• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 17
  • 1
  • Tagged with
  • 73
  • 68
  • 41
  • 40
  • 15
  • 13
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analyses de sensibilité et d'identifiabilité globales. Application à l'estimation de paramètres photophysiques en thérapie photodynamique

Dobre, Simona 22 June 2010 (has links) (PDF)
La thérapie photodynamique (PDT) est un traitement médical destiné à certains types de cancer. Elle utilise un agent photosensibilisant qui se concentre dans les tissus pathologiques est qui sera. Cet agent est ensuite activé par une lumière d'une longueur d'onde précise produisant, après une cascade de réactions, des espèces réactives de l'oxygène qui endommagent les cellules cancéreuses. Cette thèse aborde les analyses d'identifiabilité et de sensibilité des paramètres du modèle dynamique non linéaire retenu. Après avoir précisé différents cadres d'analyse d'identifiabilité, nous nous intéressons plus particulièrement à l'identifiabilité a posteriori, pour des conditions expérimentales fixées, puis à l'identifiabilité pratique, prenant en plus en compte les bruits de mesure. Pour ce dernier cadre, nous proposons une méthodologie d'analyse locale autour de valeurs particulières des paramètres. En ce qui concerne l'identifiabilité des paramètres du modèle dynamique de la phase photocytotoxique de la PDT, nous montrons que parmi les dix paramètres localement identifiables a posteriori, seulement l'un d'entre eux l'est en pratique. Néanmoins, ces résultats locaux demeurent insuffisants en raison des larges plages de variation possibles des paramètres du modèle et nécessitent d'être complétés par une analyse globale. Le manque de méthode visant à tester l'identifiabilité globale a posteriori ou pratique, nous a orientés vers l'analyse de sensibilité globale de la sortie du modèle par rapport à ses paramètres. Une méthode d'analyse de sensibilité globale fondée sur l'étude de la variance a permis de mettre en évidence trois paramètres sensibilisants. Nous abordons ensuite les liens entre les analyses globales d'identifiabilité et de sensibilité des paramètres, en employant une décomposition de Sobol'. Nous montrons alors que les liens suivants existent : une fonction de sensibilité totale nulle implique un paramètre non-identifiable; deux fonctions de sensibilité colinéaires impliquent la non-identifiabilité mutuelle des paramètres en question ; la non-injectivité de la sortie par rapport à un de ses paramètres peut aussi entrainer la non-identifiabilité du paramètre en question mais ce dernier point ne peut être détecté en analysant les fonctions de sensibilité uniquement. En somme, la détection des paramètres non globalement identifiables dans un cadre expérimental donné à partir de résultats d'analyse de sensibilité globale ne peut être que partielle. Elle permet d'observer deux (sensibilité nulle ou négligeable et sensibilités corrélées) des trois causes de la non-identifiabilité.
22

Pour une amélioration de la thérapie photodynamique appliquée à la cancérologie : Potentialités des dendrimères poly(amidoamine) et des Quantum Dots CdTe adressés par l'acide folique

Morosini, Vincent 15 November 2010 (has links) (PDF)
L'efficacité de la thérapie photodynamique (PDT) est confrontée à plusieurs verrous : les photosensibilisateurs (PSs) utilisés en clinique ne sont pas adaptés à la fenêtre thérapeutique, ils subissent un photoblanchiment lors du traitement, et leur nature organique pose des problèmes de solubilité en milieu biologique. Ils présentent également une faible sélectivité envers les tissus tumoraux à traiter. Dans le cadre de cette thèse, trois approches visant une amélioration de la PDT appliquée à la cancérologie ont été développées : la vectorisation, l'adressage, et l'optimisation de nouveaux PSs. La synthèse de structure PS/vecteur a permis d'élaborer des structures hydrophiles capables de vectoriser des PSs hydrophobes. Des porphyrines ont ainsi été greffées sur des dendrimères polyamidoamine (PAMAM) dissymétriques. La conservation des propriétés photophysiques des PSs après leur couplage au dendrimère a été mise en évidence. Des quantum dots (QDs), grâce à la modularité de leurs propriétés photophysiques et leur capacité à résister au photoblanchiment, ont été synthétisés et utilisés comme nouvelle classe d'agents photosensibilisants. Ces QDs ont été préparés afin d'être hydrophiles et utilisables dans la fenêtre thérapeutique de la PDT. Une étude in vitro des QDs couplés à l'acide folique a mis en évidence leur activité photodynamique. Des études réalisées par une approche de plans d'expérience a permis de hiérarchiser les facteurs expérimentaux en fonction de leurs impacts sur l'activité photodynamique. Nous avons en particulier montré une amélioration de la sélectivité des conjugués envers les cellules surexprimant le récepteur à l'acide folique.
23

Place de la thérapie photodynamique en gynécologie : applications au traitement des micrométastases péritonéales ovariennes et des lésions malpighiennes intra‐épithéliales cervicales Etude expérimentale et clinique

Ascencio, Manuel 15 September 2010 (has links) (PDF)
La thérapie photodynamique (PDT) repose sur l'interaction entre une substance accumulée au sein d'un tissu pathologique et une excitation lumineuse à une longueur d'onde adaptée en présence d'oxygène à l'origine de la nécrose tumorale. La protoporhyrine IX (PpIX) est un photosensibilisanteur endogène présent à l'état basal dans la plupart des tissus. L'administration exogène d'un précurseur de la PpIX, comme le 5-acide amino-lévulinique (5-ALA) ou l'hexaminolévulinate (He-ALA), induit une accumulation de PpIX plus conséquente et ce de manière prépondérante dans les tissus néoplasiques, à l'origine du caractère sélectif de l'effet photodynamique. L'excitation de la PpIX à 532 nm entraîne une réponse tissulaire qui se traduit par une nécrose des tissus néoplasiques. Le principe fondamental de la thérapie photodynamique repose sur l'exploitation du caractère sélectif de l'effet photodynamique au niveau des tissus cancéreux ou précancéreux (péritoine d'une carcinose ovarienne, dysplasie cervicale). Contrairement à d'autres spécialités comme la dermatologie, la gastro-entérologie et l'urologie, la thérapie photodynamique est peu développée en gynécologie. Concernant la thérapie photodynamique des micro métastases péritonéales d'origine ovarienne, l'utilisation de l'effet photodynamique en adjuvant de la chirurgie pourrait permettre d'optimiser la prise en charge thérapeutique actuelle des cancers ovariens à un stade avancé. En effet, l'injection intrapéritonéale d'ALA ou d'He-ALA permet, associée à l'utilisation d'une longueur d'onde adéquate (lumière verte à 532 nm) et un protocole d'illumination fractionnée à 45 J.cm-2 d'améliorer l'efficacité de la thérapie photodynamique d'un modèle murin de carcinose ovarienne. En outre, l'utilisation du photobleaching comme marqueur de l'efficacité de la PDT constitue un moyen d'évaluation fiable de l'effet photodynamique puisqu'il est directement corrélé à la réponse tissulaire. Ces résultats justifient le développement de la thérapie photodynamique en pratique clinique. Enfin, l'intérêt de la thérapie photodynamique dans le traitement des dysplasies cervicales de bas grade est actuellement évalué dans une étude clinique de faisabilité.
24

Propriétés photobiologiques de nanoparticules photoactivables utilisées pour le traitement de cancers

Reshetov, Vadzim 29 October 2012 (has links) (PDF)
La thérapie photodynamique (PDT) est une modalité de traitement du cancer qui utilise la combinaison d'un photosensibilisant, de la lumière et d'oxygène moléculaire. L'application de nanosubstances liposomales pour délivrer les photosensibilisants dans la tumeur est devenu un sujet important de la recherche en PDT. La présente étude porte sur les formulations liposomales conventionnelles et stériquement stabilisées de photosensibilisant mTHPC, Foslip® et Fospeg®, dans le but de déterminer les paramètres pour l'optimisation de la PDT liposomale. La caractérisation du comportement in vitro de la mTHPC liposomale a été étudiée, particulièrement sa localisation, l'état d'agrégation et les propriétés photophysiques des drogues dans les liposomes. Nous avons démontré l'état monomérique de la mTHPC dans les vésicules lipidiques et une localisation partielle du mTHPC dans Fospeg® dans la partie PEG des liposomes, alors que la majeure partie est liée à la bicouche lipidique. Nous avons ensuite étudié les cinétiques de relargage des drogues, le mode de liaison aux protéines et la destruction des liposomes dans le sérum. Dans ce but, une méthodologie basée sur la fluorescence pour estimer le relargage de la mTHPC à la fois in vitro et in vivo a été développée, ainsi que d'un essai in vitro pour caractériser la destruction des liposomes. Le relargage de la mTHPC des liposomes PEGylés a été retardé par rapport aux liposomes conventionnels et la destruction des liposomes a été considérablement diminuée. La connaissance de tous ces paramètres permet de mieux prédire le taux de relargage de la drogue, les paramètres pharmacologiques et l'effet tumoricide in vivo. Le traitement PDT pourrait être plus avantageux avec le Fospeg® comparé à la mTHPC incorporée dans les liposomes conventionnels.
25

Ciblage de neuropiline-1, co-récepteur du VEGF, pour potentialiser l'effet anti-vasculaire de la Thérapie Photodynamique<br />Une étude de stabilité de la molécule conjuguée a été réalisée in vitro et in vivo. Si le peptide est relativement stable jusqu'à 4h après injection intraveineuse in vivo, l'utilisation de pseudo-peptides plus résistants aux peptidases permettrait une efficacité encore supérieure.

Tirand, Loraine 06 March 2007 (has links) (PDF)
La croissance d'une tumeur au-delà de quelques mm3 requiert la formation de son propre réseau vasculaire par angiogenèse ; la destruction de ces vaisseaux nourriciers pourrait conduire à une régression tumorale. L'angiogenèse est orchestrée par de nombreux facteurs de croissance, dont le VEGF (Vascular Endothelial Growth Factor). La thérapie photodynamique (PDT) est une modalité de traitement des petites tumeurs localisées, reposant sur l'action conjuguée d'un photosensibilisateur (PS), de la lumière et de l'oxygène. Outre des dommages cytotoxiques directs aux cellules tumorales, la PDT induit des dommages indirects, caractérisés par l'altération de la vascularisation tumorale et l'activation d'effecteurs immunitaires. <br />Un nouveau PS couplé à un heptapeptide (ATWLPPR) ciblant neuropiline-1, un co-récepteur du VEGF, a été synthétisé. Ce couplage ne modifie pas les propriétés photophysiques du PS.<br />Une étude in vitro sur cellules endothéliales de veine ombilicale humaine a montré une moindre cytotoxité à l'obscurité, une amélioration de l'incorporation intracellulaire et une meilleure activité photodynamique, suite au couplage du PS au peptide.<br />In vivo, chez des souris nude porteuses de gliomes malins humains, le PS conjugué s'accumule dans la tumeur à des taux supérieurs à ceux retrouvés dans la peau. En utilisant des conditions (dose de PS, fluence et irradiance lumineuses) optimisées par une approche de plan d'expériences, la PDT avec le PS couplé au peptide induit une réduction du flux sanguin pendant traitement, comparé au PS non couplé, une destruction des cellules endothéliales des vaisseaux sanguins, 24h après PDT, ainsi qu'un retard de croissance tumorale, statistiquement significatif comparé au PS non couplé.
26

Conception de sondes théranostiques moléculaires impliquand la PDT à excitation biphotonique / Conception of molecular theranostic probes implying two-photon excitation PDT

Galland, Margaux 28 June 2018 (has links)
La thérapie photodynamique (PDT) est une technique thérapeutique qui permet un traitement localisé par irradiation lumineuse d’un photosensibilisateur (PS) grâce à la génération d’une espèce cytotoxique, généralement de l’oxygène singulet. Cependant, de nombreux PS sont également luminescents et les deux processus sont compétitifs. L’emploi de métaux de transition est connu pour améliorer le processus de PDT mais l’impact des ions lanthanides(III) en PDT est encore peu connu. Par ailleurs, l’utilisation de l’absorption biphotonique a de nombreux avantages parmi lesquels la possibilité d’exciter le PS dans la fenêtre de transparence biologique pour des applications en milieux biologiques.Les travaux de cette thèse visent à étudier quel est l’influence de la complexation d’un atome de lanthanide(III) à un PS sur la photophysique de désexcitation de ce dernier. Les complexes synthétisés et ceux étudiés ont montré que l’effet dépend du lanthanide(III). Il est ainsi possible, avec un choix judicieux du métal, de favoriser une voie de désexcitation par rapport à une autre. En particulier, l’ion Gd(III) se révèle avoir un effet bénéfique important pour la génération d’oxygène singulet et cet effet s’ajoute à celui que des atomes lourds comme le brome peuvent avoir. L’ion Yb(III) en revanche, favorise de manière générale le transfert d’énergie par effet d’antenne et la luminescence du lanthanide est alors le processus majoritaire. Enfin, l’emploi de Gd(III) complexé à un PS excitable à deux photons ouvre la voie à des agents théranostiques moléculaires combinant l’IRM en tant que fonction d’imagerie et la PDT pour la thérapie. / Photodynamic Therapy (PDT) is a therapeutic technique which consists in generating a highly reactive species, generally singlet oxygen, by shining light on a photosensitizer (PS). However, many PS are also luminescent and both processes are competitive. The use of transition metals is well known to enhance the PDT effect, but little is known about the effect of lanthanide(III) metals.On the other hand biphotonic absorption has numerous advantages, among them the possibility to excite the PS in the so-called biological transparency window for biological applications.The aim of this PhD is to get a better comprehension of the effect of complexation of a lanthanide(III) atom with a PS on the photophysics and deactivation pathways of the latter. The synthesis and conducted studies of lanthanide complexes showed that the effect is dependent on which lanthanide(III) metal is used. Thus by choosing carefully the lanthanide metal, one can favor one deactivation pathway over another. In particular, the Gd(III) ion turns out to be very efficient in promoting singlet oxygen generation and its effect is additive to the already known positive effect of heavy atoms such as bromine. On the opposite, the Yb(III) ion mainly favors the energy transfer through the antenna effect and the complex preferentially emits light.Finally, using Gd(III) linked to a two-photon excited PS opens the path to molecular theranostic probes combining MRI as a imagery technique and PDT as a therapeutic one.
27

Fonctionnalisation par des peptides de nanoparticules hybrides multifonctionnelles pour de la thérapie photodynamique ciblant neuropiline-1 / Peptide functionalization of multifunctional hybrid nanoparticles for photodynamic therapy targeting neuropilin-1

Couleaud, Pierre 14 February 2011 (has links)
Le développement de la thérapie photodynamique s’oriente vers la conception de photosensibilisateurs de 3ème génération, assemblages moléculaires adressés vers une cible biologique spécifique. Les nanoparticules développées dans un cadre de cette thèse sont constituées d’un cœur d’oxyde de gadolinium recouvert d’une couche de polysiloxane. Une chlorine est couplée de façon covalente dans cette couche de polysiloxane. Un surfactant hydrophile recouvre la surface des nanoparticules afin de les rendre biocompatibles. Enfin, les nanoparticules sont fonctionnalisées par le peptide ATWLPPR ciblant le récepteur d’intérêt neuropiline-1, surexprimé par les cellules endothéliales activées lors de l’angiogenèse tumorale. La stratégie est double : d'une part, il s'agit de traiter les lésions cancéreuses par thérapie photodynamique, d’autre part d'asphyxier le tissu tumoral en s'attaquant au réseau vasculaire qui l'alimente en nutriments et en oxygène. L'optimisation de la nanoplate-forme a porté sur la taille du cœur d’oxyde de gadolinium pour une intensité du signal IRM rehaussée, l’épaisseur de la coquille pour permettre la diffusion de l’oxygène indispensable à la réaction photodynamique donc à l’efficacité thérapeutique, le choix et la quantité d’unités peptidique couplées pour une sélectivité maximale pour les tissus tumoraux par rapport aux tissus sains / The development of photodynamic therapy (PDT) is focused on the conception of 3rd generation of photosensitizers which are molecular constructs targeted to specific biological receptors. The nanoparticles we have developed in this thesis are made of a gadolinium oxide core, a polysiloxane shell in which are covalently entrapped chlorins. Hydrophilic surfactants are grafted on the nanoparticles in order to make it biocompatible. Finally, the nanoparticles are functionalized by ATWLPPR peptide to target neuropilin-1 which is over-expressed on endothelial cells during tumoral angiogenesis. The aim of this strategy is both to treat cancer lesion by photodynamic therapy and to asphyxiate the tumoral tissue by destroying the vasculature that brings nutrients and oxygen to the tumor. The optimization of the nanoplate-form has been done by modifying the size of the gadolinium core for the best MRI signal, the size of the polysiloxane shell in order to let the oxygen diffuse in and out of the nanoparticle, the type and the amount of peptides coupled to the surfactant for the best selectivity for tumoral tissue compared to normal tissue
28

Investigation du débit sanguin choroïdien dans la dégénérescence maculaire liée à l'âge

Marinier, Julie-Andrée January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
29

Caractérisations physico-chimiques et évaluations biologiques de nanoparticules polymères chargées pour des applications en thérapie photodynamique et en théranostique / Physico-chemical characterization and biological evaluation of polymer-based loaded nanoparticles for applications in photodynamic therapy and theranostic

Boeuf, Gaëlle 06 November 2014 (has links)
La thérapie photodynamique (PDT) est utilisée actuellement pour traiter certains cancers accessibles par irradiation laser. Son principe repose sur l'action combinée de la lumière et d'un principe actif nommé photosensibilisant (PS). La molécule photosensible génère des espèces réactives de l'oxygène sous l'action d'un rayonnement spécifique. Ces espèces sont fortement réactives et entrainent la mort des cellules alentour. Plusieurs facteurs limitent cependant l'efficacité de ce traitement. Dans cette optique, l'encapsulation d'un PS de seconde génération, le Foscan®, a conduit à la formation de nanoparticules qui ont été caractérisées et dont l'effet PDT a été étudié sur des cellules gliomales C6. Les nanoparticules présentent l'avantage de contrôler la solubilité du système, d'affiner le ciblage des traitements et de pouvoir adapter les doses de traitement. Le confinement du PS au sein de la nanoparticule peut permettre de réduire des effets secondaires et d'augmenter la concentration en principe actif au sein des tissus tumoraux. Par la suite, des nanoparticules chargées en complexes de ruthénium(II) ont été caractérisées. Ces complexes présentent des propriétés optiques adéquates pour de telles applications. De plus, une excitation biphotonique est réalisable, permettant d'augmenter la sélectivité et la profondeur du traitement. Des études préliminaires de l'effet PDT par excitation biphotonique ont été effectuées. / Photodynamic therapy (PDT) is currently used to treat certain cancers accessible by laser irradiation. Its principle is based on the combined action of light and a drug called photosensitizer (PS). The photosensitive molecule generates reactive oxygen species through the action of a specific radiation. These species are highly reactive, entailing the death of surrounding cells. However, several factors limit the effectiveness of this treatment. In this context, the encapsulation of a second-generation PS, Foscan®, led to the formation of nanoparticles that have been characterized and whose PDT effect was studied on C6 glioma cells. The nanoparticles have the advantage of controlling the solubility of the system, better targeting of treatment and to adjust the dose of treatment. Containment of the PS inside nanoparticles can reduce side effects and increase the concentration of active drug in tumor tissues. Thereafter, the nanoparticles loaded with ruthenium(II) complexes have been characterized. These complexes show optical properties suitable for such applications. In addition, a two-photon excitation is possible, improving the selectivity and increasing the depth of treatment. Preliminary studies of the effect of PDT photon excitation were performed.
30

Imagerie dynamique des processus métaboliques transitoires à l'aide de la tomographie d'émission par positrons (TEP) animale dans l'évaluation de photosensibilisateurs pour la thérapie photodynamique du cancer (TPD)

Bérard, Véronique January 2006 (has links)
La tomographie d'émission par positrons (TEP) est un outil d'imagerie moléculaire puissant et non invasif permettant d'étudier in vivo des processus physiologiques et moléculaires, tant au niveau cardiaque, cérébral qu'oncologique. En oncologie clinique, la TEP est surtout utilisée pour détecter des tumeurs cancéreuses et évaluer leur réponse à diverses thérapies. Au niveau de la recherche pré-clinique en oncologie, cette modalité d'imagerie moléculaire prometteuse est portée à jouer un rôle important dans le développement de nouveaux protocoles de traitement. Le radiotraceur le plus utilisé pour évaluer le métabolisme tumoral du glucose est le 2-deoxy-2-[[indice supérieur 18]F]-fluoro-D-glucose ([[indice supérieur 18]F]-FDG). La thérapie photodynamique (TPD) est de plus en plus employée dans le traitement de certains cancers.La TPD nécessite la présence combinée de photosensibilisateurs (PS) localisés dans les tumeurs, de lumière à une longueur d'onde appropriée et d'oxygène moléculaire afin d'induire des dommages oxydatifs aux tissus tumoraux.La thérapie photodynamique peut amener une régression tumorale selon deux mécanismes d'action différents. Elle peut engendrer la mort des cellules tumorales directement, alors qu'elle peut aussi endommager la vascularisation de la tumeur amenant une mort indirecte des cellules malignes.La contribution relative de ces deux principaux mécanismes d'action sur la réponse tumorale dépend de la distribution du photosensibilisateur au niveau des compartiments cellulaires ou vasculaires de la tumeur qui à son tour, dépend de la nature chimique de celui-ci. Les PS amphiphiles, comme la phtalocyanine ZnPcS[indice inférieur 2], sont préférentiellement transportés par des lipoprotéines qui pénètrent directement dans les cellules tumorales, alors que les PS hydrophiles tels que la phtalocyanine AlPcS[indice inférieur 4] sont principalement transportés par la protéine albumine et sont déposés dans le stroma vasculaire de la tumeur. Il s'ensuit que la TPD faite avec le ZnPCS[indice inférieur 2] induit plutôt une mort cellulaire directe, alors que l'emploi du AlPcS[indice inférieur 4] affectera en premier lieu le système vasculaire de la tumeur amenant une mort cellulaire indirecte par la suite. Étant donné que l'application de la thérapie photodynamique occasionne très rapidement des effets au niveau des tumeurs traitées, la tomographie d'émission par positrons pourrait certes être un outil idéal pour étudier les réponses biochimiques et physiologiques au niveau des tumeurs tôt suite à ce traitement. L'imagerie TEP avec le [[indice supérieur 18]F]-FDG s'est effectivement avérée être une méthode prometteuse dans l'étude des effets de la thérapie photodynamique du cancer in vivo, soit dans l'évaluation de l'efficacité d'un photosensibilisateur ou dans la détermination de son mécanisme d'action. Des travaux antérieurs en ont montré le potentiel en procédant à des scans à différents temps après la TPD pour mesurer la captation tumorale du [[indice supérieur 18]F]-FDG, injecté sous forme de bolus. Toutefois, cette approche conventionnelle ne donne pas d'informations sur les processus biologiques transitoires impliqués dans la destruction des cellules tumorales, c'est-à-dire les processus survenant durant et immédiatement après l'illumination. Ce mémoire illustre donc une nouvelle approche utilisant l'imagerie TEP, avec infusion continue du radiotraceur [[indice supérieur 18]F]-FDG, pour l'évaluation en temps réel de la réponse tumorale à la TPD chez le rat. De façon plus spécifique, le mécanisme d'action de différents photosensibilisateurs sera investigué en fonction des processus métaboliques transitoires observés durant et immédiatement après l'illumination. De plus, afin de mieux comprendre les processus physiologiques impliqués dans l'avènement de certains changements métaboliques, des études TEP en temps réel évaluant le flot sanguin tumoral durant la TPD ont aussi été amorcées avec les radiotraceurs [[indice supérieur 13]N]-NH[indice inférieur 3] et [[indice supérieur 64]Cu]-PTSM. En somme, nous avons réussi à démontrer la faisabilité d'utiliser l'imagerie TEP en temps réel avec des infusions continues de [[indice supérieur 18]F]-FDG afin d'étudier la réponse métabolique tumorale durant la thérapie photodynamique chez un modèle de rongeur. Cette méthode s'est avérée très pertinente dans l'étude des changements métaboliques transitoires survenant au niveau tumoral et systémique pendant et tout de suite après la TPD, particulièrement pour la caractérisation des mécanismes d'action de différents photosensibilisateurs. En effet, l'observation de différences significatives au niveau des profils de captation du [[indice supérieur 18]F]-FDG procure une façon rapide de distinguer entre un mécanisme de destruction directe ou indirecte des cellules tumorales et ce, en temps réel. En plus de visualiser la réponse métabolique tumorale à la thérapie photodynamique, cette procédure d'imagerie TEP en temps réel pourrait aussi être appliquée à l'étude des changements du flot sanguin tumoral pendant la TPD, ainsi qu'à l'étude de mécanismes de réponse spécifiques tels que les processus apoptotiques.

Page generated in 0.076 seconds