• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 14
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 120
  • 120
  • 120
  • 44
  • 44
  • 44
  • 35
  • 30
  • 26
  • 21
  • 14
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Synthesis of microcapsules and inclusion complexes consisting of hydrophobic cores and polysaccharidic shells for thermal energy management and packaging

Bahsi-Kaya, Gulbahar 06 August 2021 (has links)
Active substances can be stabilized to be protected from undesirable reactions, aggregation, and leaking, which would keep the intended functions of the active substances without premature degradation. Among such active substances are paraffin-based organic phase change materials (PCMs) and essential oils (EOs), which feature attractive characteristics, e.g., high latent heat of fusion and inherent antimicrobial activity. However, their high volatility requires an effective stabilization strategy. Petroleum-based synthetic polymers have often been employed to stabilize PCMs and EOs by encapsulation and complexation pathways. Despite their proven effectiveness, these polymers are from non-renewable resources, and non-degradable and often toxic, which has prompted a need to develop a substitute arising from natural polymers that are environmentally benign, biodegradable, and sustainable. Valorization of biomass in this regard would add extra value to biomass otherwise burned or wasted. This dissertation will present the development of microcapsules and inclusion complexes consisting of a hydrophobic active substance core and a polysaccharidic shell originating from biomass. The first two chapters will explain the introduction and experimental details. Chapter 3 will present the microencapsulation of n-hexadecane as PCM via oil-in-water (O/W) Pickering emulsions stabilized by unmodified cellulose nanofibrils (CNFs) through a sonochemical technique. Chapter 4 will investigate the incorporation of the PCM-CNF microcapsules into TEMPO-oxidized CNF films for building application. Finally, Chapter 5 will show the synthesis of EOs-beta cyclodextrin (βCD) inclusion complexes as a guest-host system through a sonochemical technique.
42

Silicon Compatible Short-Wave Infrared Photonic Devices

Sevison, Gary Alan 29 May 2018 (has links)
No description available.
43

Intermediate Phase, Molecular Structure, Aging and Network Topology of Ternary Ge<sub>x</sub>Sb<sub>x</sub>Se<sub>100-2x</sub> Glasses

Gunasekera, Kapila J. 03 August 2010 (has links)
No description available.
44

Fabrication and Testing of Hierarchical Carbon Nanostructures for Multifunctional Applications

Barney, Ian Timothy 26 September 2012 (has links)
No description available.
45

A Variation of Positioning Phase Change Materials (PCMs) Within Building Enclosures and Their Utilization Toward Thermal Performance

Abuzaid, Abdullah Ibrahim 26 April 2018 (has links)
Recently, buildings have been receiving more serious attention to help reduce global energy consumption. At the same time, thermal comfort has become an increasing concern for building occupants. Phase Change Materials (PCMs), which are capable of storing and releasing significant amounts of energy by melting and solidifying at a given temperature, are perceived as a promising opportunity for improving the thermal performance of buildings. This is because they use their thermophysical properties and latent heat while transforming state (or phase) as a feature for thermal energy storage systems to reduce overall energy demand, specifically during peaks hours, as well as to improve thermal comfort in buildings. This research aims to provide an overview of opportunities and challenges for the utilization of PCMs in the Architecture, Engineering, and Construction (AEC) sector, a broader understanding of specifically promising technologies, and a clarification of the effectiveness of different applications in building enclosures design especially in exterior walls. The research discusses how PCMs can be incorporated within building enclosures effectively to enhance building performance and improve thermal comfort while reducing heating and cooling energy consumption in buildings. The major objectives of the research include studying the properties of PCMs and their potential impact on building construction, clarifying PCMs selection criteria for building application, identifying the effectiveness of utilizing PCMs on saving energy, and evaluating the contribution of utilizing PCMs in building enclosures to thermal comfort. The research uses an exploratory quantitative approach that contains three main stages: 1) a systematic literature review, 2) laboratory experiments, and 3) validation to meet the goal of the research. Finally, by extrapolating results, the research ends with a practical assessment of application opportunities and how to effectively utilize PCMs in exterior walls of buildings. / PHD / With the growing concern of energy savings and selecting the most efficient way to provide thermal comfort for buildings’ users, buildings need to be constructed with an effective utilization method of materials and systems. Phase Change Materials (PCMs) have the ability to moderate temperatures within a specific range. They can be applied to reduce the energy used in buildings and improve thermal comfort. This is because they absorb heat when materials melt and release it when materials solidify. This research studies the properties of PCMs and their potential impact on building construction and clarifies PCM selection criteria for building applications. Also, the research illustrates the impacts of utilizing PCMs in different positions within an external wall on energy savings and thermal comfort. The research uses an exploratory quantitative approach that contains three main stages: 1) a systematic literature review, 2) laboratory experiments, and 3) validation to meet the goal of the research. Finally, the research ends with a practical assessment of application opportunities and how to effectively utilize PCMs in exterior walls of buildings.
46

Integration of Phase Change Materials in Commercial Buildings for Thermal Regulation and Energy Efficiency

Malekzadeh, Fatemeh January 2015 (has links)
One of prospective procedures of absorbing thermal energy and releasing it during the required time is the application of phase change materials known as PCMs in building envelopes. High thermal energy storage (TES) materials has been a technology that effects the energy efficiency of a building by contributing in using onsite resources and reducing cooling or heating loads. Currently, many TES systems are emerging and contributing in building assemblies, however using an appropriate type of TES in a specific building and climate requires an in-depth knowledge of their properties. This research aims to provide a thorough review of a broad range of thermal energy storage technologies including their potential application in buildings. Subsequently, a comparative study and simulation between a basecase and an optimized model by PCM is thoroughly considered to understand the effect of high thermal storage building's shell on energy efficiency and indoor thermal comfort. Specifically this study proposes that the incorporation of PCM into glazing system as a high thermal capacity system will improve windows thermal performance and thermal capacity to varying climatic conditions. The generated results by eQUEST energy modeling software demonstrates approximately 25% reduction in cooling loads during the summer and 10% reduction in heating loads during the winter for optimized office building by PCM in hot arid climate of Arizona. Besides, using PCM in glazing system will reduce heat gain through the windows by conduction phenomenon. The hourly results indicates the effect of PCM as a thermal energy storage system in building envelopes for building's energy efficiency and thermal regulation. However, several problems need to be tackled before LHTES can reliably and practically be applied. We conclude with some suggestions for future work.
47

Utilisation de méthodes inverses pour la caractérisation de matériaux à changement de phase (MCP) / Use of inverse methods for the characterization of phase change materials (PCM)

Maréchal, William 24 April 2014 (has links)
Avec le développement des énergies intermittentes et la raréfaction des énergies fossiles, le sujet du stockage de l’énergie prend de plus en plus d’ampleur. Une des voies étudiée est le stockage thermique par utilisation de matériaux à changement de phase (MCP). Cette voie est en outre développée pour améliorer l’inertie thermique dans le secteur du bâtiment. Pour utiliser au mieux ces matériaux il est nécessaire de pouvoir prévoir leur comportement énergétique. Cela nécessite une connaissance précise des propriétés thermophysiques, et en premier lieu de la fonction enthalpie massique . Actuellement, il est souvent proposé d'approximer cette enthalpie par l'intégration directe des thermogrammes de la calorimétrie utilisant notamment la notion de capacité calorifique "équivalente". Cette approche est cependant fausse car le thermogramme n’est qu'une représentation en fonction du temps de phénomènes complexes faisant intervenir non seulement les propriétés énergétique du matériaux mais également les transferts thermiques au sein de la cellule du calorimètre. Il en résulte, par exemple, que la forme des thermogrammes, et donc l’enthalpie apparente, dépend de la vitesse de réchauffement et de la masse de l'échantillon ce qui n'est pas le cas de l'enthalpie des MCP qui ne dépend, à pression fixe, que de la température ou de la concentration (pour les solutions). On propose de comparer la sortie d’un modèle numérique direct avec des thermogrammes expérimentaux. L’objectif principal de cette thèse est alors d’utiliser ce modèle dans le cadre d’une méthode inverse permettant l’identification des paramètres de l’équation d’état permettant alors de calculer l’enthapie massique . Dans un premier temps, il est donc présenté le détail d'un modèle 2D dit enthalpique qui néglige la convection, validé par l'expérience, permettant de reconstituer les thermogrammes de corps purs ou de solutions binaires dont les enthalpies sont connues. Il en est déduit une étude de l'influence des différents paramètres ( , , , ...) sur la forme des thermogrammes pour en déduire leurs sensibilités. Une réduction de ce modèle est ensuite effectuée pour réduire le temps de calcul du modèle direct en vue de l’utilisation dans une méthode inverse. Cette dernière est décrite ainsi que les algorithmes d’optimisation correspondants (de Levenberg-Marquardt, génétique ou du simplexe qui s'est avéré le plus rapide) dans un second temps. Nous appliquerons ensuite cet algorithme pour identifier, à partir d'expériences, la fonction enthalpie de corps purs ou de solutions binaires. Les résultats obtenus montrent qu’il est possible d’identifier une fonction independante de la vitesse de réchauffement et de la masse, ce qui valide la méthode. Une analyse des différentes sources d’erreurs dans le processus d’identification et leurs influences sur le résultat permet d’évaluer la qualité de la fonction enthalpie que l’on identifie. Enfin, cette même approche a été utilisée pour analyser une expérience réalisée sur un échantillon d’un matériau composite utilisé dans le bâtiment (ciment avec inclusion de MCP micro-encapsulé). Dans ce cas encore, nos méthodes permettent une caractérisation énergétique pertinente. / With the development of intermittent sources of energy and the depletion of fossil fuels, the subject of energy storage is becoming an important topic. One of the studied options is tthe latent hermal storage using of phase change materials (PCM). One application for this type of energy storage is to improve the thermal insulation in buildings. To make the best use of these materials it is necessary to be able to predict their energy behavior. This requires a precise knowledge of their thermophysical properties, first of all of the specific enthalpy function of the material . Currently, it is often suggested to approximate the enthalpy by the direct integration of the thermograms obtained through calorimetry experiments (notion of "equivalent" calorific capacity). This approach is false because thermograms are only a time related representation of complex phenomena where thermal transfers arise in the cell of the calorimeter acting with the thermophysical properties. As a result, for example, the shape of thermograms depends on the heating rate and on the mass of the sample, which is not the case for the enthalpy of the PCM, which depends, at constant pressure, only on the temperature or on the concentration (for the solutions). We propose to compare the results given by a of a numerical direct model with experimental thermograms. The main objective in this thesis is then to use this direct model in an inverse method in order to identify the parameters of the equation of state, which enables us to calculate the specific enthalpy . First of all, the detail of an enthalpy model is presented, and then validated by comparison with experiments, allowing us to reconstruct the thermograms of pure substances or of salt solutions, of which the enthalpies are known. A study of the influence of the various parameters ( , , , .,..) on the shape of thermograms is also undertaken in order to deduce their sensibilities. A reduced model is then developed in order to reduce the calculating time of the direct model. This optimized model allows the use of inverse methods with acceptable durations. Several inverses algorithms are then presented: Levenberg-Marquardt, evolutionary and Simplex which has proved to be the fastest). We shall then apply this algorithm to identify, from calorimetric experiments, the enthalpy function of pure substances or of salt solutions. The results that we obtain show that it is possible to identify a function independent of the heating rate and of the mass, which validates the method. An analysis of the various sources of errors in the identification process and of their influences on the result allows us to estimate the quality of the enthalpy function that we identify.
48

Phase Change Materials for Solar Thermal Energy Storage

Allred, Paul 21 March 2014 (has links)
Phase change materials (PCMs) are a viable option for compact thermal energy storage. Effective designs using PCMs require accurate knowledge of the thermal and physical properties, but for many PCMs these are not well known, and when known the knowledge is sometimes contradictory. Therefore, physical characteristics of several promising PCMs (K3PO4·7H2O, FeCl3·6H2O, Mn(NO3)2·4H2O) were determined. In addition, a life cycle assessment (LCA) of dodecanoic acid in a solar thermal energy storage system was carried out to determine the environmental impact for energy storage. This LCA showed that dodecanoic acid in a solar energy system would save energy and facilitate CO2 reductions. However, the economic cost is high and is unlikely to be implemented without incentives. Finally an experimental testbed for a solar thermal system utilizing dodecanoic acid was built. Preliminary measurements demonstrated the utility of this system.
49

Study of mixed mode electro-optical operations of Ge2Sb2Te5

Hernandez, Gerardo Rodriguez January 2017 (has links)
Chalcogenide based Phase Change Materials are currently of great technological interest in the growing field of optoelectronics. Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST) is the most widely studied phase change material, and it has been commercially used in both optical and electronic data storage applications, due to its ability to switch between two different atomic configurations, at high speed and with low power consumption, as well as its high optical and electrical contrast between amorphous and crystalline states. Despite its well-known optical and electrical properties, the operation in combination of optical and electrical domains has not yet been fully investigated. This work studies the operation of GST nano-devices exposed to a combination of optical and electrical stimuli or mixed mode by asking, is it possible to electrically measure an optically induced phase change, or vice versa? If so, how do the optical and electrical responses relate to each other, and is it possible to operate GST with a combination of optical and electrical signals? What are the technical constraints that need to be considered in order to fabricate GST devices that could be operated either optically or electrically? In order to answer these questions, experiments that characterized the optical and electrical responses of GST based nano-devices were performed. It was found that different crystallization mechanisms may have influence in the response, and that the thermal and optical design characteristics of the device play a key role in its operation. Finally a proof of principle, of an opto-electonic memory device that can be read electrically, reset optically and write electrically, is presented. This opens up possibilities for the development of new opto-eloectronic applications such as non-volatile interfaces between future photonics and electronics, high speed optical communication detectors, high speed cameras, artificial retinas and many more.
50

Thermal Management Of Electronics Using Phase Change Materials

Saha, Sandip Kumar 11 1900 (has links) (PDF)
No description available.

Page generated in 0.0843 seconds