• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Herstellung von Nanometer-Strukturen mittels feinfokussiertem Ionenstrahl (FIB)

Mucke, S. 31 March 2010 (has links) (PDF)
Feinfokussierte Ionenstrahlen dienen in den Gebieten der Halbleiterindustrie und Materialforschung der Mikro- und Nanostrukturierung. Die vorliegende Arbeit beschäftigt sich mit den beiden Hauptanwendungen von fokussierten Ionenstrahlen, dem Materialabtrag und der ionenstrahlinduzierten Materialabscheidung. Dabei wird die hochauflösende Ionensäule CANION 31Z der Firma Orsay Physics mit Stromdichten von bis zu 10 A/cm2 und mit integriertem Gassystem eingesetzt. Es wird ausführlich auf Anwendungsbeispiele von Fokussierten Ionenstrahlsystemen im Bereich der Industrie und Forschung eingegangen. Schwerpunktmäßig wird die Abscheidung von Wolfram aus dem Precursorgas W(CO)6 (Wolframhexacarbonyl) auf Si und SiO2 als Substrat untersucht, mit dem Ziel, gut leitfähige Drähte (hier im Sinne von Leiterbahnen) mit minimalem Querschnitt herzustellen. Die Optimierung der Ionenstrahl-Parameter dieser Feinfokussierten Ionenstrahlanlage bezüglich der Abscheidung steht im Vordergrund. Dabei wird ein kurzer Einblick in die Theorie der Schichtentstehung beim Abscheidevorgang gegeben. Untersuchungen der erzeugten Strukturen entsprechend der Schichtqualität und der Strukturabmessungen werden erläutert und die Ergebnisse diskutiert. Es konnten Wolframdrähte mit einer Länge von 20 ... 100 µm, einer Breite von minimal 150 nm und einer Höhe von maximal 600 nm angefertigt werden. Die Zusammensetzung der Drähte in Abhängigkeit der Prozessparameter wurde mittels AES bestimmt. Im optimalen Fall wurden die Schichtanteile zu 80% W, 5% O, 6% C und 9% Ga ermittelt (Angaben in Atomprozent). Der spezifische Widerstand der Wolframdrähte ist im Bereich 150 ... 320 µWcm gemessen worden.
2

Herstellung von Nanometer-Strukturen mittels feinfokussiertem Ionenstrahl (FIB)

Mucke, S. January 2004 (has links)
Feinfokussierte Ionenstrahlen dienen in den Gebieten der Halbleiterindustrie und Materialforschung der Mikro- und Nanostrukturierung. Die vorliegende Arbeit beschäftigt sich mit den beiden Hauptanwendungen von fokussierten Ionenstrahlen, dem Materialabtrag und der ionenstrahlinduzierten Materialabscheidung. Dabei wird die hochauflösende Ionensäule CANION 31Z der Firma Orsay Physics mit Stromdichten von bis zu 10 A/cm2 und mit integriertem Gassystem eingesetzt. Es wird ausführlich auf Anwendungsbeispiele von Fokussierten Ionenstrahlsystemen im Bereich der Industrie und Forschung eingegangen. Schwerpunktmäßig wird die Abscheidung von Wolfram aus dem Precursorgas W(CO)6 (Wolframhexacarbonyl) auf Si und SiO2 als Substrat untersucht, mit dem Ziel, gut leitfähige Drähte (hier im Sinne von Leiterbahnen) mit minimalem Querschnitt herzustellen. Die Optimierung der Ionenstrahl-Parameter dieser Feinfokussierten Ionenstrahlanlage bezüglich der Abscheidung steht im Vordergrund. Dabei wird ein kurzer Einblick in die Theorie der Schichtentstehung beim Abscheidevorgang gegeben. Untersuchungen der erzeugten Strukturen entsprechend der Schichtqualität und der Strukturabmessungen werden erläutert und die Ergebnisse diskutiert. Es konnten Wolframdrähte mit einer Länge von 20 ... 100 µm, einer Breite von minimal 150 nm und einer Höhe von maximal 600 nm angefertigt werden. Die Zusammensetzung der Drähte in Abhängigkeit der Prozessparameter wurde mittels AES bestimmt. Im optimalen Fall wurden die Schichtanteile zu 80% W, 5% O, 6% C und 9% Ga ermittelt (Angaben in Atomprozent). Der spezifische Widerstand der Wolframdrähte ist im Bereich 150 ... 320 µWcm gemessen worden.
3

Can Hydrodynamic Electrons Exist in a Metal? A Case Study of the Delafossite Metals PdCoO2 and PtCoO2

Nandi, Nabhanila 09 August 2019 (has links)
In an electron fluid, both resistive and viscous mechanisms can be present. In systems with perfect translational invariance momentum is a conserved quantity, and as the electrons carry both charge and momentum, the current cannot decay. Predictions from theories at the particle physics-condensed matter physics interface using the `AdS/CFT' correspondence suggest that hydrodynamic charge flow might exist in some exotic metallic states. In the high-Tc cuprates the T-linear resistivity in the strange metal regime is conjectured to be due to hydrodynamic effects. In this dissertation, I start out drawing a theoretical outline of the hydrodynamic theory of electron transport in solids. In the search for a high purity metal that can host such a hydrodynamic electron transport, we looked at the non-magnetic delafossite oxides PdCoO2 and PtCoO2, which have the highest conductivities of any known oxides, and whose key properties I will review. As the signatures of viscosity can only be realised in transport through boundary scattering, the samples had to be taken down to the mesoscopic limit, where the momentum conserving and relaxing scattering mean free paths of the material are comparable to the channel width. I will discuss the focussed ion beam (FIB) micro-structuring technique that I have implemented to fabricate the mesoscopic devices. To interpret the transport in the mesoscopic regime, a comprehensive understanding of the bulk transport is first necessary and I will present my measurements of the magnetoresistance and Hall effect in both materials, which show deviations from the predictions of standard models highlighting some intriguing physics even in the bulk limit. Finally, I will present the data from magnetotransport measurements at the mesoscopic limit. Magnetic field introduces a variable length scale, the cyclotron radius, in the system which can be used to tune through different transport regimes. I will discuss the ballistic and hydrodynamic signatures in the transport that becomes accessible through magnetic field tuning in the mesoscopic samples of the delafossites PdCoO2 and PdCoO2.
4

Probing Hund’s-Metal Physics through the Hall Effect in Microstructured Sr₂RuO₄ under Uniaxial Stress

Yang, Po-Ya 01 April 2022 (has links)
Uniaxial stress is a powerful technique to tune the electronic structure of very pure materials. The novel piezoelectric-based techniques developed by our group, which allow application of large and homogeneous uniaxial pressure in a continuously-tunable manner, make uniaxial pressure an independent axis in the parameter space for the study of quantum materials. Many exciting experiments have been performed that combine different measurement methods with this uniaxial stress technique in the past few years. In this thesis, I demonstrate the first electrical transport measurement under uniaxial pressure of a free-standing microstructure single-crystalline sample patterned by focused ion beam (FIB) milling. With the microstructuring technique that I developed, the transport properties transverse to the force direction can be more accurately probed. The ability to resolve the anisotropy introduced by the uniaxial pressure lets us have a better understanding of how the electronic structure of Sr₂RuO₄ changes under uniaxial stress. Moreover, the microstructure technique opens new roads for smaller crystals (∼ 100 µm) to be studied under uniaxial pressure. In addition, higher stresses and better sample homogeneity could be achieved by working with smaller samples. For Sr₂RuO₄, one of the three Fermi-surface sheets can be driven through a Lifshitz transition by applying uniaxial stress along the [100] direction. Superconductivity and resistivity have been observed to be strongly enhanced at the singularity. In addition, a spin-density wave (SDW) has been observed at stresses beyond the Lifshitz transition. Measurement of the Hall effect under uniaxial stress allows us to probe Hund’s metal physics in Sr₂RuO₄. The Hall coefficient of unstressed Sr₂RuO₄ goes through two sign reversals, at 30 K and 120 K. Under the Hund’s metal scenario, this temperature dependence has been proposed to result from orbital differentiation of the inelastic scattering rate, which is a key property expected of Hund’s metals. In the present study, it is shown that at a temperature where electron-electron scattering dominates (≳ 5 K), the Hall coefficient becomes less electron-like while approaching the VHS, which is consistent with increased scattering in the d_xy band. Beyond the transition, the Hall coefficient becomes much more electron-like, which is opposite to expectations from the change in Fermi surface topology, but can be explained by a combination of Hund’s metal physics and strong suppression in the d_xy scattering rate. At very low temperature (0.5 K), the Hall coefficient is essentially unchanged across the Lifshitz transition, despite the change in the Fermi-surface topology. In contrast to the longitudinal resistivity that has a strong peak at the VHS but does not respond to the SDW, the resistance transverse to the force direction shows a strong response to the SDW, but only a small response at the VHS. In addition, I obtain ρ(T) at the Lifshitz transition below Tc by subtracting off the magnetoresistance and find that T² ln(1/T) fits better than T^3/2, which suggests a saddle point rather than an extended saddle point at the VHS.:1. Introduction to Sr2RuO4 1.1. Normal-State Properties Van Hove Singularity and Lifshitz Transition in Sr2RuO4 1.2. Hall Effect in Sr2RuO4 Weak-field Hall Coefficient Experimental Hall Coefficient in Sr2RuO4 and Related Systems 1.3. Hund’s Metal Scenario Dynamical Mean-Field Theory Experimental Evidence for Orbital Differentiation in Sr2RuO4 Hall Coefficient of Sr2RuO4 within Hund’s Metal Scenario 1.4 Uniaxial-Pressure Projects on Sr2RuO4 2. Experimental Setup 2.1. Stress and Strain 2.2. Uniaxial Stress Technique Uniaxial-Stress Cell Sample Carrier 2.3. Imperfections of the Stress Cells 2.4. Sample Preparation Needle Sample Preparation Microstructure Sample Preparation Comparison of the Two Samples 2.5. Measurement Setup 3He Cryostat Transport Measurement Setup 3. Hall Coefficient and Resistivity Measurements 3.1. Basics of Resistivity Measurement Stress Ramps 3.2. Basics of Hall Measurement Setup Field Dependence of Hall Resistivity Temperature Dependence of Hall Coefficient 3.3. Stress Ramps under Constant Magnetic Field 3.4. Stress Dependence of Hall Coefficient and Resistivity 3.5. Resistivity Measurements below Tc 3.6. Field Sweeps within the Magnetic Phase 3.7. Summary 4. Measurements Transverse to the Stress Axis 4.1. Setup for Transport Measurements Transverse to the Uniaxial Stress 4.2. Simulations Based on Finite Element Method 4.3. Resistance Measurements Transverse to Applied Stress 4.4. Summary 5. Data Analysis and Discussion 5.1. A Tight-Binding Model under Uniaxial Pressure 5.2. Analysis of Hall Coefficient across the Lifshitz Transition Hall Coefficient Analysis under the Isotropic-l or Isotropic-τ Approximations Hall Coefficient Analysis under Hund’s Metal Scenario 5.3. Magnetoresistance Subtraction in Temperature Ramps 5.4. Transport Properties at 5 K 5.5. Summary 6. Conclusions and Outlook Appendices A. Si-Gap-Platform Microstructure Project A.1. Si-Gap Platform A.2. Sample Preparation with PFIB-Microstructuring A.3. Microstructure Stress Cells B. Other results B.1. Hall Effect from the Hall Pair 2 B.2. Magnetoresistance in Longitudinal and Transverse Configurations B.3. Toward -1.5 GPa B.4. Comparison of RH(T) in Sr2RuO4 Compressed along [100] Direction and YBa2Cu3O6.67 Compressed along the b-axis Bibliography
5

Phase transformation in tetrahedral amorphous carbon by focused ion beam irradiation / Phasentransformation in tetraedrisch amorphem Kohlenstoff durch fokussierte Ionenbestrahlung

Philipp, Peter 05 March 2014 (has links) (PDF)
Ion irradiation of tetrahedral amorphous carbon (ta-C) thin films induces a carbon phase transformation from the electrically insulating sp3 hybridization into the conducting sp2 hybridization. In this work, a detailed study on the electrical resistivity and the microstructure of areas, irradiated with several ion species at 30 keV energy is presented. Continuous ion bombardment yields a drastic drop of the resistivity as well as significant structural modifications of the evolving sp2 carbon phase. It is shown that the resistivity lowering can be attributed to the degree of graphitization in the film. Furthermore, the structural ordering processes are correlated with the ion deposited energy density. It is therefore revealed that the ion-induced phase transformation in ta-C films is a combination of sp3-to-sp2 conversion of carbon atoms and ion-induced ordering of the microstructure into a more graphite-like arrangement. All experiments were done with focused ion beam (FIB) systems by applying FIB lithography of electrical van-der-Pauw test structures. FIB lithography on ta-C layers is presented as a fast and easy technique for the preparation of electrically active micro- and nanostructures in an insulating carbon matrix.
6

Phase transformation in tetrahedral amorphous carbon by focused ion beam irradiation

Philipp, Peter 12 February 2014 (has links)
Ion irradiation of tetrahedral amorphous carbon (ta-C) thin films induces a carbon phase transformation from the electrically insulating sp3 hybridization into the conducting sp2 hybridization. In this work, a detailed study on the electrical resistivity and the microstructure of areas, irradiated with several ion species at 30 keV energy is presented. Continuous ion bombardment yields a drastic drop of the resistivity as well as significant structural modifications of the evolving sp2 carbon phase. It is shown that the resistivity lowering can be attributed to the degree of graphitization in the film. Furthermore, the structural ordering processes are correlated with the ion deposited energy density. It is therefore revealed that the ion-induced phase transformation in ta-C films is a combination of sp3-to-sp2 conversion of carbon atoms and ion-induced ordering of the microstructure into a more graphite-like arrangement. All experiments were done with focused ion beam (FIB) systems by applying FIB lithography of electrical van-der-Pauw test structures. FIB lithography on ta-C layers is presented as a fast and easy technique for the preparation of electrically active micro- and nanostructures in an insulating carbon matrix.:Contents List of Figures iii List of Tables v List of Abbreviations vii 1. Introduction 1 2. Fundamentals 5 2.1. Ion-solid interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1. Scattering and stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2. Ion range distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3. Target modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.4. Thermal driven segregation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2. Focused ion beams (FIBs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1. Commercial gallium FIB (Ga + -FIB) . . . . . . . . . . . . . . . . . . . . . 24 2.2.2. Mass-separated FIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3. Tetrahedral amorphous carbon (ta-C) . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1. Composition, microstructure and film properties . . . . . . . . . . . . . . 26 2.3.2. Growth mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.3. Electronic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3. Experimental 39 3.1. Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2. Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4. Ion induced surface swelling 43 4.1. Fluence and energy dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2. Calculations of the swelling height . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5. Electrical properties of irradiated ta-C 55 5.1. Electrical resistivity of as-implanted ta-C . . . . . . . . . . . . . . . . . . . . . . 55 5.1.1. Resistance of Ga + implanted micropatterns . . . . . . . . . . . . . . . . . 55 5.1.2. Sheet resistance of Ga + irradiated ta-C . . . . . . . . . . . . . . . . . . . 59 5.1.3. Determination of the sp 3 content . . . . . . . . . . . . . . . . . . . . . . . 62 5.1.4. The effect of different ion species . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.5. Low temperature resistivity – The peculiarity of gallium . . . . . . . . . . 71 5.2. The effect of annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3. Irradiation at elevated substrate temperatures . . . . . . . . . . . . . . . . . . . . 79 6. The microstructure of irradiated ta-C 87 6.1. Raman investigations of ion irradiated ta-C . . . . . . . . . . . . . . . . . . . . . 88 6.1.1. Fundamentals of Raman spectroscopy on amorphous carbon . . . . . . . . 88 6.1.2. Raman spectra of as-implanted ta-C . . . . . . . . . . . . . . . . . . . . . 93 6.1.3. Thermally driven graphitization of the microstructure . . . . . . . . . . . 98ii Contents 6.1.4. The correlation between microstructure and resistivity . . . . . . . . . . . 101 6.2. TEM investigations of ion irradiated ta-C . . . . . . . . . . . . . . . . . . . . . . 104 7. FIB lithography on ta-C layers 107 7.1. Graphitic nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.1.1. Nanowire dimensions – The resolution of FIB lithography . . . . . . . . . 108 7.1.2. Nanowire resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2. Electrical insulation between conducting structures . . . . . . . . . . . . . . . . . 113 8. Conclusions and Outlook 117 A. Gallium nanoparticles on ta-C layers 121 Bibliography 123
7

Supraleitung in Gallium-implantiertem Silizium / Superconductivity in gallium-implanted silicon

Skrotzki, Richard 21 July 2016 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der elektrischen Charakterisierung 10 nm dünner Schichten bestehend aus amorphen Ga-Nanoclustern eingebettet in Ga-dotiertes polykristallines Si. Die Herstellung der Schichten geschieht via Ionen-Implantation in Si-Wafer samt anschließender thermischer Ausheilung. Elektrische Transportmessungen in Magnetfeldern von bis zu 50 T zeigen, dass die Schichten durch Variation der Ausheilparameter zwei strukturelle Supraleiter-Isolator-Übergänge durchlaufen. TEM-gestützte Strukturanalysen decken auf, dass den Übergängen eine Gefügetransformation zugrunde liegt, die das Wechselspiel zwischen supraleitender Cluster-Kopplung und kapazitiver Ladungsenergie sowie dem Ausmaß von thermischen und Quantenfluktuationen beeinflusst. Im supraleitenden Regime (Tc = 7 K) wird ein doppelt reentrantes Phänomen beobachtet, bei dem Magnetfelder von mehreren Tesla in anisotroper Form die Supraleitung begünstigen. Eine qualitative Erklärung gelingt via selbstentwickeltem theoretischen Modell basierend auf Phaseslip-Ereignissen für Josephson-Kontakt-Netzwerke. Für Anwendungen im Bereich der Sensor-Technologie und Quanten-Logik werden die Schichten erfolgreich via Fotolithographie und FIB (focused ion beam) mikro- und nanostrukturiert. Dadurch gelingt die erstmalige Beobachtung des Little-Parks-Effektes in einer Nanostruktur aus amorphem Ga. / The following thesis is devoted to the electrical characterization of 10 nm thin layers consisting of amorphous Ga nanoclusters embedded in Ga-doped polycrystalline Si. The preparation of the layers is realized via ion implantation in Si wafers plus subsequent thermal annealing. Electrical-transport measurements in magnetic fields of up to 50 T show that the layers undergo two structural superconductor-insulator transitions upon variation of the annealing parameters. Structural analyzes based on TEM investigations reveal an underlying transformation of the size and distance of the clusters. This influences the interplay of the superconducting cluster coupling and capacitive charging energy as well as the extent of thermal and quantum fluctuations. In the superconducting regime (Tc = 7 K) a double-reentrant phenomenon is observed. Here, magnetic fields of several Tesla facilitate superconductivity in an anisotropic way. A qualitative explanation is given via a self-developed theoretical model based on phase-slip events for Josephson-junction arrays. With respect to applications regarding sensor technology and quantum logic circuits the layers are successfully micro- and nanostructured via photolithography and FIB. This allows for the first observation of the Little-Parks effect in a nanostructure of amorphous Ga.
8

Supraleitung in Gallium-implantiertem Silizium

Skrotzki, Richard 12 July 2016 (has links)
Die vorliegende Arbeit beschäftigt sich mit der elektrischen Charakterisierung 10 nm dünner Schichten bestehend aus amorphen Ga-Nanoclustern eingebettet in Ga-dotiertes polykristallines Si. Die Herstellung der Schichten geschieht via Ionen-Implantation in Si-Wafer samt anschließender thermischer Ausheilung. Elektrische Transportmessungen in Magnetfeldern von bis zu 50 T zeigen, dass die Schichten durch Variation der Ausheilparameter zwei strukturelle Supraleiter-Isolator-Übergänge durchlaufen. TEM-gestützte Strukturanalysen decken auf, dass den Übergängen eine Gefügetransformation zugrunde liegt, die das Wechselspiel zwischen supraleitender Cluster-Kopplung und kapazitiver Ladungsenergie sowie dem Ausmaß von thermischen und Quantenfluktuationen beeinflusst. Im supraleitenden Regime (Tc = 7 K) wird ein doppelt reentrantes Phänomen beobachtet, bei dem Magnetfelder von mehreren Tesla in anisotroper Form die Supraleitung begünstigen. Eine qualitative Erklärung gelingt via selbstentwickeltem theoretischen Modell basierend auf Phaseslip-Ereignissen für Josephson-Kontakt-Netzwerke. Für Anwendungen im Bereich der Sensor-Technologie und Quanten-Logik werden die Schichten erfolgreich via Fotolithographie und FIB (focused ion beam) mikro- und nanostrukturiert. Dadurch gelingt die erstmalige Beobachtung des Little-Parks-Effektes in einer Nanostruktur aus amorphem Ga. / The following thesis is devoted to the electrical characterization of 10 nm thin layers consisting of amorphous Ga nanoclusters embedded in Ga-doped polycrystalline Si. The preparation of the layers is realized via ion implantation in Si wafers plus subsequent thermal annealing. Electrical-transport measurements in magnetic fields of up to 50 T show that the layers undergo two structural superconductor-insulator transitions upon variation of the annealing parameters. Structural analyzes based on TEM investigations reveal an underlying transformation of the size and distance of the clusters. This influences the interplay of the superconducting cluster coupling and capacitive charging energy as well as the extent of thermal and quantum fluctuations. In the superconducting regime (Tc = 7 K) a double-reentrant phenomenon is observed. Here, magnetic fields of several Tesla facilitate superconductivity in an anisotropic way. A qualitative explanation is given via a self-developed theoretical model based on phase-slip events for Josephson-junction arrays. With respect to applications regarding sensor technology and quantum logic circuits the layers are successfully micro- and nanostructured via photolithography and FIB. This allows for the first observation of the Little-Parks effect in a nanostructure of amorphous Ga.
9

Short range ordering and microstructure property relationship in amorphous alloys / Nahordnung und Mikrostruktur-Eigenschaftsbeziehungen in amorphen Legierungen

Shariq, Ahmed 09 January 2007 (has links)
No description available.

Page generated in 0.1566 seconds