• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 23
  • 4
  • Tagged with
  • 84
  • 39
  • 30
  • 29
  • 17
  • 14
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Couplage électromécanique effectif dans les structures piézoélectriques : expérimentations, simulations et corrélations / Effective electromechanical coupling in piezoelectric structures : experimentations, simulations and correlations

Ghorbel, Salma 14 May 2009 (has links)
Le coefficient de couplage électromécanique (CCEM) est un paramètre essentiel pour la description des matériaux piézoélectriques, il traduit la conversion d’énergie électrique en énergie mécanique et vice versa. Ce coefficient de couplage est étudié et déterminé dans le cadre de cette thèse pour des céramiques piézoélectriques. Ces dernières sont utilisées pour trois structures différentes ; la première structure étudiée est constituée d’une poutre longue et mince avec des petits patchs collés symétriquement sur les deux faces de la poutre en Aluminium, la seconde structure se compose d’une poutre courte et épaisse avec deux grands patchs. La dernière structure étudiée est une plaque composite multicouche du type aéronautique avec un seul grand patch. Ces trois structures ont été étudiées afin de déterminer le coefficient de couplage électromécanique effectif qui est considéré comme un indicateur de performance de l’amortissement passif shunté. Ce coefficient de couplage a été évalué de différentes manières en utilisant différents paramètres dont les conditions limites électriques, les propriétés élastiques des patchs, les propriétés modales de la poutre seule ainsi que les facteurs de couplages piézoélectriques. Une première étude expérimentale a été menée sur la poutre longue pour deux types de configurations en court circuit et circuit ouvert pour identifier ses propriétés modales. La poutre longue a été simulée pour deux types de polarisations, identiques et opposées, et simulée dans les deux codes Ansys® et Abaqus®. L’influence de la condition d’équipotentielle sur le coefficient de couplage a été étudiée. Une seconde campagne expérimentale et numérique sur une autre structure a été nécessaire pour valider les résultats obtenus. Pour pouvoir atteindre cet objectif, il était nécessaire de travailler sur une structure plus courte et plus rigide. Ainsi, la poutre courte a été simulée dans Ansys® et les résultats obtenus ont confirmé la nécessité de prendre en compte l’équipotentialité sur les faces des patchs. Cette condition a pour effet de réduire le couplage électromécanique et parfois de découpler certains modes. L’écart résultant de la corrélation expérimentale / numérique des deux poutres instrumentées a incité à recaler les modèles numériques. Ce recalage peut se présenter sous trois formes : mécanique en remplaçant l’encastrement par des ressorts linéaires, électrique en remplaçant les capacités fournies par le fabricant par les valeurs mesurées expérimentalement et électromécanique en utilisant les deux recalages précédents simultanément. Les deux poutres ont ensuite été simulées en déformations planes et contraintes planes et recalées afin d’approcher les résultats expérimentaux. L’étude de ces deux structures a permis de confronter les différentes méthodes d’évaluation du CCEM effectif, d’évaluer l’influence de l’équipotentialité sur les faces des électrodes et de comparer les simulations bidimensionnelles aux tridimensionnelles. Une plaque composite multicouche du type aéronautique a été ensuite étudiée pour généraliser la méthode d’évaluation du CCEM effectif pour les structures minces composites. La plaque seule a d’abord été simulée dans Ansys® pour valider le modèle numérique. Des tests sur la structure adaptative ont ensuite été menés pour l’évaluation du CCEM expérimental. La position choisie du patch a été déterminée par une analyse de l’énergie de déformation de la plaque seule pour les modes d’intérêt. Cette méthode de placement du patch s’est avérée efficace dans le sens où elle a conduit à des CCEM effectifs élevés pour certains modes de la bande de fréquence retenue. / The electromechanical coupling coefficient (EMCC) is an important parameter for the description of piezoelectric materials; it measures the conversion of electrical energy into mechanical one and vice versa. The coupling coefficient is studied and determined in this dissertation for piezoelectric ceramics. The latter are used for different structures: the first studied one is a long and thin Aluminium beam with small patches bonded symmetrically on its faces, the second one is a short and thick Aluminium beam with symmetrically bonded two large patches, and the third structure is considered more complex because it is an aeronautic-type multilayer composite plate with a single large patch. These three structures were studied to determine the electromechanical coupling coefficient which is considered as a performance indicator for passive shunted damping. The coupling coefficient was evaluated in different ways using different parameters, including the electrical boundary conditions, the elastic properties of the patches, the modal properties of the base beam and the piezoelectric coupling factor. A first experimental study was conducted on the long beam for two configurations, short circuit and open circuit, to identify its modal properties. The long beam was simulated for two configurations of polarization, same and opposite, in Ansys® and Abaqus® commercial codes. The equipotential condition influence on the coupling coefficient has been studied. A second experimental and numerical campaign for a different structure was necessary to validate the obtained results. For this purpose, it was necessary to work on a shorter and more stiff structure. Thus, the short beam was simulated in Ansys® which results have confirmed the necessity to consider the equipotentiality of the patches faces. This condition was found to reduce the electromechanical coupling and to uncouple some modes. The difference between experimental and numerical results of both adaptive structures was reduced by updating the numerical models. This updating is made in three ways: mechanically, by replacing the theoretical clamp conditions by linear springs, electrically, by replacing the capacities provided by the supplier by the experimental measured values, and electromechanically by considering previous updatings simultaneously. Both beams were simulated in 2D plane-strain and plane-stress and updated in order to approximate the experimental results. The study of these two structures allowed to assess different methods for the evaluation of the EMCC, to evaluate the influence of the equipotentiality constraints on the electroded faces, and to compare two-dimensional simulations to three-dimensional ones. Finally, an aeronautic-type multilayer plate composite has been studied in order to generalize the evaluation method of the EMCC for thin composite structures. The base plate was first simulated in Ansys® in order to validate the numerical model, then tests of the adaptive plate were conducted in order to evaluate the experimental EMCC. The selected position of the patch results from a strain energy analysis of the base plate for the mode of interest. The patch placement method was efficient in the sense that it provided high EMCC for some modes in the retained frequency range.
12

Dispositifs innovants pour la récupération de l'énergie thermique / Innovative devices for heat energy harvesting

Puscasu, Onoriu 22 January 2014 (has links)
Le présent travail est une contribution au domaine de la récupération de l’énergie. La conversion mise en place est faite à échelle centimétrique, les puissances électriques produites étant suffisantes pour alimenter des dispositifs à basse consommation, comme par exemple les capteurs sans fil. Une technologie innovante pour la récupération de l’énergie thermique est proposée, l’objectif étant de fabriquer des dispositifs fins, flexibles et bas coût pour une utilisation sans radiateur. Le fonctionnement choisi repose sur une conversion de la chaleur en électricité en deux étapes : thermomécanique (réalisée avec des bilames thermiques) et mécano-électrique (réalisée avec des piézoélectriques). Plusieurs prototypes ont été élaborés, aboutissant à des dispositifs matriciels flexibles, d’une épaisseur de quelques millimètres et fonctionnant sans radiateur avec refroidissement par convection naturelle. Les signaux générés sont des pics de tension qui dépassent les 10 V, pour une puissance mécanique disponible autour de 200 µW à 75°C. Plusieurs études ont été réalisées pour l'optimisation des dispositifs et la caractérisation de leurs composants. Leurs lois d’échelle ont été déduites, prédisant un gain en puissance avec la miniaturisation. Des modèles ont été proposés pour le comportement du piézoélectrique et pour le comportement thermique d’un dispositif. Les premiers cas d’usage ont été identifiés et les premiers tests ont été faits dans les environnements proposés par des potentiels utilisateurs. / The present work is a contribution to the domain of energy harvesting. The developed conversion is made at centimeter scale, and the generated electrical power is sufficient for low power devices, as for example wireless sensor nodes. An innovative technology for heat energy harvesting is proposed, with the goal to fabricate thin, flexible, and low cost devices for a use without a heat sink. Their working principle relies on a two-step conversion of heat into electricity: thermo-mechanical (with thermal bimetals) and mechanoelectrical (with piezoelectrics). Several prototypes have been built, resulting in flexible matrix devices that are a few millimeters thick and work without a heat sink with natural convection. The generated signals are voltage peaks above 10 V, for an available mechanical power in the order of 200 µW around 75°C. Several studies have been done for the optimization of the devices and the characterization of their components. Scale laws have been established, and predict significant power gain with miniaturization. Analytical models have been elaborated for the behavior of the piezoelectric and for the thermal behavior of a device. The first use cases have been identified, and the first tests have been performed in environments proposed by potential end users.
13

Conception et évaluation des performances d'un microgyromètre vibrant triaxial en GaAS à structure plane / Conception and performances evaluation of a GaAS planar triaxial vibrating rate microgyro

Roland, Iännis 04 July 2012 (has links)
Cette thèse présente la conception d'un microgyromètre MEMS triaxial. Les microgyromètres ont de nombreuses applications telles que le contrôle d'attitude de drones ou l'interfaces homme/machine. Les microgyromètres triaxiaux sont particulièrement avantageux car ils permettent de déterminer les trois composantes de la vitesse de rotation à partir d'un seule structure monolithique et planaire. Le principe de fonctionnement des gyromètres vibrants à effet Coriolis (CVG) a été étudié analytiquement, puis une structure originale de gyromètre triaxial monolithique et planaire a été conçue. Cette structure est constituée de quatre poutres encastrées sur un cadre déformable. Des prototypes en silicium ont été réalisés et caractérisés. L’arséniure de gallium (GaAs) a été sélectionné pour la réalisation en raison de ses propriétés piézoélectriques et de son fort potentiel de miniaturisation. Un système d’électrodes pour l'excitation et la détection des vibrations mécaniques a été mis au point. Deux procédés d'usinage du GaAs ont été développés, un procédé de gravure chimique et un procédé de gravure plasma permettant tous les deux de graver verticalement le GaAs sur 450 micromètres de profondeur. Le procédé de gravure plasma est compatible avec la réalisation du CVG triaxial. Des résonateurs de test en GaAs dopé Carbone ont été réalisés par gravure chimique pour mesurer l'évolution en température de la résistivité et des propriétés électromécaniques de ce matériau. Ces mesures ont permis d'estimer que les marches aléatoires angulaires du CVG triaxial sont inférieures à 0,025 degré par racine d'heure sur la gamme de température [-40°C +80°C] pour les trois axes de mesure. Ceci situe le potentiel du CVG triaxial conçu parmi les CVG MEMS les plus performants. / This PhD present the conception of a triaxial MEMS microgyro. Microgyros offer a wide range of applications varying from drones attitude control to human interface devices. The triaxial microgyros offer great benefits because they allow determination of the three rotation rate components with only one monolithic planar structure. The operating principle of Coriolis Vibrating Gyro (CVG) has been studied analytically and an original structure has been designed. This structure consists of four beam clamped into a deformable frame. Some silicon prototypes have been machined and characterised. The gallium arsenide (GaAs) has been chosen for the realisation because of its piezoelectric properties and its great miniaturization potential. A transduction system based on GaAs piezoelectricity was developed. Two GaAs machining processes have been developed: a chemical etching process and a plasma etching process which both enable 450 micrometers deep vertical etching. The plasma etching technique allows high fidelity enough machining to be compatible with the triaxial CVG realisation. Some C-doped GaAs test resonators have been realised to measure the resistivity temperature dependency and electromechanical properties of this material. Those characterisations lead to estimate the angular random walk for the three axis ranges below 0,025 degree per square root hour on the temperature range [-40°C +80°C]. This sets the triaxial CVG together with the best monoaxial MEMS CVG.
14

Design Of Enhanced Piezoelectric Materials From Quantum Chemical Calculations / Conception par la modélisation moléculaire de matériaux à propriétés piézoélectriques augmentées

Elkelany, Khaled 05 February 2016 (has links)
Une analyse exhaustive de la piézoélectricité a été réalisée par la modélisation moléculaire basée sur l'application des principes de la mécanique quantique. La calibration de la méthode et des paramètres du calcul est d'abord examinée en comparant les résultats calculés concernant les oxydes de silicium et de Germanium à leurs homologues expérimentaux. Ensuite, les paramètres microscopiques qui influencent chaque contribution de cette propriété macroscopique de réponse sont distinctement rationalisés. Enfin, après la rationalisation de la propriété piézoélectrique, la conception de matériaux montrant un effet piézoélectrique élevé a été tentée. Nous avons montré que la grande piézoélectricité induite par un dopage dans le plan du graphène tendra vers une valeur unique, ni nulle ni infinie, et de façon indépendante de la nature physique ou chimique particulière du défaut. L'induction d'une piézoélectricité hors du plan du graphène en brisant sa planéité selon la direction-z est également étudiée. La réponse piézoélectrique obtenue est largement améliorée par rapport à la limite finie de la piézoélectricité dans le plan, mais aux grandes concentrations du défaut seulement. En effet, contrairement à la composante dans le plan de la piézoélectricité, la composante hors du plan, dépend de la nature du défaut et diminue jusqu'à tendre vers zéro à dilution infinie. / An exhaustive analysis of the technologically important piezoelectric phenomena is here done by applying quantum chemical simulations. At first, the calibration of the assumed computational scheme is examined by comparing our calculated piezoelectric properties of the well-known piezoelectric quartz to their experimental counterparts. Secondly, the microscopic parameters that influence each contribution of piezoelectric macroscopic property are distinctly rationalized. After the rationalization of the piezoelectric property, the design of materials that exhibiting a high piezoelectric effect has been attempted. It has been shown that a large in-plane piezoelectricity induced in graphene by doping can be acquired by including any in-plane defect(s). Moreover, in the limit of vanishing defect concentration, the piezoelectric response tends toward a unique value, neither null nor infinite, regardless of the particular chemical or physical nature of the defect. The induction of an out-of-plane piezoelectricity in graphene by breaking its planarity through the non-periodic z-direction is stated, where the obtained piezoelectric response is largely improved compared to the finite in-plane piezoelectric limit, at however higher concentration of the defect. Contrarily to what has been discussed for the in-plane piezoelectric effect, the out-of-plane one eventually vanishes as far as the limit of infinite defect dilution is reached, and so it relies ultimately on the nature of the defect.
15

Poutres composites piézoélectriques et contrôle passif distribué: modélisation, analyse modale et études expérimentales

Maurini, Corrado 24 November 2005 (has links) (PDF)
Cette thèse a pour objet la modélisation de poutres composites piézoélectriques et l`application au contrôle passif des vibrations. Une première partie présente un modèle de poutre du type Euler-Bernoulli électromécanique. Le modèle est construit à partir d'un principe variationel mixte qui, sans introduire des degrés de liberté supplémentaires, tienne compte des effets 3D des champs électromécaniques et du potentiel électrique induit. Une deuxième partie propose des techniques numériques et expérimentales pour l'analyse modale et la déduction d'un modèle d'ordre réduit pour des poutres avec actionneurs piézoélectriques distribués. Enfin, des applications au contrôle passif de vibrations au moyen de circuits électriques sont étudiées. Dans de tels systèmes, l'énergie mécanique est dissipée dans des réseaux résistifs-inductifs. Chaque partie comprend des validations numériques et expérimentales. Un premier prototype d'un système pour le contrôle passif distribué est proposé.
16

Modélisation asymptotique de plaques : contrôlabilité exacte frontière, piézoélectricité

Sène, Abdou 20 January 1999 (has links) (PDF)
Le mémoire est consacré à divers aspects de la modélisation de plaques : contrôlabilité frontière de structures bidimensionnelles et construction de modèles de plaques piézoélectriques, en relation avec des situations technologiques d'actualité, puis étude de singularités. Dans le premier chapitre on obtient un résultat de contrôlabilité exacte frontière pour une plaque élastique bidimensionnelle. On résout d'abord le problème de contrôlabilité exacte pour une plaque tridimensionnelle d'épaisseur h en controlant uniquement l'intérieur et la frontière latérale de la plaque ; le choix effectué des contrôles tridimensionnels permet de faire disparaitre les contrôles intérieurs lorsque h tend vers 0. On étudie, dans les chapitres 2, 3 et 4, le comportement d'une plaque piézoélectrique lorsque son épaisseur tend vers 0, notamment, dans le cas complet ou la contribution magnétique dans les équations de Maxwell n'est pas négligeable. Ainsi, d'une part, on justifie les modèles qui supposent que dans une plaque mince le potentiel électrique peut être assimilé à un polynome du second degré en la coordonnée d'espace suivant l'épaisseur. Et, d'autre part, on explique pourquoi dans les modèles bidimensionnels les équations d'équilibre mécanique, ou les équations d'évolution, sont liées au potentiel électrique uniquement par la différence de potentiel entre les deux faces horizontales. De plus, on exhibe de manière précise la contribution des termes piézoélectriques dans l'opérateur de flexion. Le chapitre 5 est consacré au calcul de coefficients de singularité sur un ouvert bidimensionnel polygonal non convexe.
17

Développement de nanocomposites à propriétés piézoélectriques et optiques non-linéaires

Houf, Latifa 28 October 2011 (has links) (PDF)
Le développement de nouveaux capteurs, transducteurs et de dispositifs intégrés optoélectroniques et piézo-électriques nécessite l'élaboration de nouveaux matériaux avec des propriétés mécaniques, optiques et électriques couplées. Dans cette perspective, les nanocomposites à base de nanocristaux inorganiques non centrosymétriques dispersés dans une matrice polymère peuvent donner à la fois des propriétés piézoélectriques et optiques non-linéaires. Cependant, la dispersion et l'orientation des nanocristaux dans la matrice sont primordiales si on souhaite un comportement collectif des nanocristaux individuels et des propriétés résultantes significatives. Dans ce travail, nous avons utilisé des cristaux d'iodate de fer (Fe(IO3)3) comme nano-charges inorganiques et le PMMA/ PTMPTA comme matrice polymère. La réponse optique non-linéaire du Fe(IO3)3 est comparable à celle des cristaux les plus efficaces tels que BaB2O4 et LiNbO3. Le comportement piézoélectrique du matériau massif n'étant pas référencé, sa structure cristalline laisse toutefois envisager des propriétés piézoélectriques intéressantes. Par ailleurs, la matrice polymère a été choisie pour sa simplicité d'utilisation et de production, son coût relativement faible, sa versatilité et sa facilité de mise en forme. Les nanocomposites peuvent être élaborés par deux voix différentes : la première consiste à disperser mécaniquement des nanocristaux fonctionnalisés dans un polymère ou dans un solvant de polymère approprié et la deuxième concerne la polymérisation in-situ de microémulsions composées du monomère liquide. Les synthèses en microémulsions inverses ont été privilégiées pour d'une part élaborer des nanocristaux d'iodate de fer de taille et de forme contrôlées puis, d'autre part, photo-polymériser des couches minces déposées à la tournette. Un aspect très original de ce travail consiste en l'utilisation de la Diffusion Hyper-Rayleigh pour étudier in-situ les cinétiques de cristallisation des particules d'iodate de fer en fonction des conditions expérimentales de synthèse à savoir, la température et la composition des microémulsions. Cette technique qui consiste à détecter les réponses optiques non-linéaires des suspensions de nanoparticules en microémulsions a été combinée avec d'autres méthodes expérimentales plus classiques comme la diffraction des rayons X, la diffusion dynamique de la lumière et la microscopie électronique en transmission. Cela a permis d'élucider les mécanismes de croissance des nanocristaux d'iodate de fer en microémulsions inverses. Par la suite, des couches minces nanocomposites ont été préparées après orientation sous champs électriques des nanocristaux polaires dispersés dans le MMA. Les caractérisations mécaniques, optiques non linaires et piézoélectriques de ces couches sont encourageantes.
18

APPORT DES NOUVEAUX MATÉRIAUX PIÉZOÉLECTRIQUES DANS LE DOMAINE DES MICRO-GYROMÈTRES VIBRANTS

Parent, Arnaud 11 July 2008 (has links) (PDF)
Le développement constant des microsystèmes a rendu possible l'apparition d'un nouveau type de capteur de vitesse de rotation : les micro-gyromètres vibrants à effet Coriolis. Ces capteurs ont des dimensions et des coûts de fabrication sans communes mesures comparées aux gyromètres classiques (i.e. gyromètre à toupie, gyromètre laser, gyromètre à fibre optique...), mais en contrepartie ils ont des performances nettement en retrait. Ils sont destinés à des applications nouvelles telles que le pilotage de micro-drones, la stabilisation d'image dans les appareils photographiques, le contrôle dynamique de trajectoire dans l'automobile, etc.<br />L'objet de ce travail porte sur l'étude spécifique du matériau piézoélectrique utilisé dans les micro-gyromètres vibrants à effet Coriolis. Aujourd'hui le quartz, faiblement piézoélectrique, est le matériau utilisé, du fait de ses très bonnes propriétés thermomécaniques et de la grande maîtrise des technologies de sa mise en oeuvre (due à son utilisation massive dans l'industrie horlogère). C'est dans le contexte de l'émergence de nouveaux matériaux de synthèse plus fortement piézoélectriques que s'inscrit mon travail de thèse qui consiste en l'étude de l'apport des nouveaux matériaux piézoélectriques dans le domaine des micro-gyromètres vibrants.<br />Pour répondre à cette problématique nous avons suivi la démarche suivante. Dans un premier temps, il a été développé un modèle analytique de gyromètre vibrant piézoélectrique permettant d'appréhender les performances du capteur (facteur d'échelle et résolution de mesure). Ainsi, il a été possible d'identifier les paramètres matériaux clés et de comparer les différents matériaux d'un point de vue théorique. Puis, les différentes étapes de réalisation des maquettes de gyromètre en PZT, GaPO4 et langasite sont décrites. Enfin, la caractérisation des maquettes de gyromètre en PZT et GaPO4 et la validation du modèle par la confrontation des résultats théoriques et expérimentaux sont présentées.
19

Capteurs acoustiques

Friedt, Jean-Michel 21 June 2010 (has links) (PDF)
The central topic of all the discussions in this manuscript is around acoustic-sensor based measurement systems. Throughout this document, \acoustic" means the propagation of a mechanical wave on, or within, a substrate. However, we will discuss many other physical principles applied for sensing techniques, whether optical, scanning probe microscopy, electrochemistry.
20

Conception et évaluation des performances d'un microgyromètre vibrant triaxial en GaAS à structure plane

Roland, Iännis 04 July 2012 (has links) (PDF)
Cette thèse présente la conception d'un microgyromètre MEMS triaxial. Les microgyromètres ont de nombreuses applications telles que le contrôle d'attitude de drones ou l'interfaces homme/machine. Les microgyromètres triaxiaux sont particulièrement avantageux car ils permettent de déterminer les trois composantes de la vitesse de rotation à partir d'un seule structure monolithique et planaire. Le principe de fonctionnement des gyromètres vibrants à effet Coriolis (CVG) a été étudié analytiquement, puis une structure originale de gyromètre triaxial monolithique et planaire a été conçue. Cette structure est constituée de quatre poutres encastrées sur un cadre déformable. Des prototypes en silicium ont été réalisés et caractérisés. L'arséniure de gallium (GaAs) a été sélectionné pour la réalisation en raison de ses propriétés piézoélectriques et de son fort potentiel de miniaturisation. Un système d'électrodes pour l'excitation et la détection des vibrations mécaniques a été mis au point. Deux procédés d'usinage du GaAs ont été développés, un procédé de gravure chimique et un procédé de gravure plasma permettant tous les deux de graver verticalement le GaAs sur 450 micromètres de profondeur. Le procédé de gravure plasma est compatible avec la réalisation du CVG triaxial. Des résonateurs de test en GaAs dopé Carbone ont été réalisés par gravure chimique pour mesurer l'évolution en température de la résistivité et des propriétés électromécaniques de ce matériau. Ces mesures ont permis d'estimer que les marches aléatoires angulaires du CVG triaxial sont inférieures à 0,025 degré par racine d'heure sur la gamme de température [-40°C +80°C] pour les trois axes de mesure. Ceci situe le potentiel du CVG triaxial conçu parmi les CVG MEMS les plus performants.

Page generated in 0.0418 seconds