31 |
Nutzung des photodynamischen Effekts zur Prävention der Bildung aeroterrestrischer BiofilmePohl, Judith 06 November 2020 (has links)
Biofilme aeroterrestrischer Mikroorganismen stellen im nicht-medizinischen Bereich ein ständig größer werdendes Problem dar. Sie tragen ebenfalls wesentlich zur Verwitterung von Fassaden bei und verursachen durch die daraus resultierende Notwendigkeit der Entfernung des Biofilms und Instandsetzung der Fassaden hohe Kosten. Auch das von Biofilmen auf Innenwänden von Gebäuden ausgehende Gesundheitsrisiko für den Menschen ist schwerwiegend. Solarzellen sind aufgrund ihrer rauen Glasoberfläche ebenfalls ein bevorzugter Siedlungsort für Biofilme. Auf diesen können sie durch Verschattung die Effizienz der Solarzellen deutlich herabsetzen. Die Entfernung von Biofilmen erfordert vor allem den Einsatz von Bioziden, welche ihrerseits eine Belastung für die Umwelt darstellen und zudem oft nur begrenzte Wirksamkeit zeigen. Ziel dieser Arbeit ist daher, das Potenzial der Photodynamischen Inaktivierung (PDI) als alternative Methode zur Beseitigung oder zur Prävention der Bildung von Biofilmen zu bestimmen. Dazu wurden unterschiedliche Photosensibilisatoren (PS) bezüglich ihrer Phototoxizität auf im Rahmen dieser Arbeit etablierte phototrophe Modellkulturen in Suspension, subaquatischen und subaerialen Biofilmen untersucht. Neben der Entwicklung der Biomasse während der PDI wurde mittels spektroskopischer Methoden zudem die Aktivität der Kulturen sowie die EPS-Sekretion und die Biofilmbildung gemessen. Dabei konnte gezeigt werden, dass die kationischen PS PCor+ und TMPyP zur PDI phototropher Kulturen erfolgreich genutzt und die Biofilmbildung verhindert werden kann. Es wurde gezeigt, dass dieses Resultat ohne Aufnahme der PS in die Zellen erzielt wird. Dies ist bezüglich der Vermeidung einer möglichen Resistenzentwicklung der Mikroorganismen von entscheidender Bedeutung. Somit wurden mit dieser Arbeit die Voraussetzungen für die Entwicklung photodynamisch aktiver, antimikrobieller Oberflächenbeschichtungen zur Prävention des Wachstums aeroterrestrischer Biofilme geschaffen. / Biofilms of aeroterrestrial microorganisms are an ever-increasing problem in non-medical applications. They also contribute significantly to the weathering of facades and cause high costs due to the resulting necessity of removing the biofilm and repairing the facades. Furthermore, the health risk for humans caused by biofilms on interior walls of buildings is serious. In addition, solar cells are a preferred location for biofilms due to condensation on their rough glass surface. Growing there, they can significantly reduce the efficiency of the solar cells by shading, a problem which gains even more importance with increasing operating times of solar modules. In the removal of biofilms, biocides are prevalent. They are in turn a burden on the environment and often show only limited effectiveness. The aim of this work is therefore to determine the potential of Photodynamic Inactivation (PDI) as an alternative method to eliminate or prevent the formation of biofilms. Different Photosensitizers (PSs) were investigated with respect to their phototoxicity on phototrophic model cultures established in suspension, subaquatic and subaerial biofilms. In addition to biomass development during PDI, spectroscopic methods were used to measure culture activity, EPS secretion and biofilm formation. It was shown that the cationic PSs PCor+ and TMPyP can be successfully used for PDI of phototrophic cultures and that biofilm formation can be prevented. It has been shown that this result is achieved without uptake of PS into the cells. This is of decisive importance with regard to the avoidance of a possible resistance development in the microorganisms. Thus, this work created the prerequisites for the development of photodynamically active, antimicrobial surface coatings for the prevention of the growth of aeroterrestrial biofilms.
|
32 |
Nutzung der orts- und zeitaufgelösten Detektion der Singulettsauerstoff Lumineszenz zur Evaluierung der Photodynamischen Inaktivierung von MikroorganismenBornhütter, Tobias 18 April 2018 (has links)
Die Photodynamische Inaktivierung von Mikroorganismen (PDI) ist eine vielversprechende Methode zur Bekämpfung verschiedener Mikroorganismen. Grundlage der PDI ist die Generierung von reaktiven Sauerstoffspezies in toxischer Dosis, insbesondere von Singulettsauerstoff (1O2). Die Generierung von 1O2 erfolgt durch die Wechselwirkung eines Photosensibilisators mit Licht und molekularem Sauerstoff.
Ein direkter Nachweis von 1O2 ist nur durch die Detektion seiner Phosphoreszenz bei 1269 nm (1O2 Lumineszenz) möglich. Die Kinetik der 1O2 Lumineszenz erlaubt Rückschlüsse auf die Mikroumgebung des Photosensibilisators. Die Phosphoreszenz-Quantenausbeute des 1O2 ist sehr gering und die spektrale Lage der 1O2 Lumineszenz bedingt geringe Detektionseffizienz und hohes Rauschen. Daher erfordert die zeitaufgelöste Detektion der 1O2 Lumineszenz hohen Aufwand an Technik und Fachwissen. Bisher gelang die zeitaufgelöste Detektion von 1O2 Lumineszenz an Mikroorganismen nur in Suspensionen.
In dieser Arbeit werden Grundlagen für die Nutzung der orts- und zeitaufgelösten Detektion der 1O2 Lumineszenz auf Oberflächen als Werkzeug für die Evaluierung der PDI auf Oberflächen vorgestellt. Um diese Grundlagen zu schaffen, wurde ein Messplatz zur orts- und zeitaufgelösten Detektion von 1O2 Lumineszenz auf Oberflächen geplant, konstruiert, charakterisiert und getestet. In Untersuchungen an vier verschiedenen Mikroorganismen mit zwei Photosensibilisatoren gelingt erstmals der direkte, zeitaufgelöste Nachweis von 1O2 an Oberflächen kultivierter Mikroorganismen.
Durch den Vergleich von Fluoreszenz-Scans und 1O2 Lumineszenz-Scans können Aussagen über das Diffusionsverhalten der Photosensibilisatoren und das 1O2 Lumineszenz Quenching der Mikro-organismen getroffen werden. Eine Analyse der 1O2 Lumineszenzkinetik zeigt, dass die Detektion der 1O2 Lumineszenz und die Bestimmung der 1O2 Lumineszenzkinetik im Zeitraum der PDI aller untersuchten Mikroorganismen möglich ist. / The Photodynamic Inactivation of Microorganisms (PDI) is a promising method to combat different microorganisms. The mechanism of PDI is based on the selective generation of reactive oxygen species, particularly of singlet oxygen (1O2), in a lethal dose. 1O2 is generated via the interaction of a photosensitizer with light and molecular oxygen.
The only method for directly detecting 1O2 is the measurement of its characteristic phosphorescence at 1269 nm (1O2 luminescence). The kinetics of the 1O2 luminescence can be utilized to draw conclusions about the microenvironment of the photosensitizer. Due to the extremely low phosphorescence quantum yield of 1O2 and low detection efficiency because of its spectral position, the detection of 1O2 luminescence requires a considerable amount of specialised knowledge and technical efforts. Hitherto, the time-resolved detection of 1O2 luminescence at microorganisms has only been successful in suspensions.
This thesis presents fundamentals for the use of laterally and time-resolved detection of 1O2 luminescence as a tool for evaluating PDI of microorganisms on surfaces. To provide these fundamentals, a setup for lateral and time-resolved 1O2 luminescence detection was planned, constructed and characterised. In studies regarding four different microorganisms and two photosensitizer, the direct time-resolved detection of 1O2 luminescence on the surface of cultured microorganisms was succeeded for the first time.
The comparison of fluorescence and 1O2 luminescence scans allows gathering information about the diffusion properties of the photosensitizer as well as the quenching properties of the microorganisms. The analysis of the 1O2 luminescence kinetics exemplifies, that the determination of the 1O2 luminescence kinetics is possible over the period of the microorganisms’ PDI.
|
33 |
Inativação fotodinâmica em biofilme de Streptococcus mutans sobre bráquetes metálicos e cerâmicos: um estudo in vitro / Photodynamic inactivation of Streptococcus mutans biofilm on metal and ceramic brackets: a study in vitroEsper, Maria Ângela Lacerda Rangel [UNESP] 16 February 2016 (has links)
Submitted by MARIA ÂNGELA LACERDA RANGEL ESPER null (angela_esper@hotmail.com) on 2016-04-13T16:41:11Z
No. of bitstreams: 1
TESE FINAL ANGELA 2016.pdf: 1673462 bytes, checksum: 45fa78583c51eb4cc460fab26a8a4fc5 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-14T20:50:08Z (GMT) No. of bitstreams: 1
esper_malr_dr_sjc.pdf: 1673462 bytes, checksum: 45fa78583c51eb4cc460fab26a8a4fc5 (MD5) / Made available in DSpace on 2016-04-14T20:50:08Z (GMT). No. of bitstreams: 1
esper_malr_dr_sjc.pdf: 1673462 bytes, checksum: 45fa78583c51eb4cc460fab26a8a4fc5 (MD5)
Previous issue date: 2016-02-16 / O trabalho in vitro avaliou a eficácia da inativação fotodinâmica (PDI) da eritrosina (E) e hematoporfirina IX (H), com 10 µM, utilizando LED azul, dose de 75 J/cm2 em células planctônicas e biofilme de S. mutans (UA 159). Suspensões padrões contendo 107 células/mL foram preparadas e submetidas a diferentes condições experimentais: a) hematoporfirina IX e LED (H+L+); b) eritrosina e LED (E+L+); c) apenas LED (F-L+); d) tratamento somente com hematoporfirina IX (H+L-); e) somente com eritrosina (E+L-); e f) grupo controle, sem tratamento com fotossensibilizador (F) e sem a utilização de LED (F-L-). As cepas foram semeadas em ágar MSBS para contagem de unidades formadoras de colônias (UFC/mL). Na segunda parte do trabalho foi realizado a PDI em biofilme de S. mutans sobre bráquetes metálicos e cerâmicos, com H a 10 µM e LED azul. Os resultados foram submetidos à análise de variância e teste de Tukey (p<0,05) e demonstraram que a E sob efeito do LED (E+L+) não foi eficaz na PDI de células planctônicas, nos parâmetros usados (p=0,3644). No entanto, a H promoveu redução de 6,78 log10 (p<0,0001), no grupo de tratamento (H+L+). A PDI com a associação da H e LED foi efetiva na redução de 100% de culturas planctônicas de S. mutans, porém o mesmo não foi observado na associação com a E, na dosimetria utilizada no experimento. A PDI no biofilme de S. mutans sobre bráquetes metálicos, com a H e LED não foi eficaz nos parâmetros utilizados (p=0,1023), no entanto, ocorreu diminuição significativa de 53% sobre bráquetes cerâmicos (p=0,004). A H IX modificada é promissora como agente fotossensibilizador a ser empregado na técnica de PDI em associação ao LED azul, sendo necessários outros ensaios, em novas concentrações e/ou dosimetrias para se conseguir a inativação bacteriana. / The in vitro study evaluated the efficacy of photodynamic inactivation (PDI) with erythrosine (E) and hematoporphyrin (H) 10 µM, using a blue light-emitting diode (LED), a fluence of 75 J/cm2 , on planktonic cultures and biofilm of S. mutans (UA 159). Suspensions containing 107 cells/mL were prepared and were tested under different experimental conditions: a) hematoporphyrin IX and LED (H+L+); b) erythrosine and LED irradiation (E+L+); c) only LED (P-L+); d) only hematoporphyrin IX (H+L-); e) only erythrosine (E+L-); and f) control group, no LED irradiation or photosensitizer (P) treatment (P-L-). After treatment, the strains were seeded onto MSBS agar in order to determine the number of colony-forming units (CFU/mL). The second part of this work consisted of the PDI of S. mutans biofilm on metal and ceramic brackets with the H 10 μM and blue LED. The results were submitted to analysis of variance and the Tukey test (p<0.05) and showed that E under the effect of LED proved to be ineffective in the PDI of planktonic cultures with the parameters used (p=0.3644). H, however, caused a reduction of 6.78 log10 (p<0.0001) in the treatment group (H+L+). PDI with H and LED exerted antimicrobial effect of 100% of the S. mutans strain studied, whereas the same was not observed in the association with E in the dosimetry used in this work. PDI on S. mutans biofilm on metal brackets, with H and LED was not effective with the parameters used (p=0.1023), however on ceramic brackets caused a significant reduction of 53% (p=0,004). Modified H IX is a promising photosensitizer to be used in the PDI technique in combination with blue LED. Therefore, new tests with new concentrations and/or dosimetry are needed to achieve bacterial inactivation.
|
Page generated in 0.1283 seconds