• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 6
  • 5
  • 2
  • 1
  • Tagged with
  • 49
  • 49
  • 21
  • 21
  • 17
  • 16
  • 13
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Investigation of Laboratory Test Procedures for Assessing the Structural Capacity of Geogrid-Reinforced Aggregate Base Materials

Knighton, Jaren Tolman 01 March 2015 (has links) (PDF)
The modulus of aggregate base layers in pavement structures can potentially be increased through the use of geogrid. However, methods for determining how much structural benefit can be expected from a given geogrid product have not been standardized. A laboratory testing protocol is therefore needed to enable evaluation, in terms of modulus or California bearing ratio (CBR), for example, of the degree of improvement that may be achieved by a given geogrid. Consequently, the objective of this research was to identify a laboratory test method that can be used to quantify improvements in structural capacity of aggregate base materials reinforced with geogrid. For this research, National Cooperative Highway Research Program Report 598 repeated load triaxial, American Association of State Highway and Transportation Officials (AASHTO) T 307 quick shear, and CBR testing protocols were used to test unreinforced and geogrid-reinforced aggregate base materials from northern Utah. Biaxial and triaxial geogrid were investigated in multiple reinforcement configurations. Several statistical analyses were performed on the results of each test method to identify the test that is most likely to consistently show an improvement in the structural capacity of aggregate base materials reinforced with geogrid. The results of this research indicate that, for the methods and materials evaluated in this study, calculation of the modulus at 2 percent strain from the AASHTO T 307 quick shear data is the test method most likely to consistently show an improvement in structural capacity associated with geogrid reinforcement. Of the three configurations investigated as part of this research, placing the geogrid at an upper position within a specimen is preferred. Given that the end goal of the use of geogrid reinforcement is to improve pavement performance, additional research is needed to compare the results of the AASHTO T 307 quick shear test obtained in the laboratory with the structural capacity of geogrid-reinforced aggregate base materials measured in the field. In addition, correlations between the results of the AASHTO T 307 quick shear test and resilient modulus need to be investigated in order to incorporate the findings of the AASHTO T 307 quick shear test on reinforced base materials into mechanistic-empirical pavement design.
32

Recycled Concrete Aggregate – A Viable Aggregate Source For Concrete Pavements

Smith, James Trevor 27 November 2009 (has links)
Virgin aggregate is being used faster than it is being made available creating a foreseeable shortage in the future. Despite this trend, the availability of demolished concrete for use as recycled concrete aggregate (RCA) is increasing. Using this waste concrete as RCA conserves virgin aggregate, reduces the impact on landfills, decreases energy consumption and can provide cost savings. However, there are still many unanswered questions on the beneficial use of RCA in concrete pavements. This research addresses the many technical and cost-effective concerns regarding the use of RCA in concrete pavements by identifying concrete mixture and proportioning designs suitable for jointed plain concrete pavements; constructing test sections using varying amounts of RCA; monitoring performance through testing, condition surveys and sensor data; modeling RCA pavement performance; and predicting life cycle costs. The research was carried out as a partnership between the Centre for Pavement and Transportation Technology (CPATT) at the University of Waterloo, the Cement Association of Canada, Dufferin Construction, and the Natural Sciences and Engineering Research Council of Canada. The literature review provides an overview of sustainability and key performance indicators, the material properties of RCA both as an aggregate and in concrete, concrete mixture and proportioning designs with RCA, performance of existing RCA pavements, and the implementation of RCA highlighting some examples where RCA has been used successfully. Twelve preliminary mixes were developed using three total cementitious contents amounts of 315 kg/m3, 330 kg/m3, and 345 kg/m3 to determine four suitable mixes with varying coarse RCA contents (0%, 15%, 30% and 50%) to place at the CPATT test track. At 28-days, all of the twelve mixes exceed the 30 MPa design strength. Four test sections containing 0%, 15%, 30% and 50% coarse RCA were constructed in June 2007. The test sections had identical cross sections consisting of 250 mm portland cement concrete (PCC), 100 mm asphalt-stabilized OGDL and a 450 mm granular base. For each coarse RCA content, one slab was instrumented with six vibrating wire concrete embedment strain gages to measure long-term longitudinal and transverse strain due to environmental changes, two vibrating wire vertical extensometers to monitor slab curling and warping, two vibrating wire inter-panel extensometers to monitor joint movement, and two maturity meters to measure maturity and temperature. Quality assurance and quality control (QA/QC) testing showed that the mixes containing RCA exhibited similar or improved performance when compared to the conventional concrete for compressive and flexural strength, freeze-thaw durability and coefficient of thermal expansion. Pavement performance of the four test sections was evaluated using visual surveys following the Ontario Ministry of Transportation’s Manual for Condition rating of Rigid Pavements. Nine pavement evaluations have been performed every two to four months since construction. All test sections are in excellent condition with pavement condition index (PCI) values greater than 85 after two years in-service and approximately three hundred thousand Equivalent Single Axle Loads. Sensor data from the strain gauges, and vertical and inter-panel extensometers are providing consistent results between the test sections. Long-term performance modeling using the Mechanistic-Empirical Pavement Design Guide (ME-PDG) showed improved performance with respect to cracked slabs, joint faulting, and pavement roughness as the RCA content increased. Multivariable sensitivity analysis showed that the performance results were sensitive to CTE, unit weight, joint spacing, edge support, surface absorption, and dowel bar diameter. Life cycle cost analysis (LCCA) illustrated the savings that can be expected using RCA as a replacement aggregate source as the cost of virgin aggregate increase as the sources becomes depleted. Multivariable sensitivity analysis showed that the LCCA results were sensitive to construction costs, discount rate, and maintenance and rehabilitation quantities.
33

Recycled Concrete Aggregate – A Viable Aggregate Source For Concrete Pavements

Smith, James Trevor 27 November 2009 (has links)
Virgin aggregate is being used faster than it is being made available creating a foreseeable shortage in the future. Despite this trend, the availability of demolished concrete for use as recycled concrete aggregate (RCA) is increasing. Using this waste concrete as RCA conserves virgin aggregate, reduces the impact on landfills, decreases energy consumption and can provide cost savings. However, there are still many unanswered questions on the beneficial use of RCA in concrete pavements. This research addresses the many technical and cost-effective concerns regarding the use of RCA in concrete pavements by identifying concrete mixture and proportioning designs suitable for jointed plain concrete pavements; constructing test sections using varying amounts of RCA; monitoring performance through testing, condition surveys and sensor data; modeling RCA pavement performance; and predicting life cycle costs. The research was carried out as a partnership between the Centre for Pavement and Transportation Technology (CPATT) at the University of Waterloo, the Cement Association of Canada, Dufferin Construction, and the Natural Sciences and Engineering Research Council of Canada. The literature review provides an overview of sustainability and key performance indicators, the material properties of RCA both as an aggregate and in concrete, concrete mixture and proportioning designs with RCA, performance of existing RCA pavements, and the implementation of RCA highlighting some examples where RCA has been used successfully. Twelve preliminary mixes were developed using three total cementitious contents amounts of 315 kg/m3, 330 kg/m3, and 345 kg/m3 to determine four suitable mixes with varying coarse RCA contents (0%, 15%, 30% and 50%) to place at the CPATT test track. At 28-days, all of the twelve mixes exceed the 30 MPa design strength. Four test sections containing 0%, 15%, 30% and 50% coarse RCA were constructed in June 2007. The test sections had identical cross sections consisting of 250 mm portland cement concrete (PCC), 100 mm asphalt-stabilized OGDL and a 450 mm granular base. For each coarse RCA content, one slab was instrumented with six vibrating wire concrete embedment strain gages to measure long-term longitudinal and transverse strain due to environmental changes, two vibrating wire vertical extensometers to monitor slab curling and warping, two vibrating wire inter-panel extensometers to monitor joint movement, and two maturity meters to measure maturity and temperature. Quality assurance and quality control (QA/QC) testing showed that the mixes containing RCA exhibited similar or improved performance when compared to the conventional concrete for compressive and flexural strength, freeze-thaw durability and coefficient of thermal expansion. Pavement performance of the four test sections was evaluated using visual surveys following the Ontario Ministry of Transportation’s Manual for Condition rating of Rigid Pavements. Nine pavement evaluations have been performed every two to four months since construction. All test sections are in excellent condition with pavement condition index (PCI) values greater than 85 after two years in-service and approximately three hundred thousand Equivalent Single Axle Loads. Sensor data from the strain gauges, and vertical and inter-panel extensometers are providing consistent results between the test sections. Long-term performance modeling using the Mechanistic-Empirical Pavement Design Guide (ME-PDG) showed improved performance with respect to cracked slabs, joint faulting, and pavement roughness as the RCA content increased. Multivariable sensitivity analysis showed that the performance results were sensitive to CTE, unit weight, joint spacing, edge support, surface absorption, and dowel bar diameter. Life cycle cost analysis (LCCA) illustrated the savings that can be expected using RCA as a replacement aggregate source as the cost of virgin aggregate increase as the sources becomes depleted. Multivariable sensitivity analysis showed that the LCCA results were sensitive to construction costs, discount rate, and maintenance and rehabilitation quantities.
34

Modelling of the resilient and permanent deformation behaviour of subgrade soils and unbound granular materials

Soliman, Haithem 03 October 2015 (has links)
Laboratory characterization of subgrade soils and unbound granular materials is an essential component of the Mechanistic-Empirical Pavement Design Guide (Pavement ME). The design thickness and performance of a pavement structure are highly dependent on the deformation behaviour of subgrade and granular material. Specifications for granular materials vary among transportation agencies based on the availability of materials, climatic conditions, and function. Specifications aim to provide durable materials that meet design requirements and achieve the target design life with cost effective materials. The objectives of the research are to: • evaluate resilient modulus of typical fine-grained soils under traffic loading. • evaluate resilient modulus, permanent deformation, and permeability of typical unbound granular materials. • evaluate the effect of moisture and fines fraction on the performance of unbound granular materials and subgrade soil. • develop prediction models for resilient modulus to improve reliability of Level 2 inputs in the Pavement ME. • provide test data in support of updating Manitoba Infrastructure and Transportation specifications for unbound granular materials to improve the performance of pavement structures. Resilient modulus tests were conducted on three types of subgrade soil (high plastic clay, sandy clay, and silty sand/sandy silt) at four levels of moisture content. Resilient modulus, permanent deformation and permeability tests were conducted on six gradations representing two types of granular material (100% crushed limestone and gravel) at two levels of moisture content. Prediction models were developed for resilient modulus and compared to the models developed under the Long Term Pavement Performance program. The proposed models provided more reliable predictions with lower root mean square error. The deformation behaviour of the granular materials was classified according to the shakedown and dissipated energy approaches. Among the tested fines contents, limestone and gravel materials with optimum fines contents of 4.5% and 9%, respectively, had better resistance to plastic deformation and higher resilient modulus. The dissipated energy approach can be used to determine the stress ratio for the boundary between post compaction and stable zones from multistage triaxial testing. Result of permeability tests showed that the hydraulic conductivity of unbound granular material increased as the fines content decreased. / February 2016
35

Evaluación de las técnicas de diseño de pavimentos básicos para la conservación vial del tramo V de la carretera Acobamba – Puente Alcomachay en el Departamento de Huancavelica

Pérez Rosales, Germán Rodrigo, Andagua Mendoza, Kengy Edinson January 2015 (has links)
El presente trabajo de investigación, tiene un diseño de investigación (cuantitativo-cualitativo) que enfoca el problema de utilizar diferentes técnicas de diseño de pavimentos para un efecto económico e innovador para la conservación vial del tramo V de la carretera Acobamba – Puente Alcomachay en el Departamento de Huancavelica, que nos llevó a formular el objetivo de determinar la técnica de diseño de pavimento más económica: AASHTO 93 y NAASRA (antes AUSTROADS), desarrollando parámetros geotécnicos y de transitabilidad, obteniendo como resultado que: la técnica NAASRA, para las condiciones existentes del tramo, nos proporciona un pavimento económico con un espesor menor que la obtenida por el método AASHTO 93. This investigation study, has an investigation design (quantitative, qualitative) that focus the problem of using different pavement design techniques for an economical and innovative result for the Road Conservation Project of the highway Segment V, located between Acobamba until Alcomachay bridge, in the State of Huancavelica - Peru), that lead us to formulate the objective of finding the most economical pavement design technology AASHTO 93 and NAASRA (before AUSTROADS), developing geotechnical and passability parameters, obtaining as a result that: NAASRA technique, for the current road conditions gives us an economical pavement, with a lower width than the one obtained with the AASHTO 93 method.
36

Characterization and modeling of asphalt concrete from micro-to-macro scale

Canon Falla, Gustavo 15 June 2021 (has links)
The main objectives of this research were twofold: 1). to develop advanced material characterization techniques for bitumen, mastic and mortar aiming to improve the knowledge of the behavior of asphalt concrete at micro and meso scales, and 2). to develop an efficient macro-mechanical numerical model capable of determining flexible pavement responses to traffic and environmental loads.
37

Mechanical property relationships of cement or lime stabilized soils throughout a pavement's life

Ayers, Leigh E.W. 13 May 2022 (has links) (PDF)
Soil-cement is an integral part of pavement design, especially in areas that are aggregate deprived, such as Mississippi. Current designs are reliant on the relationship of unconfined compressive strength (UCS) to other mechanical properties. The other properties discussed in this dissertation are Modulus of Elasticity (E), Indirect Tensile Strength (St), and Modulus of Rupture (MOR). This dissertation includes a comprehensive review of past design methods and mechanical property relationships. While some mechanical property relationships were shown to be well understood (i.e. St to UCS), others were not as accurate, especially for the later life mechanical properties (i.e. MOR to UCS and E to UCS). This dissertation investigates the Plastic Mold (PM) Compaction (PM) Device and its ability to measure mechanical property relationships (UCS, E, St) for soil-cement as well as different materials, such as lime stabilized subgrade and Cold in Place Recycling (CIR) stabilized with cement. These mechanical property relationships were compared to soil-cement beam specimens, which are capable of being tested for the four previously mentioned mechanical properties from an individual specimen. Finally to have a better understanding of the later life mechanical properties and their relationships, PM and beam specimens were exposed to elevated temperatures to forecast out how these properties interrelate over time. These mechanical property values and relationship were then compared to Mississippi field cores ranging from 10 to 54 years old. These protocols, beam and elevated curing, were able to replicate what was seen for pavement cores that were extracted after decades of service. Over 1300 specimens were testing showing how these mechanical properties interacted from early ages and throughout a pavement’s life.
38

Design and Construction of Pavements in Cold Regions: State of the Practice

Smith, Brad Steven 07 December 2006 (has links) (PDF)
The effects of frost action introduce many challenges in the design and construction of roadways in cold regions throughout the United States. The penetration of frost into pavement structures can lead to differential frost heave during winter and thaw weakening during spring. Both of these damage mechanisms lead to premature pavement distress, structural deterioration, and poor ride quality. Because the availability of naturally occurring non-frost-susceptible pavement base materials is rapidly diminishing in many areas while project budgets remain largely inadequate, pavement engineers are utilizing alternative materials and techniques to minimize such damage. The purpose of this research was to investigate and document the state of the practice concerning the design and construction of pavements in cold regions. In particular, the various methods and standards employed for characterizing materials, improving soils and aggregates, and determining pavement layer thicknesses were explored. A comprehensive literature review was performed, and a questionnaire survey was conducted of various state DOTs throughout the United States that are involved with the design and maintenance of roadways. The study was directed primarily at identifying practices utilized by state DOTs in climates with freezing temperatures. The information obtained in this research represents a unique compilation of standards of practice that have been developed by DOTs based on years of experience and research in their respective jurisdictions. While this research allows engineers at state DOTs to compare their pavement design and construction practices with those of other states represented in the survey, consulting engineers and engineers in local governments involved in characterizing materials, improving soils and aggregates, and determining pavement layer thicknesses can also benefit from this work.
39

Extension Of Stress-Based Finite Element Model Using Resilient Modulus Material Characterization To Develop A Theoretical Framework for Realistic Response Modeling of Flexible Pavements on Cohesive Subgrades.

Parris, Kadri 20 October 2015 (has links)
No description available.
40

Validation of the Enhanced Integrated Climatic Model (EICM) for the Ohio SHRP Test Road at U.S. 23

Quintero, Natalia M. January 2007 (has links)
No description available.

Page generated in 0.0991 seconds