• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 25
  • 4
  • Tagged with
  • 106
  • 106
  • 81
  • 52
  • 38
  • 27
  • 24
  • 19
  • 19
  • 18
  • 16
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Mechanical properties of pore-spanning membranes prepared from giant vesicles / Mechanische Eigenschaften von Poren-Spanning Membranen aus Riesenvesikeln vorbereitet

Kocun, Marta 23 May 2011 (has links)
No description available.
42

Vorhersage von Proteinflexibilität aus geometrischen Zwangsbedingungen

Seeliger, Daniel 22 January 2008 (has links)
No description available.
43

3D assembly of silica encapsulated semiconductor nanocrystals

Rengers, Christin, Voitekhovich, Sergei V., Kittler, Susann, Wolf, André, Adam, Marion, Gaponik, Nikolai, Kaskel, Stefan, Eychmüller, Alexander 15 December 2015 (has links)
Non-ordered porous networks, so-called aerogels, can be achieved by the 3D assembly of quantum dots (QDs). These materials are well suited for photonic applications, however a certain quenching of the photoluminescence (PL) intensity is observed in these structures. This PL quenching is mainly attributed to the energy transfer mechanisms that result from the close contact of the nanoparticles in the network. Here, we demonstrate the formation of a novel aerogel material with non-quenching PL behaviour by non-classical, reversible gel formation from tetrazole capped silica encapsulated QDs. Monitoring of the gelation/degelation by optical spectroscopy showed that the optical properties of the nanocrystals could be preserved in the 3D network since no spectral shifts and lifetime shortening, which can be attributed to the coupling between QDs, are observed in the gels as compared to the original colloidal solutions. In comparison with other QD-silica monoliths, QDs in our gels are homogeneously distributed with a distinct and controllable distance. In addition we show that the silica shell is porous and allows metal ions to pass through the shell and interact with the QD core causing detectable changes of the emission properties. We further show the applicability of this gelation method to other QD materials which sets the stage for facile preparation of a variety of mixed gel structures.
44

C^C* cyclometalated platinum(II) N-heterocyclic carbene complexes with a sterically demanding β-diketonato ligand – synthesis, characterization and photophysical properties

Strassner, Thomas, Metz, S., Wagenblast, G., Münster, Ingo, Tenne, Mario 16 December 2015 (has links)
Neutral cyclometalated platinum(II) N-heterocyclic carbene complexes [Pt(C^C*)(O^O)] with C^C* ligands based on 1-phenyl-1,2,4-triazol-5-ylidene and 4-phenyl-1,2,4-triazol-5-ylidene, as well as acetylacetonato (O^O = acac) and 1,3-bis(2,4,6-trimethylphenyl)propan-1,3-dionato (O^O = mesacac) ancillary ligands were synthesized and characterized. All complexes are emissive at room temperature in a poly(methyl methacrylate) (PMMA) matrix with emission maxima in the blue region of the spectrum. High quantum efficiencies and short decay times were observed for all complexes with mesacac ancillary ligands. The sterically demanding mesityl groups of the mesacac ligand effectively prevent molecular stacking. The emission behavior of these emitters is in general independent of the position of the nitrogen in the backbone of the N-heterocyclic carbene (NHC) unit and a variety of substituents in 4-position of the phenyl unit, meta to the cyclometalating bond.
45

In situ Untersuchungen der mechanochemischen Synthese von Cokristallen: Einfluss von Reaktionsparametern am Modellsystem Pyrazinamid

Kulla, Hannes 25 July 2019 (has links)
Die Mechanochemie findet zunehmend Verwendung für die Synthese neuer Verbindungen. Dennoch sind die beim Mahlen stattfindenden Prozesse weitestgehend unverstanden. Dahingehend wurde in dieser Arbeit eine Dreifachkopplung aus in situ Synchrotron-Röntgenbeugung, Raman-Spektroskopie und Thermographie entwickelt, um mechanochemische Reaktionen unter realistischen Bedingungen in Echtzeit zu verfolgen. Dadurch konnten tiefgreifende Einblicke in den Reaktionsverlauf und Temperaturverlauf beim Mahlen erhalten und neue metastabile Verbindungen isoliert werden. Für die Bildung pharmazeutischer Cokristalle diente Pyrazinamid als Modellsystem. Es konnten neue binäre und ternäre Verbindungen synthetisiert, detailliert charakterisiert und deren Kristallstruktur aufgeklärt werden. Die Abhängigkeit der Stabilität polymorpher Cokristalle von der Temperatur und den Synthesebedingungen konnte gezeigt werden. In Konkurrenzreaktionen konnten Trends hinsichtlich der bevorzugten Bildung eine bestimmten Cokristalls beobachtet werden. Mittels in situ Untersuchungen wurde der Einfluss zentraler Reaktionsparameter, wie die Mahlfrequenz, der Kugeldurchmesser, der eingesetzte Ausgangsstoff und die Zugabe von Lösungsmittel, auf die Induktions- und Reaktionszeit der Reaktion ermittelt. Basierend auf den gewonnenen Erkenntnissen konnte ein Diffusionsmechanismus für die mechanochemische Cokristallbildung abgeleitet werden. / Mechanochemistry is increasingly applied for the synthesis of new compounds. Still, the processes taking place during milling are far from being understood. In this thesis, a triple coupling of in situ synchrotron X-ray diffraction, Raman spectroscopy and thermography has been developed to follow mechanochemical reactions under realistic conditions in real time. This allowed deep insights into the reaction and temperature progression during milling and the isolation of new metastable compounds. For the formation of pharmaceutical cocrystals pyrazinamide served as a model system. New binary and ternary compounds were synthesized, characterized in detail and their crystal structure solved. The dependence of the stability of polymorphic cocrystals on temperature and synthesis conditions could be shown. In competitive reactions, trends regarding the preferred formation of a certain cocrystal have been observed. The influence of important reaction parameters, such as the milling frequency, the ball diameter, the starting material used and the addition of solvent, on the induction and reaction time of the reaction was determined by means of in situ investigations. Based on the gained knowledge, a diffusion mechanism for the mechanochemical cocrystal formation could be derived.
46

Crystal Engineering in Nanoporous Matrices

Graubner, Gitte 12 February 2015 (has links)
As former studies reveal, the nanoporous confinement could have influence on polymorphic drug crystallization. However, little attention has been paid to the question how crystallization of the commonly polymorphic drugs in nanoporous matrices influences the drug release. As a consequence, sufficient information about the crystallization conditions and their influence on phase behavior, crystal texture, and stability of polymorphs should be retrieved prior to drug delivery experiments. Drug release should be polymorph-selective and even crystal face-specific. Therefore, the topic of this PhD thesis is the systematic investigation of crystallization parameters (e.g., pore morphology, thermal history, presence or absence of a bulk surface reservoir) and their influence on the nucleation and crystal growth of the two selected model compounds in nanoporous matrices: acetaminophen (ACE) and n-tetracosane. Both are confined to two host-systems: AAO containing aligned cylindrical, isolated pores and CPG containing curved, interconnected pores. The guest materials inside the two model matrices have been investigated with X-ray diffraction (WAXS) and differential scanning calorimetry. In the first part it is shown that the nanopore morphology of the host systems determines into which polymorphic form ACE crystallizes. Moreover, the pore morphology influences the kinetics of solid/solid transitions. In AAO uniformly oriented form III crystals are converted into also uniformly oriented form II crystals by a solid/solid transition. Such a phase transition is kinetically suppressed in CPG membranes due to the curved pore morphology. In the second step, polymorph-specific release experiments with ACE from AAO membranes reveal that the drug dissolution is not exclusively diffusion-limited and can be described by the Korsmeyer-Peppas model. Dissolution of crystalline ACE having rough crystal faces exposed to the environment is nearly as fast as release of amorphous ACE. Encapsulating of ACE in AAO nanopores with a PLLA polymer retard the drug dissolution but does not modify the release kinetics. In the third part of this thesis crystallization of n-tetracosane, a saturated hydrocarbon, in nanoporous matrices was studied. n-Tetracosane shows inside AAO membranes the rotator phase sequence: triclinic−RV−RI−RII−liquid. Further, the long axes of the n-tetracosane molecules are oriented normal to the AAO pore axes. In general, n-tetracosane under confinement shows a more complex phase behavior than the polymeric analogue polyethylene. The presented work expands the available strategies for mesoscopic crystal engineering. The methods might be transferred into other areas of interest such as polymorphism screening or preparation of different types of nanowires with customized optoelectronic or ferroelectric properties.
47

Contrast varied small-angle scattering on disordered materials using X-ray, neutron, and anomalous scattering

Gericke, Eike 28 January 2022 (has links)
Schwerpunkt dieser Arbeit ist die Untersuchung der Struktur von Materialien und ihrer Entwicklung unter in situ Bedingungen. Dabei werden nanoskopische Strukturmotive in amorphen, ungeordneten und porösen Festkörpern mit Hilfe von Kleinwinkelstreuungstechniken identifiziert und quantifiziert. Es werden drei verschiedene wissenschaftliche Fragestellungen bezüglich drei unterschiedlicher Materialsystemen diskutiert. Erstens wird die Nanostruktur von Dichtefluktuationen in hydriertem amorphen Silizium (a-Si:H) charakterisiert. In den untersuchten a-Si:H Materialien wurden zwei unterschiedliche in die a-Si:H-Matrix eingebettete Phasen identifiziert und anhand ihrer Streuquerschnitte quantifiziert. Diese neuen Ergebnisse beantworten eine seit 20 Jahren ungelöste Fragestellung über das a Si:H Material. Zweitens wird die Adsorption, Kondensation und Desorption von Xenon (Xe) in den Poren einer mesoporösen Silizium (Si) Membran untersucht. Dabei werden Xe-spezifischen Charakterisierungsmethoden eingesetzt. Die neuen Ergebnisse führen zu einem detaillierten Verständnis der Physisorption von Xe in porösem Silizium und zeigen deutliche Unterschiede zwischen Porenfüllungs- und Porenentleerungsmechanismen auf. Zuletzt wird die natürliche Alterung (NA) einer Aluminium-Magnesium-Silizium-Modelllegierung diskutiert. Die Streuexperimente weisen auf das Vorhandensein von Segregationszonen hin und unterstützen die Interpretation dieser Zonen als MgSi-Nanophasen in der Al-Matrix. / The investigation of material structures and their evolution under in situ conditions is the main focus of this work. Thereby, nanostructural motives in amorphous, disordered, and porous solids are identified and quantified using small-angle scattering techniques. Three different scientific questions concerning three different material systems are discussed. First, the nanostructure of density fluctuations in hydrogenated amorphous silicon (a-Si:H) is evaluated and quantified. Second, the adsorption, condensation, and desorption of xenon (Xe) confined in the pores of a mesoporous silicon (Si) membrane is studied in situ using Xe-specific characterization methods. Finally, the natural aging (NA) of an aluminum-magnesium-silicon model alloy (Al-0.6Mg-0.8Si) is discussed.
48

Hollow MoSx nanomaterials for aqueous energy storage applications

Quan, Ting 31 May 2021 (has links)
Die vorliegende Arbeit konzentriert sich auf die Synthese von neuartigen hohlen MoSx-Nanomaterialien mit kontrollierbarer Größe und Form durch die kolloidale Template Methode. Ihre möglichen Anwendungen in wässrigen Energiespeichersystemen, einschließlich Superkondensatoren und Li-Ionen-Batterien (LIBs), wurden untersucht. Im ersten Teil wurde eine neue Nanostruktur aus hohlen Kohlenstoff-MoS2-Kohlenstoff-nanoplättchen erfolgreich durch eine L-Cystein unterstützte hydrothermale Methode unter Verwendung von Gibbsit als Templat und Polydopamin (PDA) als Kohlenstoffvorläufer synthetisiert. Nach dem Kalzinieren und Ätzen des Gibbsit Templates wurden gleichförmige Hohlplättchen erhalten, die aus einer sandwichartigen Anordnung von teilweise graphitischem Kohlenstoff und zweidimensional geschichteten MoS2 Flocken bestehen. Die Plättchen haben eine ausgezeichnete Dispergierbarkeit und Stabilität in Wasser sowie eine gute elektrische Leitfähigkeit aufgrund des durch die Kalzinierung von Polydopaminbeschichtungen erzeugten Kohlenstoffs gezeigt. Das Material wird dann in einem symmetrischen Superkondensator mit 1 M Li2SO4 als Elektrolyt aufgebracht, der eine spezifische Kapazität von 248 F/g (0.12 F/cm2) bei einer konstanten Stromdichte von 0.1 A/g und eine ausgezeichnete elektrochemische Stabilität über 3000 Zyklen aufweist, was darauf hindeutet, dass hohle Kohlenstoff-MoS2-Kohlenstoffnanoplättchen vielversprechende Materialien als Kandidaten für Superkondensatoren sind. Im zweiten Teil wurde 21 molare LiTFSI, das sogenannte "Wasser-in-Salz" (WIS) Elektrolyt, in Superkondensatoren mit hohlen Kohlenstoffnanoplättchen als Elektrodenmaterial untersucht. Im Vergleich zu dem im ersten Teil verwendeten 1 molaren Li2SO4-Elektrolyten wurden bei dem vorliegenden WIS Elektrolyt signifikante Verbesserungen in einem breiteren und stabilen Potentialfenster festgestellt, das durch die geringere Leitfähigkeit mit dem Gegenstück leicht beeinflusst wird. Die elektrochemische Impedanzspektroskopie (EIS) wurde ausgiebig eingesetzt, um einen Einblick in die Reaktionsmechanismen der WIS-Superkondensatoren zu erhalten. Zusätzlich wurde auch der Einfluss der Temperatur auf die elektrochemische Leistung im Temperaturbereich zwischen 15 und 55 °C untersucht, was eine hervorragende spezifische Kapazität von 128 F/g bei dem optimierten Zustand von 55 °C ergab. Die EIS-Messungen deckten die Abnahme der angepassten Widerstände mit der Temperaturerhöhung und umgekehrt auf und beleuchteten direkt die Beziehung zwischen elektrochemischer Leistung und Arbeitstemperatur von Superkondensatoren für zuverlässige praktische Anwendungen. Im dritten Teil wurde MoS3, ein amorphes, kettenförmig strukturiertes Übergangsmetall Trichalcogenid, als vielversprechende Anode in "Wasser-in-Salz" Li-Ionen-Batterien (WIS-LIBs) nachgewiesen. Die in diesem Teil verwendeten hohlen MoS3-Nanosphären wurden mittels einer skalierbaren Säurefällungsmethode bei Raumtemperatur synthetisiert, wobei sphärische Polyelektrolytbürsten (SPB) als Schablonen verwendet wurden. Beim Einsatz in WIS-LIBs mit LiMn2O4 als Kathodenmaterial erreicht das präparierte MoS3 eine hohe spezifische Kapazität von 127 mAh/g bei einer Stromdichte von 0.1 A/g und eine gute Stabilität über 1000 Zyklen sowohl in Knopf- als auch in Pouch-Zellen. Der Arbeitsmechanismus von MoS3 in WIS-LIBs wurde auch durch Ex-situ-Röntgenbeugungsmessungen (XRD) untersucht. Während des Betriebs wird MoS3 während der anfänglichen Li-Ionen-Aufnahme irreversibel in Li2MoO4 umgewandelt und dann allmählich in eine stabilere und reversible LixMoOy-Phase (2≤y≤4)) entlang der Zyklen umgewandelt. Amorphes Li-defizientes Lix-mMoOy/MoOz wird bei der Delithiierung gebildet. Die Ergebnisse der vorliegenden Studie zeigen einfache Ansätze zur Synthese hohler MoSx-Nanomaterialien mit kontrollierbarer Morphologie unter Verwendung einer Template-basierten Methode, die auf die vielversprechende Leistung von MoSx für wässrige Energiespeicheranwendungen zurückzuführen sind. Die elektrochemischen Untersuchungen von hohlen MoSx-Nanomaterialien in wässrigen Elektrolyten geben Einblick in die Reaktionsmechanismen von wässrigen Energiespeichersystemen und treiben die Entwicklung von Metallsulfiden für wässrige Energiespeicheranwendungen voran. / The present thesis focuses on the synthesis of novel hollow MoSx nanomaterials with controllable size and shape through the colloidal template method. Their possible applications in aqueous energy storage systems, including supercapacitors and Li-ion batteries (LIBs), have been studied. In the first part, hollow carbon-MoS2-carbon nanoplates have been successfully synthesized through an L-cysteine-assisted hydrothermal method by using gibbsite as the template and polydopamine (PDA) as the carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which are made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, have been obtained. The platelets have shown excellent dispersibility and stability in water, and good electrical conductivity due to carbon coating generated by the calcination of polydopamine. The material is then applied in a symmetric supercapacitor using 1 M Li2SO4 as the electrolyte, which exhibits a specific capacitance of 248 F/g (0.12 F/cm2) at a constant current density of 0.1 A/g and an excellent electrochemical stability over 3000 cycles, suggesting that hollow carbon-MoS2-carbon nanoplates are promising candidate materials for supercapacitors. In the second part, 21 m LiTFSI, so-called “water-in-salt” (WIS) electrolyte, has been studied in supercapacitors with hollow carbon nanoplates as electrode materials. In comparison with 1 M Li2SO4 electrolyte used in the first part, significant improvements on a broader and stable potential window have been revealed in the present WISE, which is slightly influenced by the lower conductivity with the counterpart. The electrochemical impedance spectroscopy (EIS) has been extensively employed to provide an insight look on the formation of solid electrolyte interphase in the WIS-supercapacitors. Additionally, the effect of temperature on the electrochemical performance has also been investigated in the temperature range between 15 and 55 °C, yielding eminent specific capacitance of 128 F/g at the optimized condition of 55 °C. The EIS measurements disclosed the decrease of fitted resistances with the increase of temperature and vise versa, directly illuminating the relationship between electrochemical output and working temperature of supercapacitors for reliable practical applications. In the third part, MoS3, an amorphous chain-like structured transitional metal trichalcogenide, has been demonstrated as a promising anode in the “water-in-salt” Li-ion batteries (WIS-LIBs). Hollow MoS3 nanospheres used in this part have been synthesized via a scalable room-temperature acid precipitation method using spherical polyelectrolyte brushes (SPB) as the template. When applied in WIS-LIBs with LiMn2O4 as the cathode material, the prepared MoS3 achieves a high specific capacity of 127 mAh/g at the current density of 0.1 A/g and good stability over 1000 cycles in both coin cells and pouch cells. The working mechanism of MoS3 in WIS-LIBs has also been studied by ex-situ X-ray diffraction (XRD) measurements. During operation, MoS3 undergoes irreversible conversion to Li2MoO4 during the initial Li ion uptake, and is then gradually converted to a more stable and reversible LixMoOy (2≤y≤4)) phase along cycling. Amorphous Li-deficient Lix-mMoOy/MoOz is formed upon delithiation. The results in the present thesis demonstrate facile approaches for synthesizing hollow MoSx nanomaterials with controllable morphologies using a template-based method, which attribute to the promising performance of MoSx for aqueous energy storage applications. The electrochemical studies of hollow MoSx nanomaterials in aqueous electrolytes provide insight into the reaction mechanisms of aqueous energy storage systems and push forward the development of metal sulfides for aqueous energy storage applications.
49

Adsorption of Alkanes on the Platinum Surface: Density Functional Theory compared to the Random Phase Approximation

Sheldon, Christopher 12 September 2023 (has links)
Die Dichtefunktionaltheorie (DFT) einschließlich Dispersionkorrekturen (+D) wird mit der Random-Phase-Approximation (RPA) für die Adsorption von Alkanen auf der Pt(111)-Oberfläche verglichen. RPA wird zuerst im Hinblick auf relevante technische Parameter evaluiert und für die Methanadsorption an der Pt(111)-Oberfläche getestet. Im Vergleich zum Perdew-Burke-Ernzerhof-Funktional (PBE) mit Tkatchenkos Many-Body-Dispersionskorrektur (PBE+MBD) liefert RPA gute Ergebnisse. Auch reproduziert RPA experimentelle Adsorptionsenergien bei verschiedenen, physikalisch sinnvollen Beladungsstufen der Pt(111) Oberfläche mit Alkanmolekülen. Für Platin in der hexagonal dichtesten Kugelpackung sagt RPA richtigerweise die Methanadsorption an der hollow-tripod-Stelle voraus, während mit PBE+MBD die Adsorption an einer anderen Stelle bevorzugt wäre. Dies geht aus Schwingungsspektren hervor. Da periodisches RPA sehr rechenaufwändig ist, wird ein QM:QM Hybridansatz (QM=Quantenmechanik) angewendet, wobei periodisches PBE(+D) mithilfe von RPA Rechnungen an Clustern korrigiert wird (RPA:PBE(+D)). In einem Test verschiedener Dispersionskorrekturen schneiden RPA:PBE und RPA:PBE+MBD am besten ab. Diese Arbeit ist wegbereitend für die Anwendung des QM:QM Hybridansatzes zur Beschreibung der Adsorptionsprozesse an Metalloberflächen ‒ bei hoher Genauigkeit und deutlich verringertem Rechenaufwand. Auch Kresses low-scaling RPA Algorithmus wird getestet. Dieser Algorithmus ermöglicht, große Systeme, wie z.B. die Methan-, Ethan-, Propan- und n-Butanadsorption an Pt(111), zu untersuchen. Der Vergleich mit experimentellen Daten zeigt, dass mit RPA stets die beste Übereinstimmung erreicht wird. Dabei wird eine deutliche Verbesserung gegenüber allen untersuchten Dichte-Funktionalen erzielt. Obwohl Bindungen mit RPA etwas zu schwach vorhergesagt werden, ist es die derzeit beste Methode zur Untersuchung der Adsorption an Metalloberflächen und damit der Benchmark für diese Systeme. / Density Functional Theory (DFT) including dispersion (+D) is compared against the Random Phase Approximation (RPA) for the adsorption of alkanes on the Pt(111) surface. RPA is first benchmarked with respect to technical parameters and tested for methane adsorption on Pt(111). It is found to perform well relative to the Perdew–Burke–Ernzerhof (PBE) functional augmented with the many-body dispersion scheme of Tkatchenko (PBE+MBD). It also compares well relative to experimentally derived adsorption energies at physically relevant coverages. RPA correctly assigns the adsorption of methane to the hcp (hexagonal close packed) hollow tripod site, matching vibrational spectra, whereas PBE+MBD found another site. Given the high cost of periodic RPA, a high-level: low-level QM:QM (QM = quantum mechanics) hybrid approach is applied using RPA (RPA:PBE(+D)), which has also been tested with several dispersion corrections, with RPA:PBE and RPA:PBE+MBD performing best. This extends the QM:QM hybrid approach to the study of adsorption on metal surfaces, resulting in high accuracy at significantly reduced cost. Finally we test the performance of the low-scaling RPA algorithm of Kresse and co-workers. This algorithm enables the study of larger systems and is applied to the first four n-alkanes (C1-C4) on the Pt(111) surface. Comparison against experiment indicates that RPA offers the best agreement, consistently better than any studied density functional. RPA underbinds slightly but is still found to be the best method for studying adsorption on metal surfaces and is the current benchmark for such systems.
50

Rayleigh Scattering of Pulsed Supersonic Ar and CO2 Beams at High Particle Densities

Fazli, Sara 22 March 2022 (has links)
In dieser Arbeit wird eine umfassende Untersuchung von Clustern vorgestellt, wobei der Schwerpunkt auf dem Einfluss von Quellendruck, Temperatur und Agglomerationszustand auf die erzeugten Cluster liegt. Die neutralen Cluster werden durch Überschallstrahl-Expansion von Ar und CO2 in einem weniger untersuchten Bereich von Quellendrücken und -temperaturen erzeugt und anschließend durch Ultrahoch-Rayleigh-Streuungsmessungen charakterisiert. Die Analyse zeigt, dass das bekannte empirische Skalierungsgesetz möglicherweise nicht genau genug ist, wenn die Clustergrößen in realen Systemen einen breiteren Bereich abdecken. Ein wichtiger Schritt ist der Übergang von Ar als nahezu ideales Gas zu CO2 als reales System. Um zu beurteilen, ob die Werte der mittleren Clustergrößen aussagekräftig sind, wird in dieser Arbeit ein auf den experimentellen Ergebnissen basierendes Modell vorgeschlagen, das eine geeignete Position der Laser-Cluster-Wechselwirkungsregion im kollisionsfreien Bereich des Molekularstrahls bestimmt. Die geringe zeitliche Auflösung des mit dem Oszilloskop erfassten Signals führt zur Anwendung der Photonenzählung, die eine höhere Nachweisempfindlichkeit bietet. Im Falle von Ar-Clustern zeigt diese Methode die Übereinstimmung des Verhaltens mit den bekannten theoretischen Berechnungen. Die Analyse der relativen mittleren CO2-Clustergrößen zeigt dagegen, dass die theoretische Skalierung für Cluster, die sich aus Flüssigkeiten mit hoher Dichte bilden, nicht gut geeignet ist. Die relative mittlere Größe kleiner und besonders großer Cluster ermöglicht die Unterscheidung zwischen Clustern, die durch Expansion von der gasförmigen oder flüssigen Seite des kritischen Punktes erzeugt werden, und einem Zwischenbereich, in dem die Expansion die überkritischen gasförmigen und flüssigen Bereiche passiert. Bei Messungen in der Nähe der Widom-Linie zeigen zwei verschiedene gemessene und berechnete Skalierungsgesetze einen scharfen Übergang beim Überschreiten dieser Linie. / This thesis presents a comprehensive study of clusters with a focus on the influence of the source pressure, temperature, and agglomeration state on the generated clusters. The neutral clusters are generated by supersonic jet expansion of Ar and CO2 applying a less-studied range of source pressures and source temperatures and then characterized by ultra-high Rayleigh scattering measurements. The analysis indicates that the known empirical scaling law may lack sufficient accuracy when cluster sizes cover a broader range in real systems. An important step is moving from Ar as a near-ideal gas to CO2 as a real system. To evaluate whether the values of the mean cluster sizes are meaningful, in this thesis, a model based on the experimental results is proposed, which determines an appropriate position of the laser-cluster interaction region in the collisionless domain of the molecular beam. The low temporal resolution of the detected signal via oscilloscope leads to the application of photon counting that provides a higher detection sensitivity. In the case of Ar clusters, this method reveals the compliance of the behavior with the known theoretical calculations. The analysis of the relative mean CO2 cluster sizes, in contrast, indicate that the theoretical scaling does not suit well for clusters formed from the high-density fluids. The relative mean size of small and extra-large clusters enables the distinction of the clusters generated via expansion from the gas or the liquid side of the critical point and an intermediate regime where the expansion passes the supercritical gas-like and liquid-like regions. In measurements at conditions near the Widom line, two different measured and calculated scaling laws reveal a sharp transition on crossing it.

Page generated in 0.0737 seconds