• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 43
  • 15
  • 13
  • 12
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 240
  • 49
  • 48
  • 39
  • 37
  • 33
  • 31
  • 31
  • 30
  • 28
  • 28
  • 28
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Návrh jednoválcového vznětového zkušebního motoru / Design Study of 1-piston CI Engine

Plička, Ladislav January 2009 (has links)
Thesis deals with design study of 1-piston CI Engine for research purposes. The main purpose of this work is the design crankcase. Thesis includes background research conversant by various conceptions experimental motors. The numerice analysis of proposed crankcase in Pro ENGINEER MECHANICA (FME) software environment in also part of the work. Generally, the proposed solution of the experimental engine was focused on the universality and simplicity of the design.
142

Studie pístového čerpadla s lineárním motorem / Study of plunger pump with linear motor

Machát, Pavel January 2010 (has links)
The aim of this thesis is an engineering design of plunger pump with linear motor. This type of pump is used especially for blood pumping in heart surgery. The theoretical part is focused on distribution of pumps, description of extracorporeal circuit and booster heart history. There are basic calculations derived, which describe plunger pump performance. Then varied designs of plunger pumps follows, which are differed in size, shape and application. Next part includes design of reverse valves and their CFD computation.
143

Studie pístového čerpadla s lineárním motorem / Study of plunger pump with linear motor

Jáchym, Jan January 2011 (has links)
This thesis deals with study and design of plunger pump with linear motor. This pump can be used for blood pumping in heart surgery. The theoretical part of this thesis is focused on description of extracorporeal circuit, heart boosters and artificial heart. This thesis provides an overview of check valves which are used in heart surgery too. Basic equitations for pump design are derived and calculated in this thesis. The pump design and manufacturing by the 3D technology was made by previous results. Finally, in this thesis are compared theoretical results and experimental data.
144

Studie pístového čerpadla s inversním kuličkovým šroubem a zatopeným motorem / Study of plunger pump with inverse ball screw and submersed motor

Švestka, Jiří January 2012 (has links)
This thesis is focused on study of piston pump with ball screw and submersed motor. Theoretic part is about study using pump and ball screw. Equations for description of pump, motor and ball screw are in computation part. And in last part is construction of pump and valve. Valve is computed in CFD.
145

Techniques to inject pulsating momentum

Kranenbarg, Jelle January 2020 (has links)
Hydro power plants are an essential part of the infrastructure in Sweden as they stand for a large amount of the produced electricity and are used to regulate supply and demand on the electricity grid. Other renewable energy sources, such as wind and solar power, have become more popular as they contribute to a fossil free society. However, wind and solar power are intermittent energy sources causing the demand for regulating power on the grid to increase. Hydro power turbines are designed to operate at a certain design point with a specific flow rate. The plants are operated away from the design point when used to regulate the supply and demand of electricity. This can cause a specific flow phenomenon to arise in the draft tube at part load conditions called a Rotating Vortex Rope (RVR) which causes dangerous pressure fluctuation able to damage blades and bearings. A solution to mitigate a RVR is to inject pulsating momentum into the draft tube by using an actuator operating at a certain frequency. A literature study was conducted and three techniques were numerically simulated using ANSYS Workbench 19.0 R3; a fluidic oscillator, a piston actuator and a synthetic jet actuator. A dynamic mesh was used to simulate the movement of the piston actuator and diaphragm of the synthetic actuator whilst the mesh of the fluidic oscillator was stationary. The relative errors of the three numerical models were all below 3 %. All devices showed promising results and could potentially be used to mitigate a RVR because they all have the ability to produce high energy jets. The fluidic oscillator had an external supply of water, whereas the other two did not, which means that it could inject the largest mass flow. The piston actuator required a driving motor to move the piston. The diaphragm of the synthetic jet actuator was moved by a Piezoelectric element. Advantages of the fluidic oscillator are that it has no moving parts, in contrary to the two other devices, it can directly be connected to the penstock or draft tube to obtain the required water supply and it is easy to install. It will most likely also be smaller compared to the other two for the same mass flow rate. It does however not generate a pulsating jet, but rather an oscillating jet. The other two devices generate pulsating jets, but have problems with low pressure areas during the intake stroke which can cause cavitation problems. These areas cause the formation of vortex rings close to the outlet. Simulations showed that a coned piston together with a coned cylinder outlet could decrease losses by almost 16 % compared to a normal piston and cylinder. It also decreased the risk for cavitation and the required force to move the piston. Otherwise, a shorter stroke length for a constant cylinder diameter or a longer stroke length for a constant volume displacement also decreased the risk for cavitation and required force. The gasket between the piston and cylinder is a potential risk for leakage. A solution to avoid critical low pressure areas is to install an auxiliary fluid inlet or valve which opens at a certain pressure for the piston actuator as well as the synthetic jet actuator. This will also allow larger mass flow rates and a higher injected momentum. Both devices are more complicated to install and require likely more maintenance compared to the fluidic oscillator. However, there exist many possible design options for the piston actuator. The design of the synthetic jet is more limited because of the diaphragm. The amplitude of the diaphragm also has a direct effect on the pressure levels. The losses increased proportional to the mass flow to the power of three which suggests that it is better to install many small actuators instead of a few large ones.
146

Validation of the physical effect implementation in a simulation model for the cylinder block/valve plate contact supported by experimental investigations

Wegner, Stephan, Löschner, Fabian, Gels, Stefan, Murrenhoff, Hubertus January 2016 (has links)
Overall losses in swash plate type axial piston machines are mainly defined by three tribological interfaces. These are swash plate/slipper, piston/cylinder and cylinder block/valve plate. Within a research project, funded by the German Research Foundation, a combined approach of experimental research and simulation is chosen to acquire further knowledge on the cylinder block/valve plate contact. The experimental investigations focus on the friction torque within the contact and the measurement of the cylinder block movement in all six degrees of freedom. Simultaneously a simulation model is created focusing on the main physical effects. By considering the results of the experimental investigations significant physical effects for the simulation model are assessed. Within this paper a first comparison between experimental results and the simulation is presented, showing that for a qualitative match the implemented effects (mainly the fluid film, solid body movement, solid body contact, surface deformation) are sufficient to model the general behaviour of theinvestigated pump.
147

Combined experimental and simulative approach for friction loss optimization of DLC coated piston rings

Götze, Andreas, Jaitner, Dirk 05 March 2024 (has links)
Piston rings cause significant friction losses within internal combustion engines. Especially the first compression ring, which is pressed onto the liner by high cylinder pressure, contributes significantly to the total friction loss of the piston assembly. The tribological behavior of the oil scraper ring is mainly related to the pretensioning force and can lead to high losses even at low and idle speed. Due to this, there is always a markable risk of wear for the contact surfaces of the piston rings and the cylinder. “Diamond-like carbon” coatings on the surface of the piston rings can prevent wear and are able to reduce friction in the ring-liner-contact. The purpose of this work was to investigate the tribological benefit of this coating-system on the compression and oil scraper ring. Experimental studies were carried out on a fired single-cylinder engine using the Indicated Instantaneous Mean Effective Pressure-method (IIMEP) for the crank angle-resolved detection of the piston assembly’s friction force. To be able to determine the component-related fractions of the friction loss and to quantify the hydrodynamic and asperity related parts locally and time dependent, an EHD/MBS model of the engine was created in AVL EXCITE and a simulative investigation was performed. This simulation was validated by the experimental work and provided detailed information about the individual contact conditions and gap height of each tribological contact of the piston group. The combined approach of measurement and simulation enabled the prediction of tribological aspects and performance in parameter studies on a virtual engine test bed.
148

Dynamic Grid Motion in a High-Order Computational Aeroacoustic Solver

Heminger, Michael Alan 09 September 2010 (has links)
No description available.
149

Performance comparison between reciprocating and scroll compressor heat pumps with R600a refrigerant

KRONSTRÖM, CHRISTOFER January 2021 (has links)
A performance comparison of heat pumps using a scroll (Sanden) and a reciprocating (Bitzer) compressor was conducted experimentally. The refrigerant used was R600a (isobutane). The heat pump components were evaluated performance-wise through: volumetric and isentropic efficiency of the compressors; the UA-value of the condensers and evaporators; sensible enthalpy differences between the liquid and the suction line in the internal heat exchanger; and overall heat pump system comparison as the coefficient of performance. The Bitzer heat pump had existing measuring devices and equipment installed, and it was already filled with refrigerant. The Sanden heat pump required installation of equipment and measuring devices and a refrigerant refill. The refrigerant charge was decided according to the criteria of the lowest compressor speed, which had an effect of overcharge for higher speeds. The measurements included the temperature of water and refrigerant, pressure of the refrigerant, water volume flow, and compressor power. The heat pumps performances were then evaluated based on these parameters. The Sanden compressor showed higher volumetric efficiency than the Bitzer compressor, for the two lower (out of three) speeds of the compressor. The isentropic efficiency of the Bitzer compressor proved to be higher for all pressure ratios out of the three speeds respectively. The condenser in the Bitzer heat pump showed proper UA-values based on the temperature differences between refrigerant and heat sink. The UA-values of the Sanden heat pump condenser did not increase with compressor speed which then gave a larger temperature difference between refrigerant and heat sink, for the two higher compressor speeds. The evaporators had a similar issue with the temperature difference between refrigerant and heat source, which also showed on the UA-values. The internal heat exchanger in the Bitzer heat pump had a larger sensible enthalpy difference on the suction side compared to the liquid side, when condenser subcooling was low, indicating that some fraction of refrigerant was being condensed instead. The Sanden heat pump instead had higher condenser subcooling and the sensible enthalpy difference showed to be very low in the internal heat exchanger. Finally, the coefficient of performance showed to be slightly higher in the Bitzer heat pump for almost all evaluated condensation and evaporation temperatures. / En jämförelse av prestandan för två värmepumpar, en med scroll- (Sanden) och en med kolvkompressor (Bitzer) har gjorts. Köldmedlet som användes var R600a (isobutan). Komponenterna och hur deras prestanda blev utvärderad följer här: kompressorernas volymetriska och isentropisk verkningsgrad; kondensorns och förångarens UA-värden; den sensibla entalpiskillnaden mellan gas- och vätskeledning i den interna värmeväxlaren; en övergripande jämförelse av värmepumparna i form av deras värmefaktor. Värmepumpen med Bitzerkompressor utvärderades med befintliga komponenter och mätutrustning, och en redan fylld mängd köldmedium. Värmepumpen med Sandenkompressor installerades med mätutrustning och komponenter, och fylldes med köldmedium. Mängden köldmedium bestämdes utifrån kriterier för det lägsta varvtalet på kompressorn, vilket visade sig ge en för stor mängd köldmedium vid de högre varvtalen. Mätningarna inkluderade temperatur på vatten och köldmedium, köldmediets tryck, vattnets volymflöde samt kompressorns effektbehov. Prestandan för värmepumparna är sedan utvärderad utifrån dessa data. Sandenkompressorn visade en högre volymetrisk verkningsgrad för de två lägre (av tre) hastigheterna utvärderade i experimenten, jämfört med Bitzer. Den isentropiska verkningsgraden var högre i Bitzerkompressorn för samtliga tryckförhållanden för de tre respektive hastigheterna. Kondensorn i Bitzervärmepumpen uppvisade goda UA-värden, baserat på temperaturskillnaderna mellan köldmedium och värmesänka. Kondensorn i Sandenvärmepumpen visade ingen förbättring av UA-värden när kompressorns hastighet ökade, vilket i sin tur gav upphov till stora temperaturskillnader mellan köldmediet och värmesänkan. Förångarna i båda värmepumparna uppvisade liknande problem med höga temperaturskillnader mellan värmekälla och köldmedium, vilket även deras UA-värden visade. Den interna värmeväxlaren i Bitzervärmepumpen visade större skillnad i den sensibla entalpin på sug- jämfört med vätskesidan, när underkylningen i kondensorn var låg, vilket indikerade på att en del av köldmediet istället kondenserade. I Sandenvärmepumpen var kondensorns underkylning högre vilket då uppvisade en liten skillnad i den sensibla entalpin mellan de båda sidorna. Slutligen så visade Bitzervärmepumpen en något högre värmefaktor än Sandenvärmepumpen för nästan alla utvärderade kondenserings- och förångningstemperaturer.
150

Long term effects of ammonia on piston ring materials for maritime combustion engines

Firsching, Matilda January 2024 (has links)
Due to climate changes and an increasing global temperature, the maritime transport sector has taken upon a mission to reduce their share of greenhouse gas emissions by 50% until 2050. Combustion engines used in ships mainly run on carbon-based fuels, but to achieve the reduction of emissions it is crucial to investigate the possibility of alternative fuels. Ammonia is an alternative fuel with a carbon free chemical composition that shows big potential, with several initiatives to put ammonia driven ship engines on the market in the near future. For ships to be able to run on ammonia fuel, the engine materials have to withstand the corrosive effect of ammonia whilst still ensuring that the motor runs properly. In this study, two piston ring materials are investigated with regards to long-term effects of exposure to ammonia solution. The piston ring materials investigated were comprised of a cast iron substrate covered with either a chromium ceramic coating or a with a cermet coating, the latter also coated with an aluminium-bronze based running in layer on top. The materials were submerged in 25% ammonia solution for different time intervals up to 12 weeks, with a solution change every fourth week. After exposure to ammonia, the materials were tribologically tested in a reciprocal sliding test rig. The surfaces, both inside and outside of the wear tracks, were analysed with SEM and EDS, as well as with CSI. The chromium ceramic coating did not seem to get affected by, or interact chemically, with the ammonia solution. Exposing the material to ammonia did not seemingly affect the tribological properties. However, two different behaviours were observed when analysing the cermet coated samples with a running-in layer of aluminium-bronze. These samples reacted with the ammonia solution in two different ways, resulting in the series being split into two. In both cases precipitates were formed, but the colour changes of the solutions differed for the series. The coatings were also worn differently, as in one case a flattening effect was observed throughout all time intervals, whereas in the other case the worn volume and track depth seemed to increase with exposure to ammonia solution.

Page generated in 0.0307 seconds