• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 269
  • 14
  • 10
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 383
  • 383
  • 206
  • 201
  • 73
  • 71
  • 70
  • 68
  • 67
  • 61
  • 51
  • 48
  • 48
  • 46
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

The Friction between Paper Surfaces

Garoff, Niklas January 2002 (has links)
<p>The main objective for the work described in this PhD thesiswas to formulate a friction model to characterize thefrictional behavior of paper. More specifically, the modelshould explain a phenomenon that is typical for paper grades,viz.: that the level of paper-to-paper friction is dependent onthe direction and the number of previous slides. The modelshould also explain the lubricating effect oflow-molecular-mass lipophilic compounds (LLC) that occur inpaper on paper-to-paper friction. Furthermore, the model shoulddescribe the types of forces that influence paper-to-paperfiction and explain the mechanism by which the LLC decreasepaper-to-paper friction.</p><p>This thesis consists of a literature review of the basicconcepts of tribology and a summary of the main results andconclusions from four studies on the frictional characteristicsof paper and a study on the friction and adhesion of cellulosesurfaces together with some unpublished material.</p><p>The purpose of the investigation described in the firstpaper was to explain a phenomenon that is typical for papergrades, viz.: the level of paper-to-paper friction is dependenton the direction and the number of previous slides. Thisbehavior is called“friction hysteresis”by theauthors, and it has its origin in the reorientation of thefibers on the surface of a paper and their alignment relativeto the sliding direction.</p><p>The second paper describes a study that was aimed atidentifying lubricants that occur natively in paper. Filterpapers were impregnated with model compounds representing woodextractives, i.e. low-molecular-weight lipophilic compounds,which are present in wood, pulp and paper, and thepaper-to-paper friction was determined. The results of thatstudy show that a wood extractive must fulfill severalstructural criteria in order to lubricate a paper surface: Itmust have a hydrophilic group that can attach to the papersurface and a linear hydrocarbon backbone of sufficientlength.</p><p>Although it is not specifically stated in the second paper,the authors proposed a type of lubrication by which woodextractives decrease paper-to-paper friction that is, ineffect, boundary lubrication. The purpose of the investigationdescribed in the third paper was to clarify whether woodextractives and other low-molecular-mass lipophilic compoundsthat occur in paper can act as boundary lubricants on papersurfaces. The main objective of that study was to investigatethe role of chemical structure of LLC for their orientationrelative to the paper surface, which is an important criterionfor boundary lubrication. Filter papers were impregnated withmagnesium salts of different lipophilic acids, which were usedfor model compounds for the LLC. The deposited layers ofmagnesium salts were characterized by X-ray photoelectronspectroscopy (XPS) and contact angle goniometry and thefriction of the impregnated paper sheets was determined. Theresults show that the degree of lubrication and the resistanceto wear of the layers of a magnesium salt increased withincreasing chain length and increasing degree of linearity ofthe lipophilic acid. Based on the results of that study and ofearlier studies, it is concluded that boundary lubrication isthe type of lubrication by which low-molecular-mass lipophiliccompounds that occur natively in paper decreasepaper-to-paper-friction.</p><p>In boundary lubrication, surfaces are covered withmonolayers of lubricant molecules that comprise an active headgroup that can attach to the surface, e.g. a carboxyl group,and an inert linear backbone, such as a long saturatedhydrocarbon chain. Such compounds form ordered monolayers onsurfaces, so that the backbone points vertically out of planeof the surface. The friction is then determined by theinteractions between the monolayers, which are weaker than theinteractions between the clean surfaces and this gives a lowerfriction.</p><p>The fourth paper describes a study on the origin of thedifferences in friction levels between different linerboardsbased on recycled fiber (old corrugated container, OCC). Thesheets were subjected to two extraction stages and analyzedwith respect to surface roughness and their content oflow-molecular-mass lipophilic compounds (LLC). The resultsshowed that a high amount of LLC in the sheets lead to lowfriction, due to lubrication.</p><p>The fifth paper describes a study that was aimed atdetermining the types of forces that influence the frictionbetween the surfaces of hydrophilic polymers and explaining themechanism by which boundary lubricants decrease the friction.The adhesion and the friction of model systems was measuredwith atomic force microscopy (AFM) using regenerated cellulosefilms and functionalised AFM tips and the effect of fatty acidsand humidity was investigated. The friction significantlyincreased with increasing humidity and that there was a strongcorrelation between the ability of a fatty acid to form ahydrophobic surface and its lubricating performance. Measuredadhesion forces at high humidity were well predicted bytheoretical models that took into account the effect of theLaplace pressure acting in a water meniscus formed aroundcontact regions due to capillary condensation. The resultsindicated that the degree of capillary condensation may beeffectively suppressed by increasing the hydrophobicity of thecontacting surfaces, causing adhesion and friction to decrease.These results suggest that friction between paper surfacesunder ambient conditions is greatly influenced by the degree ofcapillary condensation. Furthermore, lubrication by fatty acidsis achieved by the formation of a vertically oriented,hydrophobic monolayer that can withstand the stresses duringsliding and increase the hydrophobicity of the paper surfaceand thereby suppress capillary condensation.</p><p><b>Keywords:</b>Friction, paper-to-paper friction, frictionhysteresis, fibers, orientation, sliding direction, woodextractives, low-molecular-mass lipophilic compounds, boundarylubrication, adhesion, capillary condensation, Laplacepressure, surface forces, JKR theory, gas chromatography-massspectroscopy, X-ray photoelectron spectroscopy, contact angle,atomic force microscopy</p>
162

Examining the electronic structure of metal pnictides via X-ray spectroscopy

Blanchard, Peter Ellis Raymond Unknown Date
No description available.
163

Molecular Doping Processes in Organic Semiconductors investigated by Photoelectron Spectroscopy

Tietze, Max Lutz 18 August 2014 (has links) (PDF)
Molecular doping is a key technique for realizing high efficient organic light-emitting diodes (OLEDs) and photovoltaics (OPV). Furthermore, its most recent application in organic field-effect transistors (OFETs) marks a milestone on the roadmap towards flexible organic CMOS technology. However, in contrast to silicon based devices, the understanding of the fundamental processes of molecular doping is still controversially discussed. This work aims at the detailed analysis of the molecular doping process by employing Photoelectron spectroscopy (PES) on various doped thin-films prepared by co-evaporation in vacuum. Here, the focus is on explanation of the experimental findings by a statistical description in order to contribute to the fundamental understanding of the doping mechanism. First, the Fermi level shifts in thin-films of the common hole transport materials MeO-TPD, ZnPc, and pentacene p-doped by the acceptors C60F36 and F6-TCNNQ are studied. The precise control of molar doping ratios as low as 1e−5 is demonstrated, allowing analysis of the doping properties in a much broader range as previously accessible. Characteristic kinks and slopes in the Fermi level vs. doping concentration diagrams are found. Furthermore, the doping efficiency is found to decrease with increasing doping concentrations to just a few percent at molar ratios above 0.1. By numerically solving the charge neutrality equation using a classical semiconductor physics approach, these findings are explained by trap-limitation, dopant saturation, and reserve regimes as known from inorganic semiconductor physics. Using the example of p-doped MeO-TPD thin-films, it is finally demonstrated that the density of deep gap states depends on the purity degree of the host material. Similar studies are conducted on thin-films of C60, ZnPc, and pentacene n-doped by the di-metal complex W2(hpp)4. The corresponding Fermi level plots possess also host material specific kinks and slopes, which however, can be explained by application of the statistical doping description and assuming just dopant saturation and trap-limitation. Furthermore, it is demonstrated that electron traps with defined density can intentionally be introduced in pentacene by co-evaporation of C60 and gradually filled-up by n-doping with W2(hpp)4. In contrast to p-dopants, the highly efficient n-dopant W2(hpp)4 is prone to degradation in air due to its low IP of just 2.4eV. Therefore, the degradation of pure films of W2(hpp)4 as well as of n-doped films applying various host materials is studied under air exposure by conductivity measurements and PES. An unexpected (partial) passivation of W2(hpp)4 molecules against oxidation is found, however, this effect is identified to depend on the energy levels of the used host material. This finding is explained by a down-shift of the W2(hpp)4 energy levels upon charge transfer to a host material with deeper lying energy levels and thus allows for new conclusions on the relative alignment of the energy levels of dopant and host molecules in doped films in general. The maximum open-circuit voltage Voc of BHJ solar cells is limited by the effective HOMO(donor)-LUMO(acceptor) gap of the photo-active absorber blend. Therefore, the relative energy levels within ZnPc:C60 blend layers are furthermore investigated by PES, identifying an increase of the HOMO(ZnPc)-LUMO(C60) gap by 0.25 eV when varying the blend stoichiometry from 6:1 to 1:6. The trend in this gap correlates with observed changes in Voc of respective BHJ solar cells as well as with measured charge transfer energies. As physical origins for the changed energy levels, a suppressed crystallization of the C60 phase due to presence of donor molecules as well as concentration-dependent growth modes of the ZnPc phase are discussed.
164

Soft X-ray photoemission study of thermoelectric alloys Fe2−x−yIryV1+xAl and Fe2−xV1+x−yTiyAl

Nishino, Yoichi, Sugiura, Takahiro, Tanaka, Suguru, Tamada, Yuko, Sandaiji, Yusuke, Miyazaki, Hidetoshi, Inukai, Manabu, Yagi, Shinya, Kato, Masahiko, Harada, Shota, Soda, Kazuo 04 1900 (has links)
Advances in Vacuum Ultraviolet and X-ray Physics The 37th International Conference on Vacuum Ultraviolet and X-ray Physics (VUVX2010)
165

Titania Nanoscale Films and Surfaces : Surface Science Investigation of Structure and Properties

Ragazzon, Davide January 2014 (has links)
This thesis presents surface science studies, investigating several aspects of titanium dioxide at the atomic scale. The greater part of this work is devoted to the preparation by chemical vapor deposition (CVD) of titanium(IV) tetraisopropoxide (TTIP) of ultrathin TiO2 or TiOx films on Au(111). Four ordered structures were growth and characterized. It was also demonstrated how the morphology of the film (wetting film vs island) can be tailored. The acquired knowledge about the CVD process was exploited to load nano porous gold with titania, enhancing its catalytic activity. The reactivity towards water adsorption of the titania structures on Au(111) was also investigated. Finally, part of this work concerned the studying of the behavior of water on the stoichiometric rutile TiO2(110) surface, combining the experiments with density-functional theory (DFT) calculations and (kinetic) Monte Carlo simulations. The main experimental techniques used in this work are low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and photoelectron spectroscopy (PES).
166

The Complex Nature of the Electrode/Electrolyte Interfaces in Li-ion Batteries : Towards Understanding the Role of Electrolytes and Additives Using Photoelectron Spectroscopy

Ciosek Högström, Katarzyna January 2014 (has links)
The stability of electrode/electrolyte interfaces in Li-ion batteries is crucial to the performance, lifetime and safety of the entire battery system. In this work, interface processes have been studied in LiFePO4/graphite Li-ion battery cells.  The first part has focused on improving photoelectron spectroscopy (PES) methodology for making post-mortem battery analyses. Exposure of cycled electrodes to air was shown to influence the surface chemistry of the graphite. A combination of synchrotron and in-house PES has facilitated non-destructive interface depth profiling from the outermost surfaces into the electrode bulk. A better understanding of the chemistry taking place at the anode and cathode interfaces has been achieved. The solid electrolyte interphase (SEI) on a graphite anode was found to be thicker and more inhomogeneous than films formed on cathodes. Dynamic changes in the SEI on cycling and accumulation of lithium close to the carbon surface have been observed.    Two electrolyte additives have also been studied: a film-forming additive propargyl methanesulfonate (PMS) and a flame retardant triphenyl phosphate (TPP). A detailed study was made at ambient and elevated temperature (21 and 60 °C) of interface aging for anodes and cathodes cycled with and without the PMS additive. PMS improved cell capacity retention at both temperatures. Higher SEI stability, relatively constant thickness and lower loss of cyclable lithium are suggested as the main reasons for better cell performance. PMS was also shown to influence the chemical composition on the cathode surface. The TPP flame retardant was shown to be unsuitable for high power applications. Low TPP concentrations had only a minor impact on electrolyte flammability, while larger amounts led to a significant increase in cell polarization. TPP was also shown to influence the interface chemistry at both electrodes. Although the additives studied here may not be the final solution for improved lifetime and safety of commercial batteries, increased understanding has been achieved of the degradation mechanisms in Li-ion cells. A better understanding of interface processes is of vital importance for the future development of safer and more reliable Li-ion batteries.
167

The effect of fluorine substituents in conjugated polymers

Lӧvenich, Peter Wilfried January 2001 (has links)
A new route to a well-defined block copolymer with alternating PEO-solubilising groups and fluorinated distyrylbenzene units was established. The Horner Wittig reaction was used as the polycondensation reaction. The non-fluorinated analogue of this block copolymer was prepared via the Wittig reaction. Both polymers were soluble in chloroform and free-standing films could be cast from solution. The position of the HOMO and LUMO energy levels of these two materials were determined by a combination of cyclic voltammetry, UV photoelectron spectroscopy and UV/Vis absorption spectroscopy. The presence of fluorine substituents on the distyrylbenzene unit had no influence on the HOMO-LUMO band-gap (3.0 eV). However, the position of these two energy levels relative to the vacuum level was shifted to higher energies (0.85 eV shift) in the case of the fluorinated block copolymer. The photoluminescence quantum efficiency of the fluorinated block copolymer was 17%, that of the non-fluorinated block copolymer was 34%. The former was used as the electron conducting layer in a light emitting diode with poly(p-phenylene vinylene) as the emissive layer. The latter was used as the emissive layer in light emitting diodes. Luminances over 2000 cd/m(^2) were observed for devices based on the non-fluorinated block copolymer using indium tin oxide as the anode and aluminium as the cathode. The luminescence efficiency of such devices was as high as 0.5 cd/A, corresponding to an internal quantum efficiency of 1.1%.Furthermore, an oligo(p-phenylene vinylene) was synthesised that contained two terminal fluorinated benzene rings and two central non-fluorinated benzene rings, all connected by vinylene bridges. This material aggregated in a 'brickwall' motif, where each molecule overlaps with two halves of molecules in the row above and below. The structure of this J aggregate is due to aryl-fluoroaryl-interactions and was demonstrated by X-ray crystal structure analysis.
168

Photoelectron Spectroscopy on Doped Organic Semiconductors and Related Interfaces / Photoelektronenspektroskopie an dotierten organischen Halbleitern und deren Grenzflächen

Olthof, Selina 16 June 2010 (has links) (PDF)
Using photoelectron spectroscopy, we show measurements of energy level alignment of organic semiconducting layers. The main focus is on the properties and the influence of doped layers. The investigations on the p-doping process in organic semiconductors show typical charge carrier concentrations up to 2*10E20 cm-3. By a variation of the doping concentration, an over proportional influence on the position of the Fermi energy is observed. Comparing the number of charge carriers with the amount of dopants present in the layer, it is found that only 5% of the dopants undergo a full charge transfer. Furthermore, a detailed investigation of the density of states beyond the HOMO onset reveals that an exponentially decaying density of states reaches further into the band gap than commonly assumed. For an increasing amount of doping, the Fermi energy gets pinned on these states which suggests that a significant amount of charge carriers is present there. The investigation of metal top and bottom contacts aims at understanding the asymmetric current-voltage characteristics found for some symmetrically built device stacks. It can be shown that a reaction between the atoms from the top contact with the molecules of the layer leads to a change in energy level alignment that produces a 1.16eV lower electron injection barrier from the top. Further detailed investigations on such contacts show that the formation of a silver top contact is dominated by diffusion processes, leading to a broadened interface. However, upon insertion of a thin aluminum interlayer this diffusion can be stopped and an abrupt interface is achieved. Furthermore, in the case of a thick silver top contact, a monolayer of molecules is found to float on top of the metal layer, almost independent on the metal layer thickness. Finally, several device stacks are investigated, regarding interface dipoles, formation of depletion regions, energy alignment in mixed layers, and the influence of the built-in voltage. We show schematic energy level alignments of pn junctions, pin homojunctions, more complex pin heterojunctions with Zener-diode characteristics, as well as a complete OLED stack. The results allow a deeper insight in the working principle of such devices. / Mit Hilfe der Photoelektronenspektroskopie werden in der vorliegenden Arbeit Energieniveaus an Grenzflächen von organischen Halbleitern untersucht, wobei ein Hauptaugenmerk auf dem Einfluss und den Eigenschaften dotierter Schichten liegt. Bei der Untersuchung grundlegender Eigenschaften eines p-dotierten organischen Halbleiters können Ladungsträgerkonzentrationen bis zu 2*10E20 cm-3 nachgewiesen werden. Eine Variation der Dotierkonzentration zeigt einen überproportionalen Einfluss der Ladungsträger auf die Position des Ferminiveaus verglichen mit Experimenten an anorganischen Schichten. Durch den Vergleich mit der Anzahl Dotanden in der Schicht kann gezeigt werden, dass dabei nur etwa 5% der Dotanden einen vollständigen Ladungstransfer eingehen. Eine detaillierte Untersuchungen der Zustandsdichte jenseits des HOMOs (Highest Occupied Molecular Orbital) zeigt, dass die exponentiell abfallende Flanke der Zustandsdichte weiter in die Bandlücke hineinreicht als üblicherweise angenommen. Das Ferminiveau erfährt bei steigender Dotierung ein Pinning an diesen Zuständen, was für eine signifikante Ladungsträgerkonzentration spricht. Weiterhin wurden Untersuchungen zu Metal Top- und Grundkontakten durchgeführt. Es kann gezeigt werden, dass die Ursache für die Entstehung unsymmetrischer Strom-Spannungskurven, trotz eines symmetrischen Probenaufbaus, an einer Reaktion zwischen dem Molekül und den Metallatomen liegt. Dadurch entsteht eine um 1.16eV reduzierte Injektionsbarriere für Elektronen am Topkontakt. Weitere detaillierte Untersuchungen an diesen Topkontakten zeigen, dass im Falle von Silber als Metall diese Grenzfläche von Diffusionsprozessen dominiert ist. Im Gegensatz dazu zeigt das unedle Metall Aluminium keine Diffusion und führt zu abrupten Grenzflächen. Im ersten Fall kann zudem eine Monolage vom Molekül auf dem Metallkontakt nachgewiesen werden, die unabhängig von der Metalldicke aufschwimmt. Zuletzt werden Bauelemente oder Teile solcher mit Photoelektronenspektroskopie vermessen. Hierbei werden die Grenzflächendipole, die Ausbildung von Verarmungszonen, die Energieangleichung in Mischschichten und der Einfluss der Eingebauten Spannung untersucht. Es können die Banddiagramme von pn-Übergängen, einfachen pin Homoübergängen, komplexeren pin Heteroübergänge mit Zener-Dioden Verhalten sowie eine gesamte OLED gezeigt werden. Die Ergebnisse erlauben einen tieferen Einblick in die Arbeitsweise solcher Bauelemente.
169

Stability Phenomena in Novel Electrode Materials for Lithium-ion Batteries

Stjerndahl, Mårten January 2007 (has links)
Li-ion batteries are not only a technology for the future, they are indeed already the technology of choice for today’s mobile phones, laptops and cordless power tools. Their ability to provide high energy densities inexpensively and in a way which conforms to modern environmental standards is constantly opening up new markets for these batteries. To be able to maintain this trend, it is imperative that all issues which relate safety to performance be studied in the greatest detail. The surface chemistry of the electrode-electrolyte interfaces is intrinsically crucial to Li-ion battery performance and safety. Unfortunately, the reactions occurring at these interfaces are still poorly understood. The aim of this thesis is therefore to increase our understanding of the surface chemistries and stability phenomena at the electrode-electrolyte interfaces for three novel Li-ion battery electrode materials. Photoelectron spectroscopy has been used to study the surface chemistry of the anode material AlSb and the cathode materials LiFePO4 and Li2FeSiO4. The cathode materials were both carbon-coated to improve inter-particle contact. The surface chemistry of these electrodes has been investigated in relation to their electrochemical performance and X-ray diffraction obtained structural results. Surface film formation and degradation reactions are also discussed. For AlSb, it has been shown that most of the surface layer deposition occurs between 0.50 and 0.01 V vs. Li°/Li+ and that cycling performance improves when the lower cut-off potential of 0.50 V is used instead of 0.01 V. For both LiFePO4 and Li2FeSiO4, the surface layer has been found to be very thin and does not provide complete surface coverage. Li2CO3 was also found on the surface of Li2FeSiO4 on exposure to air; this was found to disappear from the surface in a PC-based electrolyte. These results combine to give the promise of good long-term cycling with increased performance and safety for all three electrode materials studied.
170

Exploring the Surface of Aqueous Solutions : X-ray photoelectron spectroscopy studies using a liquid micro-jet

Werner, Josephina January 2015 (has links)
The surface behavior of biologically or atmospherically relevant chemical compounds in aqueous solution has been studied using surface-sensitive X-ray photoelectron spectroscopy (XPS). The aim is to provide information on the molecular-scale composition and distribution of solutes in the surface region of aqueous solutions. In the first part, the distribution of solutes in the surface region is discussed, where in particular single molecular species are studied. Concentration-dependent studies on succinic acid and various alkyl-alcohols, where also parameters such as pH and branching are varied, are analyzed using different approaches that allow the quantification of surface concentrations. Furthermore, due to the sensitivity of XPS to the chemical state, reorientation of linear and branched alkyl-alcohols at the aqueous surface as a function of concentration is observed. The results are further discussed in terms of hydrophilic and hydrophobic interactions in the interfacial region, where the three-dimensional hydrogen bonded water structure terminates. In the second part, mixed solutions of compounds, both ionic and molecular, are inspected. Again concentration, but also co-dissolution of other chemical compounds, are varied and differences in the spatial distribution and composition of the surface region are discussed. It is found that the guanidinium ion has an increased propensity to reside at the surface, which is explained by strong hydration in only two dimensions and only weak interactions between the aromatic π-system and water. Ammonium ions, on the other hand, which require hydration in three dimensions, are depleted from the surface region. The presence of strongly hydrated electrolytes out-competes neutral molecules for hydrating water molecules leading to an enhanced abundance of molecules, such as succinic acid, in the interfacial region. The partitioning is quantified and discussed in the context of atmospheric science, where the impact of the presented results on organic loading of aerosol particles is emphasized.

Page generated in 0.1019 seconds