, la description des procédés de fabrication réalisés en salle blanche du laboratoire d’XLIM. / The acoustic waves, theoretically demonstrated in 1885 by the English scientist Lord Rayleigh, are nowadays an interesting research subject. It became essential to the fabrication of miniature and efficient systems of telecommunication, such as filters, oscillators or sensors. Devices using the acoustic waves are known as piezoelectric devices, because they transform RF signal into acoustic waves, and vice versa, thanks to the direct piezoelectric phenomenon. The development of these piezoelectric devices was essential to meet the particular and extreme requirements of the current systems of telecommunication (selectivity, miniaturization, low cost, ease of manufacturing and integration). This thesis is part of a global approach to develop the piezoelectric devices, notably the piezoelectric micro-resonators which constitute the latest generation. Two main axes have been developed during the research work: the theoretical study of piezoelectric micro-resonators through an electric modelling, on one hand, and, on the other hand, the description of the manufacturing processes accomplished in clean room of XLIM’s laboratory.
|
8 |
Semi Conducting Metal Oxide Gas Sensors: Development And Related InstrumentationAbhijith, N 06 1900 (has links)
A sensor is a technological device or biological organ that detects, or senses, a signal or physical condition and chemical compounds. Technological developments in the recent decades have brought along with it several environmental problems and human safety issues to the fore. In today's world, therefore, sensors, which detect toxic and inflammable chemicals quickly, are necessary. Gas sensors which form a subclass of chemical sensors have found extensive applications in process control industries and environmental monitoring.
The present thesis reports the attempt made in development of Zinc oxide thin film based gas sensors. ZnO is sensitive to many gases of interest like hydrocarbons, hydrogen, volatile organic compounds etc. They exhibit high sensitivity, satisfactory stability and rapid response. In the present work the developed sensors have been tested for their sensitivity for a typical volatile organic compound, acetone. An objective analysis of the various substrates namely borosilicate glass, sintered alumina and hard anodized alumina, has been performed as a part of this work. The substrates were evaluated for their electrical insulation and thermal diffusivity. The microstructure of the gas sensitive film on the above mentioned substrates was studied by SEM technique. The gas sensitive Zinc oxide film is deposited by D.C reactive magnetron sputtering technique with substrate bias arrangement. The characterization of the as-deposited film was performed by XRD, SEM and EDAX techniques to determine the variation of microstructure, crystallite size, orientation and chemical composition with substrate bias voltage. The thesis also describes the development of the gas sensor test setup, which has been used to measure the sensing characteristics of the sensor. It was observed that the ZnO sensors developed with higher bias voltages exhibited improved sensitivity to test gas of interest.
Gas sensors essentially measure the concentration of gas in its vicinity. In order to determine the distribution of gas concentration in a region, it is necessary to network sensors at remote locations to a host. The host acts as a gateway to the end user to determine the distribution of gas concentration in a region. However, wireless gas sensor networks have not found widespread use because of two inherent limitations:
Metal oxide gas sensors suffer from output drift over time; frequent recalibration of a
number of sensors is a laborious task.
The gas sensors have to be maintained at a high temperature to perform the task of gas
sensing. This is power intensive operation and is not well suited for wireless sensor
network.
This thesis reports an exploratory study carried out on the applicability of gas sensors in wireless gas sensor network. A simple prototype sensing node has been developed using discrete electronic components. A methodology to overcome the problem of frequent calibration of the sensing nodes, to tackle the sensor drift with ageing, is presented. Finally, a preliminary attempt to develop a strategy for using gas sensor network to localize the point of gas leak is given.
|
9 |
Σύνθεση, χαρακτηρισμός και μελέτη ιδιοτήτων νανοδομών οξειδίου του ψευδαργύρου (ZnO)Γρηγορόπουλος, Αντώνιος 17 September 2012 (has links)
Τα νανοϋλικά, τα υλικά δηλαδή που οι διαστάσεις τους είναι στην νανοκλίμακα,
έχουν διαφορετικές ιδιότητες από τα αντίστοιχα υλικά σε μεγαλύτερη κλίμακα. Για
αυτό το λόγο, τα νανοϋλικά παρουσιάζουν ιδιαίτερο ενδιαφέρον για περαιτέρω
μελέτη και έρευνα. Σε αυτά τα υλικά ανήκει και το οξείδιο του ψευδαργύρου (ZnO).
Το οξείδιο του ψευδαργύρου είναι ένας σύνθετος ημιαγωγός τύπου II-IV με άμεσο
ενεργειακό χάσμα (Eg=3.37 eV) σε θερμοκρασία δωματίου και με μεγάλη ενέργεια
σύνδεσης εξιτονίου (60 meV).
Σκοπός της παρούσας διπλωματικής εργασίας είναι η σύνθεση, ο χαρακτηρισμός και η μελέτη ιδιοτήτων νανοσύνθετων υλικών οξειδίου του ψευδαργύρου. Προς αυτόν τον σκοπό, θα παρασκευάσουμε νανοδομές ZnO, με τη μέθοδο του ατμού-υγρού-στερεού (VLS), σε τριζωνικό φούρνο. Στην πορεία της εργασίας, στο πρώτο κεφάλαιο θα δοθούν οι ορισμοί της νανοτεχνολογίας και των νανουλικών. Στο δεύτερο κεφάλαιο, θα αναλυθεί η δομή και οι ιδιότητες του οξειδίου του ψευδαργύρου (ZnO), βάσει των κυρίων μεθόδων ανάπτυξης των νανοδομών του ZnO. Στο τρίτο κεφάλαιο, θα γίνει ανάλυση των μεθόδων χαρακτηρισμού των νανοδομών του ZnO,που θα ακολουθήσουμε στην παρούσα εργασία. Στο επόμενο κεφάλαιο (4ο), θα παρουσιαστεί η μέθοδος παρασκευής των νανοδομών του ZnO και στο αμέσως επόμενο, παρουσιάζονται τα αποτελέσματα του χαρακτηρισμού των νανοδομών ZnO, με τις μεθόδους PL, SEM και XRD. Στο τελευταίο κεφάλαιο αναφέρονται τα συμπεράσματα που προέκυψαν από την παρούσα διπλωματική εργασία. / Nanomaterials, materials on the scale of a few nanometers, have different properties in comparison with larger-scale materials. For this reason, nanomaterials are of particular interest for further study and research. Zinc Oxide (ZnO) belongs to these materials. ZnO is a complex II-VI semiconductor with a direct band-gap energy (Eg = 3.37 eV) at room temperature and a large exciton binding energy (60 meV).
The aim of the present diploma thesis, is the preparation, the characterization and the study of the properties of ZnO nanoparticles. In order to accomplish that, we are going to produce nanostructures of ZnO, using the Vapor-Solid-Solid method, in a three-zone furnace. In the first chapter, we give the definitions of nanomaterials and various methods of producing them. In the chapter that follows, we are analyzing the properties of ZnO, the main methods of producing nanostructures of ZnO as well as the ways of exploiting these specific nanostructures. Thereafter, in chapter three, the three methods of characterizing the samples with the nanostructures, are analyzed. In the next chapter, the experimental procedure is presented, whereas on the fifth chapter the results are presented, using the methods of SEM, PL and XRD. In the final chapter we make about conclusion about this diploma thesis
|
10 |
Nanocluster Thin-Films for Sensor ApplicationsSerritella, Joseph 01 May 2015 (has links)
The ability to sense gas such as methane can provide an early warning system to protect human lives. High demand for the ability to sense the world around us has provided an extensive area of research for sensor technology. In particular, current sensor technology, specifically for methane, has provided sensors that require a heated environment to function. The majority of current methane sensors function at temperatures between 150°C and 450°C [1-3]. This thesis will explore an approach to produce a room temperature methane sensor.
|
Page generated in 0.0379 seconds