• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In situ Spectroscopic Studies of Energy Storage and Electrocatalytic Materials

Shi, Qingfang January 2005 (has links)
No description available.
2

A novel approach of immittance-spectra analysis and how it resolves a decade-old deviation of the Frenkel-Poole model / Utilising process-specific physical models to find the electrical equivalent circuit representing the underlying physics in immittance spectroscopy

Amani, Julian Alexander 16 December 2016 (has links)
No description available.
3

Electrical characterization of conductive ion tracks in tetrahedral amorphous carbon with copper impurities / Elektirsche Charakterisierung von leitfähigen Ionenspuren in tetraedrisch amorphen Kohlenstoff mit Kupferverunreinigungen

Gehrke, Hans-Gregor 17 June 2013 (has links)
Die Bestrahlung von tetraedrisch amorphen Kohlenstoff (ta-C) mit schnellen schweren Ionen führt zur Bildung von mikroskopischen elektrisch leitfähigen Ionenspuren mit Durchmessern um 10 nm. Dieses Phänomen ist auf das sp² zu sp³ Hybridisierungsverhältnis des amorphen Kohlenstoffes zurückzuführen. Das einschlagende Ion deponiert eine große Menge Energie innerhalb des Spurvolumens, so dass eine Materialtransformation hin zu höheren sp² Hybridisierung stattfindet. Hierdurch wird die elektrische Leitfähigkeit der Ionenspur stark erhöht. Dieser Effekt kann durch die Zugabe von Verunreinigungen wie Kupfer verstärkt werden. Das Ziel dieser Arbeit ist die umfassende Analyse des elektrischen Verhaltens von ta-C mit besonderen Augenmerk auf die Auswirkungen von Kupferverunreinigungen und Ionenspuren. Der Effekt von Kupferverunreinigungen auf das wichtige Hybridisierungsverhältnis vom amorphen Kohlenstoff wird vermessen. Darüber hinaus wurden alle Proben elektrisch mit makroskopischen Kontakten im Temperaturbeireich von 20 K bis 380 K analysiert. Mikroskopisch wurden einzelne leitfähige Ionenspuren mit Hilfe von atomarer Kraftmikroskopie betrachtet. Die statistische Verteilung der Spureigenschaften in Kohlenstofffilmen mit verschiedenen Kupferkonzentrationen werden verglichen, um die Spurbildung besser zu verstehen. Die normalisierten durchschnittlichen Spurleitfähigkeiten aus mikroskopischen und makroskopischen Messungen werden verglichen. Hierbei kann die Zuverlässigkeit der beiden experimentellen Methoden bewertet werden und mögliche Fehlerquellen ausfindig gemacht werden. Schließlich wird ein Konzept für eine Anwendung unterbrochener Ionenspuren gezeigt.
4

Phase transformation in tetrahedral amorphous carbon by focused ion beam irradiation / Phasentransformation in tetraedrisch amorphem Kohlenstoff durch fokussierte Ionenbestrahlung

Philipp, Peter 05 March 2014 (has links) (PDF)
Ion irradiation of tetrahedral amorphous carbon (ta-C) thin films induces a carbon phase transformation from the electrically insulating sp3 hybridization into the conducting sp2 hybridization. In this work, a detailed study on the electrical resistivity and the microstructure of areas, irradiated with several ion species at 30 keV energy is presented. Continuous ion bombardment yields a drastic drop of the resistivity as well as significant structural modifications of the evolving sp2 carbon phase. It is shown that the resistivity lowering can be attributed to the degree of graphitization in the film. Furthermore, the structural ordering processes are correlated with the ion deposited energy density. It is therefore revealed that the ion-induced phase transformation in ta-C films is a combination of sp3-to-sp2 conversion of carbon atoms and ion-induced ordering of the microstructure into a more graphite-like arrangement. All experiments were done with focused ion beam (FIB) systems by applying FIB lithography of electrical van-der-Pauw test structures. FIB lithography on ta-C layers is presented as a fast and easy technique for the preparation of electrically active micro- and nanostructures in an insulating carbon matrix.
5

Phase transformation in tetrahedral amorphous carbon by focused ion beam irradiation

Philipp, Peter 12 February 2014 (has links)
Ion irradiation of tetrahedral amorphous carbon (ta-C) thin films induces a carbon phase transformation from the electrically insulating sp3 hybridization into the conducting sp2 hybridization. In this work, a detailed study on the electrical resistivity and the microstructure of areas, irradiated with several ion species at 30 keV energy is presented. Continuous ion bombardment yields a drastic drop of the resistivity as well as significant structural modifications of the evolving sp2 carbon phase. It is shown that the resistivity lowering can be attributed to the degree of graphitization in the film. Furthermore, the structural ordering processes are correlated with the ion deposited energy density. It is therefore revealed that the ion-induced phase transformation in ta-C films is a combination of sp3-to-sp2 conversion of carbon atoms and ion-induced ordering of the microstructure into a more graphite-like arrangement. All experiments were done with focused ion beam (FIB) systems by applying FIB lithography of electrical van-der-Pauw test structures. FIB lithography on ta-C layers is presented as a fast and easy technique for the preparation of electrically active micro- and nanostructures in an insulating carbon matrix.:Contents List of Figures iii List of Tables v List of Abbreviations vii 1. Introduction 1 2. Fundamentals 5 2.1. Ion-solid interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1. Scattering and stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2. Ion range distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3. Target modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.4. Thermal driven segregation . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2. Focused ion beams (FIBs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1. Commercial gallium FIB (Ga + -FIB) . . . . . . . . . . . . . . . . . . . . . 24 2.2.2. Mass-separated FIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3. Tetrahedral amorphous carbon (ta-C) . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.1. Composition, microstructure and film properties . . . . . . . . . . . . . . 26 2.3.2. Growth mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.3. Electronic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3. Experimental 39 3.1. Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2. Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4. Ion induced surface swelling 43 4.1. Fluence and energy dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2. Calculations of the swelling height . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5. Electrical properties of irradiated ta-C 55 5.1. Electrical resistivity of as-implanted ta-C . . . . . . . . . . . . . . . . . . . . . . 55 5.1.1. Resistance of Ga + implanted micropatterns . . . . . . . . . . . . . . . . . 55 5.1.2. Sheet resistance of Ga + irradiated ta-C . . . . . . . . . . . . . . . . . . . 59 5.1.3. Determination of the sp 3 content . . . . . . . . . . . . . . . . . . . . . . . 62 5.1.4. The effect of different ion species . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.5. Low temperature resistivity – The peculiarity of gallium . . . . . . . . . . 71 5.2. The effect of annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3. Irradiation at elevated substrate temperatures . . . . . . . . . . . . . . . . . . . . 79 6. The microstructure of irradiated ta-C 87 6.1. Raman investigations of ion irradiated ta-C . . . . . . . . . . . . . . . . . . . . . 88 6.1.1. Fundamentals of Raman spectroscopy on amorphous carbon . . . . . . . . 88 6.1.2. Raman spectra of as-implanted ta-C . . . . . . . . . . . . . . . . . . . . . 93 6.1.3. Thermally driven graphitization of the microstructure . . . . . . . . . . . 98ii Contents 6.1.4. The correlation between microstructure and resistivity . . . . . . . . . . . 101 6.2. TEM investigations of ion irradiated ta-C . . . . . . . . . . . . . . . . . . . . . . 104 7. FIB lithography on ta-C layers 107 7.1. Graphitic nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.1.1. Nanowire dimensions – The resolution of FIB lithography . . . . . . . . . 108 7.1.2. Nanowire resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2. Electrical insulation between conducting structures . . . . . . . . . . . . . . . . . 113 8. Conclusions and Outlook 117 A. Gallium nanoparticles on ta-C layers 121 Bibliography 123
6

Swift heavy ion irradiation of semiconducting materials - defect production, phase transformation and annealing / Schwerionenbestrahlung von Halbleitermaterialien Defektakkumulation, Phasenumwandlung und Ausheilen

Nix, Anne-Katrin 02 July 2010 (has links)
No description available.
7

Lanthanide Doped Wide Band Gap Semiconductors: Intra-4f Luminescence and Lattice Location Studies / Lanthanid-dotierte Halbleiter mit großer Bandlücke: Intra-4f Lumineszenz- und Gitterplatzuntersuchungen

Vetter, Ulrich 15 July 2003 (has links)
No description available.

Page generated in 0.087 seconds