• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 17
  • 11
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 106
  • 106
  • 98
  • 39
  • 35
  • 24
  • 22
  • 16
  • 14
  • 14
  • 13
  • 12
  • 12
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Sistemas flexibles de alta resistencia para la estabilización de taludes. Revisión de los métodos de diseño existentes y propuesta de una nueva metodología de dimensionamiento

Blanco Fernández, Elena 06 May 2011 (has links)
Los sistemas flexibles de alta resistencia anclados al terreno son una de las distintas técnicas existentes para la estabilización de taludes, ya sean de roca o de suelos. Están constituidos por una membrana (red de cables o malla de alambre) sujeta al terreno mediante placas de anclaje, cables de refuerzo y bulones. En la mayor parte de los modelos de cálculo existentes se supone un comportamiento activo del sistema, es decir, que evita que se produzcan deslizamientos a través de una supuesta pretensión del sistema y convexidad del terreno. El sistema ejercería una presión normal al terreno que incrementa la tensión tangencial en la superficie potencial de deslizamiento evitando que se alcance la rotura del terreno. En esta tesis se han medido las fuerzas en distintos componentes del sistema desde el momento de la instalación, y se ha comprobado que la pretensión es muy reducida. Por otro lado, la supuesta convexidad del terreno raramente tiene lugar. Todo esto conduce a demostrar la hipótesis de comportamiento pasivo del sistema, es decir, que éste contiene a la masa inestable una vez que se ha producido la rotura. Es por ello que se ha considerado el desarrollar un nueva metodología de cálculo basada en un comportamiento pasivo. La nueva metodología consiste en realizar una simulación numérica dinámica en 2D de la interacción sistema flexible - masa inestable – talud estable. Partiendo de las dimensiones de un círculo de rotura en suelos o una cuña en roca, se deja caer la masa inestable con la fuerza de la gravedad. En su caída, la masa inestable deformará a la membrana, cables de refuerzo y bulones desarrollándose en ellos tensiones que deberán considerarse para su correcto dimensionamiento. En el caso particular de los taludes de suelos, se ha recurrido a la modelización de la masa inestable mediante la discretización por puntos SPH (Smooth Particle Hydrodynamics). / Highly resistant flexible systems anchored to the ground are among the techniques for slope stabilisation, either soil or rock. The system is formed by a membrane (cable net or wire mesh) tightened to the ground through spike plates, reinforcement cables and bolts. In the majority of the existing design models, an active behaviour of the system is considered; which means, that it is able to avoid ground sliding through a pretension of the system and the convexity of the slope surface. The system would exert a normal pressure over the ground that increases the shear stress in the potential slip surface avoiding that failure takes place. In this thesis, forces on different system components have been measured, finding that the pretension force is very low. On the other hand, the supposed ground convexity rarely exists. All this demonstrates that actual system behaviour is passive; which means that it is able to contain the unstable mass once the failure has already occurred. Therefore, a new design methodology based on a passive behaviour has been developed. The new methodology consists in performing a dynamic numerical simulation in 2D of the interaction flexible system – unstable mass – stable slope. Starting from specific known dimensions of slip circle in soils or a wedge in rocks, unstable mass falls only under the action of gravity. During its falling, the unstable mass deforms the membrane, reinforcement cables and bolts. Maximum stresses developed in these components should be considered for their design. In the particular case of soil slopes, unstable mass has been discretised with the mesh free method SPH (Smooth Particle Hydrodynamics).
102

Simulação Gráfica de Buracos Negros utilizando Sistemas de Partículas

Cordeiro, Douglas Farias 17 March 2009 (has links)
The application of Computer Graphics tools in the nature phenomena simulation have been presenting a series of proposals since its creation. Over the years this task has gained a characteristic trait that makes it closer to the reality, both visually as by the abstraction strategies used. However, the specific application of this Computer Science area for the astrophysical phenomena simulation remains as something restricted explored, although the Computer Graphics is considered as an important tool to aid the synthesis of satellite images and the film industry. Accordingly, this graphical simulation area remains open in several ways, showing a need for development of simulation models for the phenomena described by Astrophysics. This dissertation presents a graphical simulation model of Black Holes, that is one of the most mysterious phenomena known by man, through the use of Particle Systems representation techniques and the approximation method Smoothed Particle Hydrodynamics, making possible this phenomenon observation and its application in the animations design. / A aplicação da Computação Gráfica na simulação de fenômenos da natureza tem apresentado, desde sua criação, uma série de propostas, que ao longo dos anos vem ganhando um caráter que as aproxima mais da realidade, tanto visualmente quanto através das estratégias de abstração utilizadas. Entretanto, a aplicação específica desta área da Ciência da Computação para a simulação de fenômenos astrofísicos fisicamente baseados ainda permanece como algo restritamente explorado, embora a Computação Gráfica seja considerada como uma importante ferramenta de auxílio a síntese de imagens obtidas via satélite e na industria cinematográfica. Neste sentido, esta área de simulação gráfica permanece em aberto sob diversos aspectos, denotando uma necessidade de concepção de modelos de simulação para os fenômenos descritos pela Astrofísica. Nesta dissertação será apresentado um modelo de simulação gráfica de Buracos Negros, um dos fenômenos mais misteriosos conhecidos pelo homem, através da utilização da técnica de representação Sistemas de Partículas e do método de aproximação Smoothed Particle Hydrodynamics, tornando possível a observação deste fenômeno e sua aplicação na concepção de animações. / Mestre em Ciência da Computação
103

Une nouvelle méthode smoothed particle hydrodynamics : simulation des interfaces immergées et de la dynamique Brownienne des molécules avec des interactions hydrodynamiques

Kéou Noutcheuwa, Rodrigue Giselin 12 1900 (has links)
Dans cette thèse, nous présentons une nouvelle méthode smoothed particle hydrodynamics (SPH) pour la résolution des équations de Navier-Stokes incompressibles, même en présence des forces singulières. Les termes de sources singulières sont traités d'une manière similaire à celle que l'on retrouve dans la méthode Immersed Boundary (IB) de Peskin (2002) ou de la méthode régularisée de Stokeslets (Cortez, 2001). Dans notre schéma numérique, nous mettons en oeuvre une méthode de projection sans pression de second ordre inspirée de Kim et Moin (1985). Ce schéma évite complètement les difficultés qui peuvent être rencontrées avec la prescription des conditions aux frontières de Neumann sur la pression. Nous présentons deux variantes de cette approche: l'une, Lagrangienne, qui est communément utilisée et l'autre, Eulerienne, car nous considérons simplement que les particules SPH sont des points de quadrature où les propriétés du fluide sont calculées, donc, ces points peuvent être laissés fixes dans le temps. Notre méthode SPH est d'abord testée à la résolution du problème de Poiseuille bidimensionnel entre deux plaques infinies et nous effectuons une analyse détaillée de l'erreur des calculs. Pour ce problème, les résultats sont similaires autant lorsque les particules SPH sont libres de se déplacer que lorsqu'elles sont fixes. Nous traitons, par ailleurs, du problème de la dynamique d'une membrane immergée dans un fluide visqueux et incompressible avec notre méthode SPH. La membrane est représentée par une spline cubique le long de laquelle la tension présente dans la membrane est calculée et transmise au fluide environnant. Les équations de Navier-Stokes, avec une force singulière issue de la membrane sont ensuite résolues pour déterminer la vitesse du fluide dans lequel est immergée la membrane. La vitesse du fluide, ainsi obtenue, est interpolée sur l'interface, afin de déterminer son déplacement. Nous discutons des avantages à maintenir les particules SPH fixes au lieu de les laisser libres de se déplacer. Nous appliquons ensuite notre méthode SPH à la simulation des écoulements confinés des solutions de polymères non dilués avec une interaction hydrodynamique et des forces d'exclusion de volume. Le point de départ de l'algorithme est le système couplé des équations de Langevin pour les polymères et le solvant (CLEPS) (voir par exemple Oono et Freed (1981) et Öttinger et Rabin (1989)) décrivant, dans le cas présent, les dynamiques microscopiques d'une solution de polymère en écoulement avec une représentation bille-ressort des macromolécules. Des tests numériques de certains écoulements dans des canaux bidimensionnels révèlent que l'utilisation de la méthode de projection d'ordre deux couplée à des points de quadrature SPH fixes conduit à un ordre de convergence de la vitesse qui est de deux et à une convergence d'ordre sensiblement égale à deux pour la pression, pourvu que la solution soit suffisamment lisse. Dans le cas des calculs à grandes échelles pour les altères et pour les chaînes de bille-ressort, un choix approprié du nombre de particules SPH en fonction du nombre des billes N permet, en l'absence des forces d'exclusion de volume, de montrer que le coût de notre algorithme est d'ordre O(N). Enfin, nous amorçons des calculs tridimensionnels avec notre modèle SPH. Dans cette optique, nous résolvons le problème de l'écoulement de Poiseuille tridimensionnel entre deux plaques parallèles infinies et le problème de l'écoulement de Poiseuille dans une conduite rectangulaire infiniment longue. De plus, nous simulons en dimension trois des écoulements confinés entre deux plaques infinies des solutions de polymères non diluées avec une interaction hydrodynamique et des forces d'exclusion de volume. / In this thesis we develop a new smoothed particle hydrodynamics (SPH) method suitable for solving the incompressible Navier-Stokes equations, even with singular forces. Singular source terms are handled in a manner similar to that in the immersed boundary (IB) method of Peskin (2002) or in the method of regularized Stokeslets (Cortez, 2001). The numerical scheme implements a second-order pressure-free projection method due to Kim and Moin (1985) and completely obviates the difficulties that may be faced in prescribing Neumann pressure boundary conditions. We present two variants of this approach, one Langrangian which is commonly used and one Eulerian, simply because we consider that the SPH particles are quadrature points on which the fluid properties are calculated, therefore, these points can be kept fixed in time. The proposed SPH method is first tested on the planar start-up Poiseuille problem and a detailed error analysis is performed. For this problem, the results are similar whether the SPH particles are free to move or fixed on a regular grid. Our hybrid SPH-IB method is then used to calculate the dynamics of a stretched immersed elastic membrane. The membrane is represented by a cubic spline along which the tension in the membrane is computed and transmitted to the surrounding fluid. The Navier-Stokes equations with singular force due to the membrane are then solved to determine the velocity of the fluid in which the membrane is immersed. The fluid velocity thus obtained is interpolated on the interface, to determine its displacement. We discuss the advantages, in this problem, of fixing the SPH particles, rather than allowing them to move with the fluid. A new coupled Brownian dynamics-SPH method for the computation of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces is next presented. The starting point for the algorithm is the system of coupled Langevin equations for polymer and solvent (CLEPS) (see Oono and Freed (1981) and Öttinger and Rabin (1989), for example) describing, in the present case, the microscopic dynamics of a flowing polymer solution with a bead-spring representation of the macromolecules. Numerical tests of some two-dimensional channel flows reveal that use of a second-order projection scheme coupled with fixed SPH quadrature points leads to second-order velocity convergence and almost second-order pressure convergence, provided that the solution is sufficiently smooth. In the case of large-scale dumbbell and bead-spring chain calculations, an appropriate scaling of the number of grid points as a function of the number of beads N ensures, in the absence of excluded volume forces, that the cost of our algorithm is O(N) flops. Finally, we begin calculations in three dimensions with our SPH model. To this end, we solve in three dimensions the problem of Poiseuille flow between two infinite and parallel plates and the problem of Poiseuille flow in a rectangular infinitely long duct. In addition, we carry out three dimensional computations of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces.
104

Une nouvelle méthode smoothed particle hydrodynamics : simulation des interfaces immergées et de la dynamique Brownienne des molécules avec des interactions hydrodynamiques

Kéou Noutcheuwa, Rodrigue Giselin 12 1900 (has links)
Dans cette thèse, nous présentons une nouvelle méthode smoothed particle hydrodynamics (SPH) pour la résolution des équations de Navier-Stokes incompressibles, même en présence des forces singulières. Les termes de sources singulières sont traités d'une manière similaire à celle que l'on retrouve dans la méthode Immersed Boundary (IB) de Peskin (2002) ou de la méthode régularisée de Stokeslets (Cortez, 2001). Dans notre schéma numérique, nous mettons en oeuvre une méthode de projection sans pression de second ordre inspirée de Kim et Moin (1985). Ce schéma évite complètement les difficultés qui peuvent être rencontrées avec la prescription des conditions aux frontières de Neumann sur la pression. Nous présentons deux variantes de cette approche: l'une, Lagrangienne, qui est communément utilisée et l'autre, Eulerienne, car nous considérons simplement que les particules SPH sont des points de quadrature où les propriétés du fluide sont calculées, donc, ces points peuvent être laissés fixes dans le temps. Notre méthode SPH est d'abord testée à la résolution du problème de Poiseuille bidimensionnel entre deux plaques infinies et nous effectuons une analyse détaillée de l'erreur des calculs. Pour ce problème, les résultats sont similaires autant lorsque les particules SPH sont libres de se déplacer que lorsqu'elles sont fixes. Nous traitons, par ailleurs, du problème de la dynamique d'une membrane immergée dans un fluide visqueux et incompressible avec notre méthode SPH. La membrane est représentée par une spline cubique le long de laquelle la tension présente dans la membrane est calculée et transmise au fluide environnant. Les équations de Navier-Stokes, avec une force singulière issue de la membrane sont ensuite résolues pour déterminer la vitesse du fluide dans lequel est immergée la membrane. La vitesse du fluide, ainsi obtenue, est interpolée sur l'interface, afin de déterminer son déplacement. Nous discutons des avantages à maintenir les particules SPH fixes au lieu de les laisser libres de se déplacer. Nous appliquons ensuite notre méthode SPH à la simulation des écoulements confinés des solutions de polymères non dilués avec une interaction hydrodynamique et des forces d'exclusion de volume. Le point de départ de l'algorithme est le système couplé des équations de Langevin pour les polymères et le solvant (CLEPS) (voir par exemple Oono et Freed (1981) et Öttinger et Rabin (1989)) décrivant, dans le cas présent, les dynamiques microscopiques d'une solution de polymère en écoulement avec une représentation bille-ressort des macromolécules. Des tests numériques de certains écoulements dans des canaux bidimensionnels révèlent que l'utilisation de la méthode de projection d'ordre deux couplée à des points de quadrature SPH fixes conduit à un ordre de convergence de la vitesse qui est de deux et à une convergence d'ordre sensiblement égale à deux pour la pression, pourvu que la solution soit suffisamment lisse. Dans le cas des calculs à grandes échelles pour les altères et pour les chaînes de bille-ressort, un choix approprié du nombre de particules SPH en fonction du nombre des billes N permet, en l'absence des forces d'exclusion de volume, de montrer que le coût de notre algorithme est d'ordre O(N). Enfin, nous amorçons des calculs tridimensionnels avec notre modèle SPH. Dans cette optique, nous résolvons le problème de l'écoulement de Poiseuille tridimensionnel entre deux plaques parallèles infinies et le problème de l'écoulement de Poiseuille dans une conduite rectangulaire infiniment longue. De plus, nous simulons en dimension trois des écoulements confinés entre deux plaques infinies des solutions de polymères non diluées avec une interaction hydrodynamique et des forces d'exclusion de volume. / In this thesis we develop a new smoothed particle hydrodynamics (SPH) method suitable for solving the incompressible Navier-Stokes equations, even with singular forces. Singular source terms are handled in a manner similar to that in the immersed boundary (IB) method of Peskin (2002) or in the method of regularized Stokeslets (Cortez, 2001). The numerical scheme implements a second-order pressure-free projection method due to Kim and Moin (1985) and completely obviates the difficulties that may be faced in prescribing Neumann pressure boundary conditions. We present two variants of this approach, one Langrangian which is commonly used and one Eulerian, simply because we consider that the SPH particles are quadrature points on which the fluid properties are calculated, therefore, these points can be kept fixed in time. The proposed SPH method is first tested on the planar start-up Poiseuille problem and a detailed error analysis is performed. For this problem, the results are similar whether the SPH particles are free to move or fixed on a regular grid. Our hybrid SPH-IB method is then used to calculate the dynamics of a stretched immersed elastic membrane. The membrane is represented by a cubic spline along which the tension in the membrane is computed and transmitted to the surrounding fluid. The Navier-Stokes equations with singular force due to the membrane are then solved to determine the velocity of the fluid in which the membrane is immersed. The fluid velocity thus obtained is interpolated on the interface, to determine its displacement. We discuss the advantages, in this problem, of fixing the SPH particles, rather than allowing them to move with the fluid. A new coupled Brownian dynamics-SPH method for the computation of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces is next presented. The starting point for the algorithm is the system of coupled Langevin equations for polymer and solvent (CLEPS) (see Oono and Freed (1981) and Öttinger and Rabin (1989), for example) describing, in the present case, the microscopic dynamics of a flowing polymer solution with a bead-spring representation of the macromolecules. Numerical tests of some two-dimensional channel flows reveal that use of a second-order projection scheme coupled with fixed SPH quadrature points leads to second-order velocity convergence and almost second-order pressure convergence, provided that the solution is sufficiently smooth. In the case of large-scale dumbbell and bead-spring chain calculations, an appropriate scaling of the number of grid points as a function of the number of beads N ensures, in the absence of excluded volume forces, that the cost of our algorithm is O(N) flops. Finally, we begin calculations in three dimensions with our SPH model. To this end, we solve in three dimensions the problem of Poiseuille flow between two infinite and parallel plates and the problem of Poiseuille flow in a rectangular infinitely long duct. In addition, we carry out three dimensional computations of confined flows of non-dilute polymer solutions with full hydrodynamic interaction and excluded volume forces.
105

Méthode SPH implicite d’ordre 2 appliquée à des fluides incompressibles munis d’une frontière libre

Rioux-Lavoie, Damien 05 1900 (has links)
L’objectif de ce mémoire est d’introduire une nouvelle méthode smoothed particle hydrodynamics (SPH) implicite purement lagrangienne, pour la résolution des équations de Navier- Stokes incompressibles bidimensionnelles en présence d’une surface libre. Notre schéma de discrétisation est basé sur celui de Kéou Noutcheuwa et Owens [19]. Nous avons traité la surface libre en combinant la méthode multiple boundary tangent (MBT) de Yildiz et al. [43] et les conditions aux limites sur les champs auxiliaires de Yang et Prosperetti [42]. Ce faisant, nous obtenons un schéma de discrétisation d’ordre $\mathcal{O}(\Delta t ^2)$ et $\mathcal{O}(\Delta x ^2)$, selon certaines contraintes sur la longueur de lissage $h$. Dans un premier temps, nous avons testé notre schéma avec un écoulement de Poiseuille bidimensionnel à l’aide duquel nous analysons l’erreur de discrétisation de la méthode SPH. Ensuite, nous avons tenté de simuler un problème d’extrusion newtonien bidimensionnel. Malheureusement, bien que le comportement de la surface libre soit satisfaisant, nous avons rencontré des problèmes numériques sur la singularité à la sortie du moule. / The objective of this thesis is to introduce a new implicit purely lagrangian smoothed particle hydrodynamics (SPH) method, for the resolution of the two-dimensional incompressible Navier-Stokes equations in the presence of a free surface. Our discretization scheme is based on that of Kéou Noutcheuwa et Owens [19]. We have treated the free surface by combining Yildiz et al. [43] multiple boundary tangent (MBT) method and boundary conditions on the auxiliary fields of Yang et Prosperetti [42]. In this way, we obtain a discretization scheme of order $\mathcal{O}(\Delta t ^2)$ and $\mathcal{O}(\Delta x ^2)$, according to certain constraints on the smoothing length $h$. First, we tested our scheme with a two-dimensional Poiseuille flow by means of which we analyze the discretization error of the SPH method. Then, we tried to simulate a two-dimensional Newtonian extrusion problem. Unfortunately, although the behavior of the free surface is satisfactory, we have encountered numerical problems on the singularity at the output of the die.
106

Sculpture virtuelle par système de particules / Virtual sculpture using particles system

Helbling, Marc 25 November 2010 (has links)
La 3D s'impose comme un nouveau média dont l'adoption généralisée passe par la conception d'outils, accessibles au grand public, de création et de manipulation de formes tridimensionnelles quelconques. Les outils actuels reposent fortement sur la modélisation sous-jacente des formes, généralement surfacique, et sont alors peu intuitifs ou limitatifs dans l'expressivité offerte à l'utilisateur.Nous souhaitons, dans ces travaux, définir une approche ne présentant pas ces défauts et permettant à l'utilisateur de se concentrer sur le processus créatif. En nous inspirant de l'utilisation séculaire de l'argile, nous proposons une approche modélisant la matière sous forme lagrangienne.Une forme est ainsi décrite par un système de particules, où chaque particule représente un petit volume du volume global.Dans ce cadre lagrangien, la méthode Smoothed Particle Hydrodynamics (SPH) permet l'approximation de grandeurs physiques en tout point de l'espace. Nous proposons alors une modélisation de matériaux à deux couches, l'une décrivant la topologie et l'autre décrivant la géométrie du système global.La méthode SPH permet, entre autres, d'évaluer la densité de matière. Ceci nous permet de définir une surface implicite basée sur les propriétés physiques du système de particules pour redonner un aspect continu à la matière.Ces matériaux peuvent alors être manipulés au moyen d'interactions locales reproduisant le maniement de la pâte à modeler, et de déformations globales. L'intérêt de notre approche est démontrée par plusieurs prototypes fonctionnant sur des stations de travail standard ou dans des environnements immersifs. / 3D is emerging as a new media. Its widespread adoption requires the implementation of userfriendly tools to create and manipulate three-dimensional shapes. Current softwares heavily rely on underlying shape modeling, usually a surfacic one, and are then often counter-intuitive orlimiting. Our objective is the design of an approach alleviating those limitations and allowing the user to only focus on the process of creating forms. Drawing inspiration from the ancient use of clay,we propose to model a material in a lagrangian description. A shape is described by a particles system, where each particle represents a small fraction of the total volume of the shape. In this framework, the Smoothed Particle Hydrodynamics method enables to approximate physical values anywhere in space. Relying on this method, we propose a modeling of material with two levels, one level representing the topology and the other one describing local geometry of the shape.The SPH method especially enables to evaluate a density of matter. We use this property todefine an implicit surface based on the physical properties of the particles system to reproduce the continuous aspect of matter. Those virtual materials can then be manipulated locally through interactions reproducing the handling of dough in the real world or through global shape deformation. Our approach is demonstrated by several prototypes running either on typical desktop workstation or in immersive environment system.

Page generated in 0.1421 seconds