• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 13
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 139
  • 139
  • 31
  • 27
  • 27
  • 16
  • 16
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Distributed piezoelectric actuator with complex shape

Qiu, Yan January 2002 (has links)
Thesis (MTech (Mechanical Engineering))--Peninsula Technikon, Cape Town, 2002 / Distributed Piezoelectric Actuator (DPA) is one kind of actuator in the smart technology field. Firstly, DPA is one kind of solid-state actuator, and can be embedded in the structure. Secondly, it can be controlled by the electrical signal with high bandwidth and high precision. So it can be applied in the many different fields, such as high-resolution positioning, noise and vibration detection and shape control. Up to now, all of the DPA theory investigations and the product designs are based on applying the approximate electrical field. And only the rectangular shape DPA has been studied. The accurate distribution and intensity of electrical and mechanics field, and the numerical imitation for the DPA products with rectangular and other shapes have never been discussed and studied. Therefore, the development of DPA to be used in the micro application, such as in the Micro Electro-Mechanical System (MEMS), has been limited. This thesis has developed the analytical analysis models for two types of DPA elements and the part circular shape DPA element. The MathCAD and MATLAB program have been used to develop the analytical models. The ABAQUS program has also been used to compare the results between the analytical models and Finite Element Method (FEM). Finally, the accuracy and reliability of analytical models have been proved by results comparison between the analytical models, FEM and the product testing data from the industry. This thesis consists of five chapters. Chapter 1 is the introduction of smart structure. The characterizations of constituent materials, including the piezoelectric material and matrix epoxy material have been discussed in Chapter 2. In Chapter 3, the analytical models for two type of DPA element have been developed and the comparisons have also been completed. The analytical models for part circular shape DPA element have been developed in Chapter 4. The conclusions and recommendations are included in Chapter 5.
92

The passive control of machine tool vibration with a piezoelectric actuator

Stander, Cornelius Johannes 12 January 2007 (has links)
Please read the abstract in the section 00front of this document / Dissertation (M Eng (Mechanical Engineering))--University of Pretoria, 2000. / Mechanical and Aeronautical Engineering / unrestricted
93

Microcantilever Based Viscosity Measurement as it Applies to Oscillation Amplitude Response

Siegel, Sanford H. 08 1900 (has links)
The goal of this research is to measure viscosity via the analysis of amplitude response of a piezo driven vibrating cantilevers partially immersed in a viscous medium. As a driving frequency is applied to a piezoceramic material, the external forces acting on the system will affect its maximum amplitude. This thesis applies this principle through experimental and analytical analyses of the proportional relationship between viscosity and the amplitude response of the first natural frequency mode of the sinusoidal vibration. Currently, the few cantilever-based viscometer designs that exist employ resonant frequency response as the parameter by which the viscosity is correlated. The proposed piezoelectric viscometer employs amplitude response in lieu of resonant frequency response. The goal of this aspect of the research was to provide data confirming amplitude response as a viable method for determining viscosity. A miniature piezoelectric plate was mounted to a small stainless-steel cantilever beam. The tip of the cantilever was immersed within various fluid test samples. The cantilever was then swept through a range of frequencies in which the first frequency mode resided. The operating principle being as the viscosity of the fluid increases the amplitude response of cantilever vibration will decrease relatively. What was found was in fact an inversely exponential relationship between dynamic viscosity and the cantilever beam's vibrational amplitude response. The experiment was performed using three types of cantilevers as to experimentally test the sensitivity of each.
94

The application of ultrasonics to continuous liquid-liquid extraction by means of a cylindrical piezoelectric transducer

Woodle, Hughey Allen January 1957 (has links)
no abstract provided by author / Ph. D.
95

Active control of interior noise using piezoelectric actuators in a large-scale composite fuselage model

Lefebvre, Sylvie 17 March 2010 (has links)
Active control of single-frequency interior noise in a realistic composite aircraft fuselage is experimentally studied. The control inputs are due to piezoelectric actuators bonded to the cylinder wall while error information from the interior acoustic field is sensed by microphones. A preliminary analytical development was conducted to investigate the mechanisms of the structural/acoustic coupling exhibited by a simple cylindrical model in order to gain more inSight into the coupling properties of the piezoelectric actuators with the cylinder. Therefore, the response of a homogeneous, simply-supported cylindrical shell to the excitation of piezoelectric actuators was presented. The analytical results show that a piezoelectric actuator pair excited in-phase (stretching model) created a lower order circumferential interior acoustic field, more suitable to control the interior noise at low frequency than the same piezoelectric actuator pair excited in out-of-phase (bending model). The experiments were performed in the large anechoic chamber of the Acoustics Research Laboratory at NASA Langley Research Center at Hampton, Virginia and utilized a 1.68 m diameter, 3.66 m length composite aircraft structure, equipped with stringers, ring frames and a cabin floor. The narrowband controller used in these experiments was a four channel adaptive LMS algorithm implemented on a TMS320C25 system board. Results showed that global reduc1:ion of the interior sound pressure level of the order of 12 dB could be obtained using piezoelectric actuators. The influence of the sensor/actuator location and configuration as well as the frequency of excitation was studied. In general this investigation validates active control using piezoelectric actuators bonded to the fuselage to reduce the interior noise inside realistic aircraft structures. / Master of Science
96

The oscillogenic instrument

Mercure, Peter Kip January 1986 (has links)
A generalized chemical oscillator has been invented consisting of input and output interfaces to a chemical system, with the appropriate feedback external to the chemical system such that the system oscillates. The oscillation frequency can be made a function of concentration, reaction kinetics, transport phenomena, and other physical properties. The idea was reduced to practice with an electronic system coupled to an electrochemical system, and gave a frequency output linear with concentration for a number of ions in solution. A general mathematical model of the electrochemical system was devised and programmed in FORTRAN on a digital computer, and a mathematical model of the oscillogenic instrument was used to conceptually test the idea. The use of recursive parameter estimation was also considered for this instrument. / Ph. D.
97

Piezotronic devices and integrated systems

Wu, Wenzhuo 04 January 2012 (has links)
Novel technology which can provide new solutions and enable augmented capabilities to CMOS based technology is highly desired. Piezotronic nanodevices and integrated systems exhibit potential in achieving these application goals. By combining laser interference lithography and low temperature hydrothermal method, an effective approach for ordered growth of vertically aligned ZnO NWs array with high-throughput and low-cost at wafer-scale has been developed, without using catalyst and with a superior control over orientation, location/density and morphology of as-synthesized ZnO NWs. Beyond the materials synthesis, by utilizing the gating effect produced by the piezopotential in a ZnO NW under externally applied deformation, strain-gated transistors (SGTs) and universal logic operations such as NAND, NOR, XOR gates have been demonstrated for performing piezotronic logic operations for the first time. In addition, the first piezoelectrically-modulated resistive switching device based on piezotronic ZnO NWs has also been presented, through which the write/read access of the memory cell is programmed via electromechanical modulation and the logic levels of the strain applied on the memory cell can be recorded and read out for the first time. Furthermore, the first and by far the largest 3D array integration of vertical NW piezotronic transistors circuitry as active pixel-addressable pressure-sensor matrix for tactile imaging has been demonstrated, paving innovative routes towards industrial-scale integration of NW piezotronic devices for sensing, micro/nano-systems and human-electronics interfacing. The presented concepts and results in this thesis exhibit the potential for implementing novel nanoelectromechanical devices and integrating with MEMS/NEMS technology to achieve augmented functionalities to state-of-the-art CMOS technology such as active interfacing between machines and human/ambient as well as micro/nano-systems capable of intelligent and self-sufficient multi-dimensional operations.
98

Optimization and stability analysis on light-weight multi-functional smart structures using genetic algorithms

譚晓慧, Tan, Xiaohui. January 2008 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
99

Controller Switching Policy in Flexible Plates Using PZT Actuators Subject to Spatiotemporal Variations of Disturbances

Moghani, Taraneh 30 April 2004 (has links)
The primary goal of this thesis is to evaluate vibration control of an all-clamped plate having an unknown disturbance. The vibration control is implemented using a piezoelectric actuator placed at an optimal location. The first part of this thesis considers a robust actuator placement with respect to varying spatial distributions of disturbances. The treatment here, is different from performance-based LQR approaches, since it is based on minimizing the effect of the disturbance distributions. The second part of this thesis addresses a more general case where the plate is under an unknown disturbance. An unknown disturbance is also characterized by the case where the disturbance signal moves randomly over the entire spatial domain. An optimal switching controller algorithm is developed, based on LQR performance, which switches between piezoelectric actuators employed for the vibration control of the plate. A single actuator is selected from the various actuator locations during each time interval, which leads to performance enhancement.
100

Artificial Turbulent Bursts

McIlhenny, Julia F 10 January 2002 (has links)
To gain understanding of the physical and structural events in the turbulent bursting process, an effort to generate artificial bursts in a turbulent boundary layer was made. Turbulent bursts, which are both random in time and in space, and cause a large portion of drag of a turbulent boundary layer. Control of the bursts could yield a decrease in skin friction and hence drag. Data were taken in a turbulent boundary layer developed over a flat plate in a low-speed wind tunnel with an array of eight hot-wire probes. The turbulent burst like events were created by pitching a rectangular shaped piezoelectric bimorph actuator out into the flow. The actuator effect is proposed which models the production of counter-rotating vortices in a rectangular vortex filament configuration. The results are compared with naturally occurring bursts and data from previous studies. Knowing more about the turbulent bursting process gives us more opportunities to control the turbulent bursts and therefore reduce drag over airfoils.

Page generated in 0.0771 seconds