• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 14
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Superconducting Nanowire Single-Photon Detectors for Quantum Information Science

Nicolich, Kathryn L. January 2021 (has links)
No description available.
12

Développement et réalisation d'un circuit de microélectronique pour le détecteur spatial de rayons cosmiques JEM-EUSO / Development and design of a microelectronic circuit for space-borne JEM-EUSO cosmic rays detector

Ahmad, Salleh 29 November 2012 (has links)
Extreme Universe Space Observatory on Japanese Experiment Module (JEM-EUSO) est conçu comme l’expérience de rayons cosmiques de prochaine génération pour observer les particules hautement énergétiques au-dessus de 10²⁰ eV. Le projet est mené par RIKEN et soutenu par une collaboration de plus de 200 membres provenant de 13 pays. Cet observatoire, sous la forme d'un télescope fluorescent, sera arrimé à la Station Spatiale internationale (ISS) pour un lancement prévu en 2017. En observant les gerbes atmosphériques produites dans la troposphère, à une altitude de 400 km, cet observatoire de rayons cosmique offrira une grande surface de détection, qui est au moins 100 fois supérieur que le plus grand détecteur de rayons cosmiques jamais construit. La surface focale de JEM-EUSO sera équipée d'environ 5000 unités de photomultiplicateur multianode 8x8 pixels (MAPMT). Un circuit intégré (ASIC), connu sous le nom SPACIROC, a été proposé pour la lecture du MAPMT. Cet ASIC de 64 voies propose des fonctionnalités comme le comptage de photons, la mesure des charges et le transfert de données à haute vitesse. Par-dessus tout, cet ASIC doit peu consommé afin de respecter la contrainte de puissance de JEM-EUSO. Réalisé en utilisant la technologie AMS Silicium-Germanium (SiGe) 0,35 µm, cet ASIC intègre 64 canaux de comptage de photons rapides (Photon Counting). La résolution de temps pour le comptage de photons est de 30 ns, ce qui permettra d’atteindre la valeur maximale comptage qui est de l'ordre de 10⁷ photons / s. Le système de mesure de charge est basé sur le Time-Over-Threshold qui offre 8 canaux de mesure. Chaque canal de mesure est une somme des 8 pixels du MAPMT et il est prévu que ce système est capable de mesurer jusqu'à 200 pC. La partie numérique fonctionne en continu et gère la conversion des données de chaque voie des blocs de Photon Counting et Time-Over-Threshold. Les données numériques sont transmises par l'intermédiaire de liaisons parallèles dédiées et ces opérations sont effectuées pendant une fenêtre de communication ou « Gate Time Unit » (GTU) de fréquence 400 kHz. Le taux de transfert des données d’ASIC avoisine les 200 Mbps ou 576 bits / GTU. La dissipation de puissance est strictement inférieure à 1 mW par canal ou 64 mW pour l'ASIC. Le premier prototype de SPACIROC a été envoyé pour fabrication en Mars 2010 au Centre Multi Projet (CMP). Des puces nues et packagés ont été reçues en Octobre 2010, ce qui a débuté la phase de caractérisation de cet ASIC. Après une phase de test réussie, des puces SPACIROC ont été intégrés dans l'électronique frontale d'un instrument pour détecter les sursauts gamma - Ultra Fast Flash Observatoire (UFFO) qui va être lancé en 2013. Vers la fin de l'année 2012, des cartes électroniques frontales conçues autour des puces SPACIROC ont été fabriqués pour le projet EUSO-Balloon. Ce projet de vol en ballon stratosphérique à une altitude de 40 km servira comme le démonstrateur technologique et l'ingénierie d'un instrument miniaturisé JEM-EUSO. La deuxième génération de cet ASIC a été envoyée à la fonderie en Décembre 2011. Ce second prototype, SPACIROC2, a été testé à partir de mai 2012. Les principales améliorations sont les suivantes: la consommation d'énergie a été revue à la baisse, ainsi que l'amélioration de la résolution temporelle de Photon Counting et l'extension de la gamme dynamique pour le module Time-Over-Threshold. Les mesures en cours ont montré que SPACIROC2 présente un bon comportement général et apporte des améliorations par rapport à son prédécesseur. / Extreme Universe Space Observatory on Japanese Experiment Module (JEM-EUSO) is conceived as the next generation cosmic rays experiment for observing the highly energetic particles above 5.10¹⁹ eV. The project is lead by RIKEN and supported by an active collaboration of more than 200 members from 13 countries. This observatory, in the shape of a wide field-of-view UV telescope, will be attached to the International Space Station (ISS) for a planned launch in 2017. Observing the Air Showers generated in troposphere from an altitude of 400 km, this space based cosmic rays experiment will offer a very large instantaneous detection surface, which is at least 100 times bigger than the largest land based cosmic rays observatory. The detection surface of JEM-EUSO will be equipped with around 5000 units of 8x8 pixels Multianode Photomultiplier (MAPMT). A radiation hardened mixed signal application-specific integrated circuit (ASIC), known as SPACIROC, has been proposed for reading out the MAPMT. This ASIC features 64-channel analog inputs, fast photon counting capabilities, charge measurements and high-speed data transfer. Above all, the power dissipation of this ASIC is required to be very low in order to comply with the strict power budget of JEM-EUSO. By taking the advantages of high speed AMS 0.35 µm Silicon-Germanium (SiGe) process, this ASIC integrates 64 fast Photon Counting channels. The photon counting time resolution is 30 ns, which allows the theoretical counting rate in the order of 10⁷ photons/s. The charge measurement system is based on Time-Over-Threshold which offers 8 measurement channels. Each measurement channel is composed of 8 pixels of the MAPMT and it is expected that this system will measure up to 200 pC. The digital part is then required to operate continuously and handles data conversion of each Photon Counting and Time-Over-Threshold channel. For the first version of this ASIC, one channel measurement channel for the dynode is also available. The digital data are transmitted via dedicated parallel communication links and within the defined Gate Time Unit (GTU) of 400 kHz frequency. The ASIC data output rate is in the vicinity of 200 Mbps or 576 bits/GTU. The power dissipation is kept strictly below 1 mW per channel or 64 mW for the ASIC. The first prototype of SPACIROC was sent for tapeout in March 2010 through Centre Multi Projet (CMP) prototyping services. The packaged ASICs and bare dies have been received in October 2010 which marked the characterization phase of this chip. After successful testing phase, SPACIROC chips were integrated into the front-end electronics of an instrument pathfinder for detecting the gamma ray bursts – Ultra Fast Flash Observatory (UFFO) which is foreseen to be launched in 2013. Towards the end of 2012, front-end board designed around SPACIROC chips have been fabricated for the EUSO-Balloon project. This balloon borne project will serve as a technical and engineering demonstrator of a fully miniaturized JEM-EUSO instrument which will be flown to the stratosphere at the altitude of 40 km. The second tapeout of this ASIC was done in December 2011. This second prototype, SPACIROC2, was tested from May 2012. The main improvements are as follows: lower power consumption due to better power management, enhancement in Photon Counting time resolution and extension the Time-Over-Threshold maximum input rate. The ongoing tests have shown that SPACIROC2 exhibits a good overall behavior and improvement compared to its predecessor.
13

Cryo-CMOS ICs for Scalable Superconducting Nanowire Single Photon Detectors / Kryogen CMOS elektronik för skalbara supraledande nanotrådsdetektorer med enstaka fotoner

Viskova, Tereza January 2022 (has links)
Superconducting nanowire single-photon detectors are the most promising technology in quantum photon information. They offer high speed, high detection efficiency, low dark count rate as well as low timing jitter compared to other single photon detection solutions. Since the recent advances in photonic quantum computing, the drive for improvement of the implementation complexity, performance and scalability of quantum photon detection has increased. This presents challenges with the current device readout schemes and alternative solutions are required. One of the key parameters to improve the scalability of superconducting nanowire single-photon detectors, is reducing the power dissipation per pixel. This is especially important in cryogenic readouts, where the performance of electronic components changes compared to room temperature. Moreover, the performance of a cryogenic superconducting nanowire single-photon detector readout is dependent both on the device and readout electronics level characteristics, and both must be fine-tuned for desired performance. A solution to the scalability of superconducting nanowire single-photon detectors (SNSPDs) is the development of a readout scheme with minimized power dissipation. We propose a fully digital readout scheme interfaced with a superconducting nanowire single-photon detector (SNSPD), that allows photon detection and reset. For this purpose, a digital single-pixel SiGe Bi-CMOS readout is designed, simulated, and characterised. An improved readout scheme is proposed with an addition of a die resistor to allow a full reset of the detector. / Supraledande nanotrådsdetektorer baserade på enstaka fotoner är ett av de mest avancerade koncepten inom kvantfotoninformationsteknik. Syftet med att utveckla denna teknik är att förbättra egenskaper så som komplexiteten, prestandan och skalbarheten. En av de viktigaste parametrarna för att förbättra skalbarheten hos supraledande nanotrådsdetektorer med enstaka fotoner är att minska energiförbrukningen per pixel. Detta är särskilt viktigt i kryogena avläsningar, där prestandan hos elektroniska komponenter förändras jämfört med rumstemperatur. Dessutom, beror prestandan hos en kryogen supraledande nanotrådsdetektor både på komponenten och på avläsningselektroniken,och båda måste finjusteras för att uppnå önskad prestanda. En lösning på kalbarheten för supraledande nanotrådsdetektorer med enstaka fotoner (SNSPDs) är att realisera avläsning med minimerad effektförlust. Vi föreslår en helt digital avläsning som är kopplad till en supraledande enfoton nanotrådsdetektor (SNSPD), som gör det möjligt att detektera fotoner och att återställa detektorn efter avläsning. För detta ändamål, designades, simuleras och karakteriserades en digital avläsningkrets med en enda pixel. Ett förbättrat avläsningssystem föreslås genom att lägga till ett diskret motstånd för att möjliggöra en fullständig återställning av detektorn.
14

Quantum Optoelectronic Detection and Mixing in the Nanowire Superconducting Structure

Yan, Zhizhong 19 January 2010 (has links)
The recent advancement of superconducting nano devices has allowed for making a Superconducting Nanowire Single Photon Detector (SNSPD), whose extraordinary features have strongly motivated the research community to exploit it in many practical applications. In this thesis, an experimental setup for testing the SNSPD has been established. It contains an in-house packaging that meets the requirements of RF/microwave and optoelectronic characterizations. The quantum efficiency and detection efficiency measurements have confirmed that our approach is satisfactory. The dark count performance has reached the anticipated level. The factors affecting rise and fall times of the photoresponses are addressed. Based on the successful setup, the characterizations including dc, small signal ac measurements have been undertaken. The measurements are aimed at quantitatively investigating Cooper pair density in the superconducting nanowire. The experimental method involves a two-step, small signal S-parameter measurement either in the presence or absence of optical powers. The subsequent measurements by varying the temperature and dc bias current have achieved remarkable understanding on the physical properties of SNSPD nanowires. Then, the electrically induced nonlinearity is studied via the large signal RF and Microwave measurements. The experiments are a set of one-tone and two-tone measurements, in which either the RF driving power is varied at a fixed frequency, or vice versa. Two major nonlinear microwave circuit analysis methods, i.e. time-domain transient and hybrid-domain harmonic balance analysis, are employed. The simulation result reveals the optimized conditions of reaching the desired nonlinearity. Finally, we have successfully measured the optoelectronic mixing products in an electrically pumped optoelectronic mixer, which has identical structures as that of the SNSPD. The experiments confirm that this mixer is not only sensitive to the classical light intensities, but also to that of the single photon level. Meanwhile, the quantum conversion matrices is derived to interpret the quantum optoelectronic mixing effects.
15

Quantum Optoelectronic Detection and Mixing in the Nanowire Superconducting Structure

Yan, Zhizhong 19 January 2010 (has links)
The recent advancement of superconducting nano devices has allowed for making a Superconducting Nanowire Single Photon Detector (SNSPD), whose extraordinary features have strongly motivated the research community to exploit it in many practical applications. In this thesis, an experimental setup for testing the SNSPD has been established. It contains an in-house packaging that meets the requirements of RF/microwave and optoelectronic characterizations. The quantum efficiency and detection efficiency measurements have confirmed that our approach is satisfactory. The dark count performance has reached the anticipated level. The factors affecting rise and fall times of the photoresponses are addressed. Based on the successful setup, the characterizations including dc, small signal ac measurements have been undertaken. The measurements are aimed at quantitatively investigating Cooper pair density in the superconducting nanowire. The experimental method involves a two-step, small signal S-parameter measurement either in the presence or absence of optical powers. The subsequent measurements by varying the temperature and dc bias current have achieved remarkable understanding on the physical properties of SNSPD nanowires. Then, the electrically induced nonlinearity is studied via the large signal RF and Microwave measurements. The experiments are a set of one-tone and two-tone measurements, in which either the RF driving power is varied at a fixed frequency, or vice versa. Two major nonlinear microwave circuit analysis methods, i.e. time-domain transient and hybrid-domain harmonic balance analysis, are employed. The simulation result reveals the optimized conditions of reaching the desired nonlinearity. Finally, we have successfully measured the optoelectronic mixing products in an electrically pumped optoelectronic mixer, which has identical structures as that of the SNSPD. The experiments confirm that this mixer is not only sensitive to the classical light intensities, but also to that of the single photon level. Meanwhile, the quantum conversion matrices is derived to interpret the quantum optoelectronic mixing effects.
16

Timing Jitter and Electron-Phonon Interaction in Superconducting Nanowire Single-Photon Detectors (SNSPDs)

Sidorova, Mariia 29 January 2021 (has links)
Die vorliegende Doktorarbeit beschäftigt sich mit der experimentellen Studie zweier miteinander verbundener Phänomene: Dem intrinsischen Timing-Jitter in einem supraleitendenden Nanodraht-Einzelphotonen-Detektor (SNSPD) und der Relaxation der Elektronenenergie in supraleitenden Filmen. Supraleitende Nanodrähte auf einem dielektrischen Substrat als mikroskopische Grundbausteine jeglicher SNSPDs stellen sowohl für theoretische als auch für experimentelle Studien komplexe Objekte dar. Die Komplexität ergibt sich aus der Tatsache, dass SNSPDs in der Praxis stark ungeordnete und ultradünne supraleitende Filme verwenden, die eine akustische Fehlanpassung zu dem zugrundeliegenden Substrat aufweisen und einen Nichtgleichgewichts-Zustand implizieren. Die Arbeit untersucht die Komplexität des am weitesten in der SNSPD Technologie verbreiteten Materials, Niobnitrid (NbN), indem verschiedene experimentelle Methoden angewandt werden. Als eine mögliche Anwendung der SNSPD-Technologie wird ein Prototyp eines dispersiven Raman-Spektrometers mit Einzelphotonen-Sensitivität demonstriert. / This Ph.D. thesis is based on the experimental study of two mutually interconnected phenomena: intrinsic timing jitter in superconducting nanowire single-photon detectors (SNSPDs) and relaxation of the electron energy in superconducting films. Microscopically, a building element of any SNSPD device, a superconducting nanowire on top of a dielectric substrate, represents a complex object for both experimental and theoretical studies. The complexity arises because, in practice, the SNSPD utilizes strongly disordered and ultrathin superconducting films, which acoustically mismatch with the underlying substrate, and implies a non-equilibrium state. This thesis addresses the complexity of the most conventional superconducting material used in SNSPD technology, niobium nitride (NbN), by applying several distinct experimental techniques. As an emerging application of the SNSPD technology, we demonstrate a prototype of the dispersive Raman spectrometer with single-photon sensitivity.
17

Superconducting Nanostructures for Quantum Detection of Electromagnetic Radiation

Jafari Salim, Amir 06 September 2014 (has links)
In this thesis, superconducting nanostructures for quantum detection of electromagnetic radiation are studied. In this regard, electrodynamics of topological excitations in 1D superconducting nanowires and 2D superconducting nanostrips is investigated. Topological excitations in superconducting nanowires and nanostrips lead to crucial deviation from the bulk properties. In 1D superconductors, topological excitations are phase slippages of the order parameter in which the magnitude of the order parameter locally drops to zero and the phase jumps by integer multiple of 2\pi. We investigate the effect of high-frequency field on 1D superconducting nanowires and derive the complex conductivity. Our study reveals that the rate of the quantum phase slips (QPSs) is exponentially enhanced under high-frequency irradiation. Based on this finding, we propose an energy-resolving terahertz radiation detector using superconducting nanowires. In superconducting nanostrips, topological fluctuations are the magnetic vortices. The motion of magnetic vortices result in dissipative processes that limit the efficiency of devices using superconducting nanostrips. It will be shown that in a multi-layer structure, the potential barrier for vortices to penetrate inside the structure is elevated. This results in significant reduction in dissipative process. In superconducting nanowire single photon detectors (SNSPDs), vortex motion results in dark counts and reduction of the critical current which results in low efficiency in these detectors. Based on this finding, we show that a multi-layer SNSPD is capable of approaching characteristics of an ideal single photon detector in terms of the dark count and quantum efficiency. It is shown that in a multi-layer SNSPD the photon coupling efficiency is dramatically enhanced due to the increase in the optical path of the incident photon.

Page generated in 0.0592 seconds