• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 28
  • 16
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 259
  • 259
  • 88
  • 68
  • 66
  • 60
  • 37
  • 31
  • 29
  • 29
  • 29
  • 28
  • 23
  • 22
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Advancements in Radio Astronomical Array Processing: Digital Back End Development and Interferometric Array Interference Mitigation

Burnett, Mitchell Costus 01 December 2017 (has links)
The Brigham Young University (BYU) Radio Astronomy Systems group, in collaboration with the National Radio Astronomy Observatory (NRAO), the Center for Astrophysics at West Virginia University (WVU), and the Green Bank Observatory (GBO) have developed, and commissioned, a broadband real-time digital back end processing system for a 38-element phased array feed (PAF) with 150 MHz of instantaneous bandwidth. This system is capable of producing coarse and fine channel correlations, and implements a real-time beamformer that forms 7 simultaneous dual-polarized beams. This thesis outlines the hardware and software development for the digital back end and presents on-telescope commissioning results. This system has been measured to provide an unprecedented low Tsys/η noise level of 28 K and can perform maps of galactic hydrogen observations in a fraction of the time of a conventional single horn feed. The National Radio Astronomy Observatory (NRAO) has recently announced the concept and development of the next generation Very Large Array (ngVLA), a large interferometric array consisting of 300 radio telescopes and longest baseline (distance between a pair of antennas) of 300 km. Large interferometric arrays have been shown to attenuate radio frequency interference (RFI) because it is decorrelated as it propagates across long baselines. This is not always sufficient, especially with dense core array geometries and with the ever-increasing amount of strong RFI sources. Conventional RFI projection-based mitigation techniques have performed poorly on large interferometers because of covariance matrix estimation error due to decorrelation when identifying interference subspace parameters. This thesis presents an algorithm that overcomes the challenge of decorrelation by applying subspace projection via subarray processing (SP-SAP). Each subarray is designed to have a set of elements with high mutual correlation in the interferer for better estimation of subspace parameters. In simulation, compared to the former approach of applying subspace projection on the full array, SP-SAP improves mitigation of the RFI on the order of 9 dB. A signal of interest is shown then to be observable through the RFI in a full synthetic image.
212

Design of a reconfigurable low-noise amplifier in a silicon-germanium process for radar applications

Schmid, Robert L. 06 April 2012 (has links)
This thesis describes a unique approach of turning on and off transistor cores to reconfigure low-noise amplifiers. A small footprint single-pole, single-throw switch is optimized for low insertion loss and high isolation. A narrowband (non-switchable) LNA is developed as a basis of comparison for reconfigurable designs. The optimized switch is incorporated into different switchable transistor core architectures. These architectures are investigated to determine their ability to reconfigure amplifier performance. One switchable transistor core topology is integrated into a cascode LNA design. An in depth stability analysis employing the S-probe technique is used to help improve the reliability of the cascode design. In addition, a single-pole, double-throw transmit/receive switch, as well as a deserializer are developed to help support the LNA block in a reconfigurable phased-array radar system. This type of flexible radar design is very beneficial in challenging electromagnetic environments.
213

Target Tracking With Phased Array Radar By Using Adaptive Update Rate

Ipek, Ozlem 01 February 2010 (has links) (PDF)
In radar target tracking problems, it may be required to use adaptive update rate in order to maintain the tracking accuracy while allowing the radar to use its resources economically at the same time. This is generally the case if the target trajectory has maneuvering segments and in such a case the use of adaptive update time interval algorithms for estimation of the target state may enhance the tracking accuracy. Conventionally, fixed track update time interval is used in radar target tracking due to the traditional nature of mechanically steerable radars. In this thesis, as an application to phased array radar, the adaptive update rate algorithm approach developed in literature for Alpha-Beta filter is extended to Kalman filter. A survey over relevant adaptive update rate algorithms used previously in literature on radar target tracking is presented including aspects related to the flexibility of these algorithms for the tracking filter. The investigation of the adaptive update rate algorithms is carried out for the Kalman filter for the single target tracking problem where the target has a 90&deg / maneuvering segment in its trajectory. In this trajectory, the starting and final time instants of the single maneuver are specified clearly, which is important in the assessment of the algorithm performances. The effects of incorporating the variable update time interval into target tracking problem are presented and compared for several different test cases.
214

A Novel Ultrasonic Method to Quantify Bolt Tension

Martinez Garcia, Jairo Andres 01 January 2012 (has links)
The threaded fasteners are one of the most versatile methods for assembly of structural components. For example, in bridges large bolts are used to fix base columns and small bolts are used to support access ladders. Naturally not all bolts are critical for the operation of the structure. Fasteners loaded with small forces and present in large quantities do not receive the same treatment as the critical bolts. Typical maintenance operations such tension measurements, internal stress checking or monitoring of crack development are not practical due to cost and time constrains. Although failure of a single non-critical fastener is not a significant threat to the structure's stability, massive malfunction may cause structural problem such as insufficient stiffness or excessive vibrations. The health of bolted joints is defined by a single parameter: the clamping force (CF). The CF is the force that holds the elements of the joint together. If the CF is too low, separation and bolt fatigue may occur. On the other hand, excessive CF may produce damages in the structural members such as excessive distortion or breakage. The CF is generated by the superposition of the individual tension of the bolts. The bolt tension, also referred as bolt preload, is the actual force that is stretching the bolt body. Maintaining the appropriate tension in bolts ensures a proper CF and hence a good health of the joint. In this thesis, a novel methodology for estimating the tension in bolts using surface acoustic waves (SAWs) is investigated. The tension is estimated by using the reflection of SAWs created by the bolt head interference. Increments in the bolt tension raise the points of interaction between the waves and the bolt head (real area of contact), and hence the position of the reflective boundaries. The variations are estimated using the "conventional linear synthetic array" imaging technique. A singular transducer is actuated from predefined positions to produce an array of signals that are subsequently arranged and added to construct an acoustic image. Three sets of experiment are presented in this research for validating the proposed concept: tension estimation of a ¼ inch stainless steel bolt, a ½ inch stainless steel bolt and ¼ inch grade 8 bolt. Acoustic images of the surface of the clamped plate illustrate a clear trend in the position of the reflective boundary when torque is changed. In all cases, the torque increments increase the real area of contact and therefore the position of the reflective boundary. As expected, the real area of contact grew from the bolt head center to the perimeter, which causes an effect of apparent movement of the boundary. This research proves the potential of the ultrasonic imaging methodology to measure applied tension. The result showed that the system can be used to successfully inspect tension in bolts of ½ and ¼ inches. The methodology investigated in this thesis is the first steps towards the development of bolt tension sensor based on surface acoustic waves.
215

Performance Optimization Of Monopulse Tracking Radar

Sahin, Mehmet Alper 01 August 2004 (has links) (PDF)
An analysis and simulation tool is developed for optimizing system parameters of the monopulse target tracking radar and observing effects of the system parameters on the performance of the system over different scenarios. A monopulse tracking radar is modeled for measuring the performance of the radar with given parameters, during the thesis studies. The radar model simulates the operation of a Class IA type monopulse automatic tracking radar, which uses a planar phased array. The interacting multiple model (IMM) estimator with the Probabilistic Data Association (PDA) technique is used as the tracking filter. In addition to modeling of the tracking radar model, an optimization tool is developed to optimize system parameters of this tracking radar model. The optimization tool implements a Genetic Algorithm (GA) belonging to a GA Toolbox distributed by Department of Automatic Control and System Engineering at University of Sheffield. The thesis presents optimization results over some given optimization scenarios and concludes on effect of tracking filter parameters, beamwidth and dwell interval for the confirmed track.
216

Efficient terahertz photoconductive source

Kim, Joong Hyun 17 November 2008 (has links)
The photoconductive method is one of the oldest methods for the generation of THz room temperature operated THz electromagnetic waves. The THz photoconductive source has operated at a lower power level in the order of hundreds of nW. In addition, the energy conversion of optical to THz efficiency has remained extremely low. One of the most efficient THz photoconductive sources is a trap-enhanced field (TEF) effect source. The field is measured to contain more than 90% of the total DC bias within the first 5 µm of an 80 µm gap between the electrodes reaching kV/cm with only a modest bias. The overall THz power, however, has remained low, due to its rapid saturation. To date, there has been a limited understanding of the TEF effect. In this thesis, a more detailed experimental investigation of TEF effect current transport and field distribution based on annealing is presented to explain some of the underlining physics of TEF effect. A spatially extended line excitation is introduced to effectively reduce the screening effect while still exploiting the TEF region to maintain high efficiency and reach the µW regime. The record efficiency reached by this method is demonstrated. An experimental demonstration with a numerical analysis of the line excitation is presented. The spectral analysis of both a point and a line excitation demonstrate that the line excitation spectrum is not only comparable to that of the point excitation, but also extends the range of useful lower frequency content. To further improve the THz efficiency, the line excitation THz array is investigated.
217

A 5 GHz BiCMOS I/Q VCO with 360° variable phase outputs using the vector sum method

Opperman, Tjaart Adriaan Kruger. January 2009 (has links)
Thesis (M.Eng.(Microelectronic Engineering))--University of Pretoria, 2009. / Includes summaries in Afrikaans and English. Includes bibliographical references (leaves [74]-78). Mode of access: World Wide Web.
218

Traitement spatial des interférences cyclostationnaires pour les radiotélescopes à réseau d'antennes phasé / Spatial processing of cyclostationary interferers for phased array radio telescopes

Feliachi, Rym 12 April 2010 (has links)
Cette thèse est une contribution à l’amélioration des observations pour les radiotélescopes à réseaux phasés en présence d’interférences. L’originalité de cette thèse repose sur l’utilisation de la séparation spatiale entre les sources cosmiques et les brouilleurs issus des télécommunications en se basant sur la cyclostationnarité de ces derniers. Cette thèse s’inscrit dans le cadre du projet européen SKADS pour l’amélioration des techniques de suppression d’interférences en radioastronomie pour les futurs instruments d’observations.Nous avons proposé trois techniques de traitement d’interférences : la détection,l’estimation et la soustraction, et le filtrage spatial. Les performances des techniques proposées ont été évaluées à travers des simulations sur des données synthétiqueset/ou réelles, et comparées aux techniques existantes. / This thesis is a contribution to observation improvements for phased array radiotelescopes, in the presence of radio frequency interferers (RFIs). The originality ofthe study is the use of the cyclostationarity property, in order to improve the spatial separation between cosmic sources and telecommunication signals. This thesis is part of the European SKADS project, which aims to improve RFI mitigation techniques for future instruments in radio astronomy.We have proposed three spatial processing techniques: detection, estimation and subtraction and spatial filtering. The performance of the techniques presented have been evaluated through simulations on synthetic and/or real data, and compared to existing approaches.
219

Etude des inductances actives intégrées en bande HF/UHF-L et leurs applications potentielles à la radioastronomie / Study of integrated active inductors in HF/UHF-L band and their potential applications in radioastronomy

Sy, Chérif Hamidou 29 January 2016 (has links)
Ce travail de thèse entre dans le cadre de projets nationaux et internationaux de radioastronomie d'une manière générale et en particulier dans celui de SKA (Square Kilometre Array). La conception de circuits intégrés d’applications spécifiques devient de plus en plus importante dans ce domaine. La première étape de ce travail consiste à une étude bibliographique sur les inductances actives intégrées et leurs principales applications dédiées à la radioastronomie. Cette étude a permis de faire un état de l'art. Cet état de l'art a fait ressortir que l'intégration de certaines fonctions s'avère particulièrement difficile voire impossible dès lors que l'utilisation d'une inductance est nécessaire. Ceci est essentiellement dû à la taille importante des inductances. Parmi ces fonctions, nous avons le filtrage, certains types de transceivers, le temps de retard, etc. Or ces fonctions sont très importantes dans une architecture de radiofréquence propre aux réseaux d'antennes phasées. Ce travail de thèse est donc consacré à l'étude et la conception de ces différentes fonctions à l'aide des inductances actives basées sur des topologies à gyrateurs en technologie SiGeC 0,25 μm afin de palier aux problèmes d'intégration. Une des finalités de cette thèse est aussi de montrer que la consommation de ce procédé d'intégration n’est pas si excessive pour ces applications, par rapport à l’utilisation d’inductances localisées intégrées occupant une surface importante sur le substrat. Ce dernier point sera un résultat très important pour les projets où la très haute intégration à bas coût est nécessaire, point clé de réussite des réseaux phasés denses du projet international SKA. / This thesis work is part of national and international projects of radio-astronomy in general and in particular that of the SKA (Square Kilometre Array). The design of integrated circuits for specific applications is becoming increasingly important in this field. The first step in this work is a bibliography study on integrated active reactors and their main applications dedicated to radio astronomy. This study allowed making a state of the art. This state of the art has highlighted that the integration of some functions is made especially difficult by the need to use an inductor. This is mainly due to the large size of passive inductors. These functions include the filtering function, some transceivers types, the time delay, etc. But, they are very important in radio-frequency architecture owing to phased array antennas. This thesis propose the study and design of these different functions using active inductors based on gyrators topologies in SiGeC 0.25 μm technology in order to overcome the integration problems. One of the aims of this thesis is to show that the consumption of this integration process is not so excessive for these applications, compared to the use of integrated located inductors occupying a large area on the substrate. This last point is a very important result for projects where high integration at low cost is necessary, key point of the success of dense phased array in the SKA international project.
220

Dual-Axis Acousto-Optic/Electro-Optic Deflectors in Lithium Niobate for Full-Parallax Holographic Video Displays

Adams, Mitchell Robert 30 July 2021 (has links)
A major limitation of acousto-optic (AO) leaky-mode modulator based holographic displays is their inability to present full-parallax. We propose that full-parallax capabilities can be bestowed on these displays by integrating an electro-optic (EO) phased array into the architecture. We validated this concept by rendering computational models and by fabricating and testing a basic two-axis AO/EO deflector prototype in lithium niobate. This was, to our knowledge, the first instantiation of an integrated, hybrid AO/EO deflector. The prototype had a 6° deflection range along the AO-axis, and a 3° deflection range along the EO-axis. A series of models provide us with a clear path forward for optimizing this deflector. They suggest that an AO/EO modulator with an EO deflection range of 24.5° and that requires less than 7.5 V can be fabricated within the limitations of standard photolithography.

Page generated in 0.0716 seconds