• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Superconductive Effects in Thin Cluster Films

Grigg, John Antony Hugh January 2012 (has links)
In this thesis, the superconductive and superresistive properties of thin percolating films of lead nanoclusters are presented. The samples were created by depositing clusters from an inert gas aggregation cluster source onto substrates held at either room temperature or 10K. Observations of the characteristic behaviours of the samples were made through R(T ) and V (I) measurements. Several interesting features were observed - smooth and discrete steps in the R(I) curves, hysteresis between increasing and decreasing bias currents, and non-zero resistances at superconducting temperatures. Explanations are proposed in terms of theoretical models of several phenomena - phase slips, phase slip centres and hotspots - which have seen little prior application to percolating systems in literature.
2

Ladungstransport in dimensions-reduzierten Festkoerpern

Goldbach, Matthias, matthias.goldbach@uni-oldenburg.de 18 December 1998 (has links)
No description available.
3

Fluctuation Effects in One-Dimensional Superconducting Nanowires

Li, Peng January 2010 (has links)
<p>This thesis focuses on the fluctuation in the switching current $I_s$ of superconducting Al nanowires. We discovered that the maximum current which nanowires can support is limited by a single phase slip at low temperature. </p><p>Al superconducting nanowires less than 10 nm wide were fabricated based on a MBE grown InP ridge template in an edge-on geometry. The method utilizes a special substrate featuring a high standing 8nm-wide InP ridge. A thin layer of Al was evaporated on the substrate and Al on the ridge formed nanowires.</p><p>The fluctuation effects starts to dominate in the nanowire due to reduced energy barrier. One of such effects is the phase slip. The phase slip is a topological event, during which the superconducting phase between two superconducting electrodes changes by $2\pi$. The phase slip broadens the normal-superconducting transition. Part of the nanowire becomes normal during the phase slip and forms a normal core. The normal core generates heat and causes the premature switching in superconducting nanowires.</p><p></p><p>The nanowire becomes superconducting below the critical temperature $T_c$. The superconducting-normal transition was studied in the thesis. The transition of nanowires with superconducting leads qualitatively fits the thermally activated phase slip (TAPS) theory. On the other hand, the transition of the nanowires with normal leads showed a resistive tail due to the inverse-proximity effect.</p><p>The nanowire switches from the superconducting state to the normal state as the current is increased. Ideally, the maximum current is set by a pair-breaking mechanism, by which the kinetic energy of quasi-particles exceeds the bonding energy of Cooper pairs. This is called the critical current, $I_c$. In practice, the measured maximum current, called the switching current $I_s$, cannot reach $I_c$ because of the phase slip.</p><p>$I_s$ shows stochasticity due to the phase slip. For the nanowires with superconducting leads, the average $I_s$ approximately follows but falls below $I_c$. The fluctuation in $I_s$ shows non-monotonic behavior, in contrast to other studies. The fluctuation first increases and then decreases rapidly with increasing temperature. The fluctuation behavior is consistent with a scenario where the switch is triggered by a single phase slip at low temperature while by multiple phase slips at higher temperature. Thermal activation of phase slips appears dominant at most temperatures. However, in the thinnest nanowire, the saturation of the fluctuation at low temperature indicates that the phase slips by macroscopic quantum tunneling.</p><p>The superconducting nanowires with normal leads were also studied. One of the distinctive properties of our nanowire (the critical field of 1D nanowire is 10 times larger than that of a 2D superconducting film) allowed us to study the same nanowire with different leads (superconducting or normal). Both the average $I_s$ and the fluctuation in $I_s$ differed qualitatively depending on whether the leads were superconducting or normal. The temperature dependence of the average $I_s$ followed the $I_c$ of the Josephson junction instead of the phenomenological pair-breaking $I_c$. The difference was found to depend on both the temperature (close to $T_c$ or 0) and the length (shorter or longer than the charge imbalance length). Our study also showed that nonlinear current-voltage (IV) curves were observed due to the inverse-proximity effect.</p> / Dissertation
4

Sauts quantiques de phase dans des chaînes de jonctions Josephson / Quantum phase-slips in Josephson junction chains

Pop, Ioan Mihai 14 February 2011 (has links)
Nous avons étudié la dynamique des sauts quantiques de phase (quantum phase-slips) dans différents types de chaînes de jonctions Josephson. Les sauts de phase sont contrôlés par le rapport entre l'énergie Josephson et l'énergie de charge de chaque jonction. Nous avons mesuré l'effet des sauts de phase sur l'état fondamental de la chaîne et nous avons observé l'interférence quantique de sauts de phase (effet Aharonov-Casher). Les résultats de nos mesures sont en très bon accord avec les prédictions théoriques. Nous avons montré qu'une chaîne de jonctions Josephson polarisée en phase, présente un comportement collectif, similaire à un objet macroscopique. Les résultats de cette thèse ouvrent la voie pour la conception de nouveaux circuits Josephson, comme par exemple un qubit topologiquement protégé ou un dispositif quantique pour la conversion courant-fréquence. / In this thesis we presented detailed measurements of quantum phase-slips in Josephson junction chains. The measured phase-slips are the result of fluctuations induced by the finite charging energy of each junction. Our experimental results can be fitted in very good agreement by considering a simple tight-binding model for QPS. We have shown that under phase-bias, a chain of Josephson junctions or rhombi can behave in a collective way very similar to a single macroscopic quantum object. These results open the way for possible use of quantum phase-slips for the design of novel Josephson junction circuits, such as topologically protected rhombi qubits or current-to-frequency conversion devices.
5

Superconducting Nanostructures for Quantum Detection of Electromagnetic Radiation

Jafari Salim, Amir 06 September 2014 (has links)
In this thesis, superconducting nanostructures for quantum detection of electromagnetic radiation are studied. In this regard, electrodynamics of topological excitations in 1D superconducting nanowires and 2D superconducting nanostrips is investigated. Topological excitations in superconducting nanowires and nanostrips lead to crucial deviation from the bulk properties. In 1D superconductors, topological excitations are phase slippages of the order parameter in which the magnitude of the order parameter locally drops to zero and the phase jumps by integer multiple of 2\pi. We investigate the effect of high-frequency field on 1D superconducting nanowires and derive the complex conductivity. Our study reveals that the rate of the quantum phase slips (QPSs) is exponentially enhanced under high-frequency irradiation. Based on this finding, we propose an energy-resolving terahertz radiation detector using superconducting nanowires. In superconducting nanostrips, topological fluctuations are the magnetic vortices. The motion of magnetic vortices result in dissipative processes that limit the efficiency of devices using superconducting nanostrips. It will be shown that in a multi-layer structure, the potential barrier for vortices to penetrate inside the structure is elevated. This results in significant reduction in dissipative process. In superconducting nanowire single photon detectors (SNSPDs), vortex motion results in dark counts and reduction of the critical current which results in low efficiency in these detectors. Based on this finding, we show that a multi-layer SNSPD is capable of approaching characteristics of an ideal single photon detector in terms of the dark count and quantum efficiency. It is shown that in a multi-layer SNSPD the photon coupling efficiency is dramatically enhanced due to the increase in the optical path of the incident photon.
6

Supraleitung in Gallium-implantiertem Silizium / Superconductivity in gallium-implanted silicon

Skrotzki, Richard 21 July 2016 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der elektrischen Charakterisierung 10 nm dünner Schichten bestehend aus amorphen Ga-Nanoclustern eingebettet in Ga-dotiertes polykristallines Si. Die Herstellung der Schichten geschieht via Ionen-Implantation in Si-Wafer samt anschließender thermischer Ausheilung. Elektrische Transportmessungen in Magnetfeldern von bis zu 50 T zeigen, dass die Schichten durch Variation der Ausheilparameter zwei strukturelle Supraleiter-Isolator-Übergänge durchlaufen. TEM-gestützte Strukturanalysen decken auf, dass den Übergängen eine Gefügetransformation zugrunde liegt, die das Wechselspiel zwischen supraleitender Cluster-Kopplung und kapazitiver Ladungsenergie sowie dem Ausmaß von thermischen und Quantenfluktuationen beeinflusst. Im supraleitenden Regime (Tc = 7 K) wird ein doppelt reentrantes Phänomen beobachtet, bei dem Magnetfelder von mehreren Tesla in anisotroper Form die Supraleitung begünstigen. Eine qualitative Erklärung gelingt via selbstentwickeltem theoretischen Modell basierend auf Phaseslip-Ereignissen für Josephson-Kontakt-Netzwerke. Für Anwendungen im Bereich der Sensor-Technologie und Quanten-Logik werden die Schichten erfolgreich via Fotolithographie und FIB (focused ion beam) mikro- und nanostrukturiert. Dadurch gelingt die erstmalige Beobachtung des Little-Parks-Effektes in einer Nanostruktur aus amorphem Ga. / The following thesis is devoted to the electrical characterization of 10 nm thin layers consisting of amorphous Ga nanoclusters embedded in Ga-doped polycrystalline Si. The preparation of the layers is realized via ion implantation in Si wafers plus subsequent thermal annealing. Electrical-transport measurements in magnetic fields of up to 50 T show that the layers undergo two structural superconductor-insulator transitions upon variation of the annealing parameters. Structural analyzes based on TEM investigations reveal an underlying transformation of the size and distance of the clusters. This influences the interplay of the superconducting cluster coupling and capacitive charging energy as well as the extent of thermal and quantum fluctuations. In the superconducting regime (Tc = 7 K) a double-reentrant phenomenon is observed. Here, magnetic fields of several Tesla facilitate superconductivity in an anisotropic way. A qualitative explanation is given via a self-developed theoretical model based on phase-slip events for Josephson-junction arrays. With respect to applications regarding sensor technology and quantum logic circuits the layers are successfully micro- and nanostructured via photolithography and FIB. This allows for the first observation of the Little-Parks effect in a nanostructure of amorphous Ga.
7

Supraleitung in Gallium-implantiertem Silizium

Skrotzki, Richard 12 July 2016 (has links)
Die vorliegende Arbeit beschäftigt sich mit der elektrischen Charakterisierung 10 nm dünner Schichten bestehend aus amorphen Ga-Nanoclustern eingebettet in Ga-dotiertes polykristallines Si. Die Herstellung der Schichten geschieht via Ionen-Implantation in Si-Wafer samt anschließender thermischer Ausheilung. Elektrische Transportmessungen in Magnetfeldern von bis zu 50 T zeigen, dass die Schichten durch Variation der Ausheilparameter zwei strukturelle Supraleiter-Isolator-Übergänge durchlaufen. TEM-gestützte Strukturanalysen decken auf, dass den Übergängen eine Gefügetransformation zugrunde liegt, die das Wechselspiel zwischen supraleitender Cluster-Kopplung und kapazitiver Ladungsenergie sowie dem Ausmaß von thermischen und Quantenfluktuationen beeinflusst. Im supraleitenden Regime (Tc = 7 K) wird ein doppelt reentrantes Phänomen beobachtet, bei dem Magnetfelder von mehreren Tesla in anisotroper Form die Supraleitung begünstigen. Eine qualitative Erklärung gelingt via selbstentwickeltem theoretischen Modell basierend auf Phaseslip-Ereignissen für Josephson-Kontakt-Netzwerke. Für Anwendungen im Bereich der Sensor-Technologie und Quanten-Logik werden die Schichten erfolgreich via Fotolithographie und FIB (focused ion beam) mikro- und nanostrukturiert. Dadurch gelingt die erstmalige Beobachtung des Little-Parks-Effektes in einer Nanostruktur aus amorphem Ga. / The following thesis is devoted to the electrical characterization of 10 nm thin layers consisting of amorphous Ga nanoclusters embedded in Ga-doped polycrystalline Si. The preparation of the layers is realized via ion implantation in Si wafers plus subsequent thermal annealing. Electrical-transport measurements in magnetic fields of up to 50 T show that the layers undergo two structural superconductor-insulator transitions upon variation of the annealing parameters. Structural analyzes based on TEM investigations reveal an underlying transformation of the size and distance of the clusters. This influences the interplay of the superconducting cluster coupling and capacitive charging energy as well as the extent of thermal and quantum fluctuations. In the superconducting regime (Tc = 7 K) a double-reentrant phenomenon is observed. Here, magnetic fields of several Tesla facilitate superconductivity in an anisotropic way. A qualitative explanation is given via a self-developed theoretical model based on phase-slip events for Josephson-junction arrays. With respect to applications regarding sensor technology and quantum logic circuits the layers are successfully micro- and nanostructured via photolithography and FIB. This allows for the first observation of the Little-Parks effect in a nanostructure of amorphous Ga.

Page generated in 0.1413 seconds