111 |
Applied ecology of the Tasmanian lacewing Micromus tasmaniae Walker (Neuroptera : Hemerodiidae)Leathwick, D. M. January 1989 (has links)
The Tasmanian lacewing (Micromus tasmaniae Walker) is one of the most common aphid predators occurring in lucerne crops in New Zealand. A comparison of sampling techniques, and the output from a simulation model, suggest that the abundance of this lacewing may have been significantly underestimated in the past. Although the occurrence of aphid predators was erratic M. tasmaniae occurred more often and in far greater numbers (up to 100 m⁻²) than any other predator species. A simulation model for lacewing development in the field indicated that the large adult populations which occurred could be accounted for on the basis of reproductive recruitment. Independent evidence that immigration was not involved in the occurrence of these large populations was gathered using directional flight traps around the field perimeter. The major factors influencing lacewing population dynamics were the availability of aphid prey and, in the autumn, parasitism. Otherwise, survival of all life-histoty stages was high with no evidence of egg or larval cannibalism. Several instances of high lacewing mortality were identified by the model and the lack of any obvious cause for these highlights inadequacies in the understanding of lacewing bionomics. The model, which used a linear relationship (day-degrees) between development and temperature, was incapable of accurately predicting lacewing emergence under field temperatures which fluctuated outside the linear region of the development rate curve. Temperature thresholds and thermal requirements estimated under fluctuating temperatures similar to those in the field produced almost identical model output to those estimated under constant temperatures in the laboratory. Prey species was capable of influencing the rate of lacewing development. M. tasmaniae has the attributes necessary to produce large populations in the short time available between lucerne harvests. The asymptote of the functional response curve is low but the efficiency at converting aphids to eggs is high. Therefore, the lacewing is able to attain maximun reproductive output at low prey densities. A low temperature threshold for development (4-5° C), rapid development and short preoviposition period results in a short generation time (49 days at 15° C). Long adult life, high fecundity and the absence of any form of estivation or diapause, results in complete overlap of generations and multiple generations per year. M. tasmaniae's role as an aphid predator is restricted by its low appetite for prey and by the lucerne management regime currently practiced in New Zealand. Because it consumes relatively few aphids per day the lacewing's ability to destroy large aphid populations is limited. However, this may be offset by its ability to attack aphids early in the aphid population growth phase, and by the large numbers of lacewings which may occur. Under the present lucerne management schemes the large lacewing populations which do occur are forced out of the fields, or die, following harvest. A number of management options for increasing the lacewings impact as an aphid predator are briefly discussed.
|
112 |
Understorey management for the enhancement of populations of a leafroller (Lepidoptera: Tortricidae) parasitoid (Dolichogenidea tasmanica (Cameron)) in Canterbury, New Zealand apple orchardsIrvin, N. A. January 1999 (has links)
This study investigated understorey management in Canterbury, New Zealand, apple orchards for the enhancement of populations of Dolichogenidea tasmanica (Cameron) (Braconidae) for leafroller (Lepidoptera: Tortricidae) biological control. The first objective was to determine the influence of understorey plants on the abundance of D. tasmanica and leafroller parasitism, and to investigate the mechanisms behind this influence. The second was to determine the most suitable understorey plants in terms of their ability to enhance parasitoid abundance, leafroller parasitism, parasitoid longevity, parasitoid fecundity and its ability to not benefit leafroller. Results from three consecutive field trials showed that buckwheat (Fagopyrum esculentum Moench), coriander (Coriandrum sativum L.), alyssum (Lobularia maritima (L.) Desv), and, to a lesser extent, broad bean (Vicia faba L.), enhanced parasitoid abundance and leafroller parasitism. The mechanisms behind the effects of understorey plants had previously been unexplored. However, results here showed that it was the flowers or the buckwheat that 'attracted' the parasitoid to the plant and not the shelter, aphids or microclimate that the plant may also provide. Providing flowering plants in the orchard understorey also increased immigration of parasitoids and enhanced parasitoids and enhanced parasitoid longevity and fecundity in the laboratory. In contrast, the understorey plants had no influence on the female:male ratio of D. tasmanica. Although coriander enhanced leafroller parasitism three-fold in field experiments compared with controls, it failed to enhance the longevity of both sexes of D. tasmanica in the laboratory compared with water-only. Broad bean significantly enhanced parasitoid abundance three-fold and significantly increased parasitism from 0% to 75% compared with the controls on one leafroller release date. However, laboratory trials showed that of male D. tasmancia but it did not enhance female longevity. Also, female D. tasmanica foraging on broad bean produced a total of only three parasitoid cocoons, but this result was based on an overall 6.5% survival of larvae to pupae or to parasitoid cocoon. Furthermore, results suggested that extrafloral nectar secretion decreased as the plants matured. Phacelia (Phacelia tanacetifolia Benth.) did not significantly enhance parasitism rate in the field compared with controls, and numbers of D. tasmanica captured by suction sampling were significantly lower in phacelia treatments compared with alyssum, buckwheat and control plots. Also, laboratory experiments showed that survival of D. tasmanica on phacelia flowers was equivalent to that on water-only and significantly lower than on buckwheat. These results suggest that phacelia does not provide nectar to D. tasmanica, only pollen, and therefore is not a suitable understorey plant for D. tasmanica enhancement in orchards. Buckwheat and alyssum showed the most potential as understorey plants for the enhancement of natural enemies. Buckwheat not only increased numbers of D. tasmanica seven-fold, but also increased numbers of beneficial lacewings (Micromus tasmaniae (Walker)) and hover flies (Syrphidae) captured on yellow sticky traps compared with the controls. It significantly increased leafroller parasitism by D. tasmanica from 0% to 86% compared with the controls (on one date only), and in the laboratory enhanced D. tasmanica longevity and increased fecundity compared with water-only. Similarly, alyssum significantly increased parasitism rate compared with controls, and two-fold more D. tasmanica were suction sampled in these plots compared with controls. It also enhanced longevity of both sexes of D. tasmanica compared with water, and showed the most favourable characteristics in terms of being of no benefit to leafrollers. This is because it was not preferred over apple by leafroller larvae and when they were forced to feed on it, it caused high mortality (94.3%) and low pupal weight (15 mg). Furthermore, alyssum did not enhance the number of fertile eggs produced by adult leafrollers compared with water only. However, further research is required to address the overall effect of buckwheat and alyssum on crop production and orchard management, including effects on fruit yield and quality, frost risk, disease incidence, soil quality, weeds and other pests. Also, research into the ability of these plants to survive in the orchard with little maintenance, and into the optimal sowing rates, would be useful. Sampling natural populations of leafroller within each treatment showed that damage from leafrollers and the number of leafroller larvae were respectively 20.3% and 29.3% lower in the flowering treatments compared with the controls. Furthermore, field trials showed up to a six-fold increase in leafroller pupae in controls compared with buckwheat and alyssum. This suggests that increasing leafroller parasitism rate from understorey management in orchards will translate into lower pest populations, although neither larval numbers/damage nor pupal numbers differed significantly between treatments. Trapping D. tasmanica at a gradient of distances showed that this parasitoid travels into rows adjacent to buckwheat plots, indicating that growers may be able to sow flowering plants in every second or third row of the orchard, and still enhance leafroller biocontrol while minimising the adverse effects of a cover crop. Sowing buckwheat and alyssum in orchard understoreys may enhance biological control of apple pests in organic apple production and reduce the number of insect growth regulators applied in IFP programmes. However, the challenge still remains to investigate whether conservation biological control can reduce leafroller populations below economic thresholds.
|
113 |
An evaluation of Solanum nigrum and S. physalifolium biology and management strategies to reduce nightshade fruit contamination of process pea cropsBithell, S. L. January 2004 (has links)
The contamination of process pea (Pisum sativum L.) crops by the immature fruit of black nightshade (Solanum nigrum L.) and hairy nightshade (S. physalifolium Rusby var. nitidibaccatum (Bitter.) Edmonds) causes income losses to pea farmers in Canterbury, New Zealand. This thesis investigates the questions of whether seed dormancy, germination requirements, plant growth, reproductive phenology, or fruit growth of either nightshade species reveal specific management practices that could reduce the contamination of process peas by the fruit of these two weeds. The seed dormancy status of these weeds indicated that both species are capable of germinating to high levels (> 90%) throughout the pea sowing season when tested at an optimum germination temperature of 20/30 °C (16/8 h). However, light was required at this temperature regime to obtain maximum germination of S. nigrum. The levels of germination in the dark at 20/30 °C and at 5/20 °C, and in light at 5/20 °C, and day to 50 % germination analyses indicated that this species cycled from nondormancy to conditional dormancy throughout the period of investigation (July to December 2002). For S. physalifolium, light was not a germination requirement, and dormancy inhibited germination at 5/20 °C early in the pea sowing season (July and August). However, by October, 100% of the population was non-dormant at this test temperature. Two field trials showed that dark cultivation did not reduce the germination of either species. Growth trials with S. nigrum and S. physalifolium indicated that S. physalifolium, in a non-competitive environment, accumulated dry matter at a faster rate than S. nigrum. However, when the two species were grown with peas there was no difference in dry matter accumulation. Investigation of the flowering phenology and fruit growth of both species showed that S. physalifolium flowered (509 °Cd, base temperature (Tb) 6 °C) approximately 120 °Cd prior to S. nigrum (633 °Cd). The fruit growth rate of S. nigrum (0.62 mm/d) was significantly faster than the growth rate of S. physalifolium (0.36 mm/d). Because of the earlier flowering of S. physalifolium it was estimated that for seedlings of both species emerging on the same date that S. physalifolium could produce a fruit with a maximum diameter of 3 mm ~ 60 °Cd before S. nigrum. Overlaps in flowering between peas and nightshade were examined in four pea cultivars, of varying time to maturity, sown on six dates. Solanum physalifolium had the potential to contaminate more pea crops than S. nigrum. In particular, late sown peas were more prone to nightshade contamination, especially late sowings using mid to long duration pea cultivars (777-839 °Cd, Tb 4.5 °C). This comparison was supported by factory data, which indicated that contamination of crops sown in October and November was more common than in crops sown in August and September. Also, cultivars sown in the later two months had an ~ 100 °Cd greater maturity value than cultivars sown in August and September. Nightshade flowering and pea maturity comparisons indicated that the use of the thermal time values for the flowering of S. nigrum and S. physalifolium can be used to calculate the necessary weed free period required from pea sowing in order to prevent the flowering of these species. The earlier flowering of S. physalifolium indicates that this species is more likely to contaminate pea crops than is S. nigrum. Therefore, extra attention may be required where this species is present in process pea crops. The prevention of the flowering of both species, by the maintenance of the appropriate weed free period following pea sowing or crop emergence, was identified as potentially, the most useful means of reducing nightshade contamination in peas.
|
114 |
Microbial factors associated with the natural suppression of take-all wheat in New ZealandChng, Soon Fang January 2009 (has links)
Take-all, caused by the soilborne fungus, Gaeumannomyces graminis var. tritici (Ggt), is an important root disease of wheat that can be reduced by take-all decline (TAD) in successive wheat crops, due to general and/or specific suppression. A study of 112 New Zealand wheat soils in 2003 had shown that Ggt DNA concentrations (analysed using real-time PCR) increased with successive years of wheat crops (1-3 y) and generally reflected take-all severity in subsequent crops. However, some wheat soils with high Ggt DNA concentrations had low take-all, suggesting presence of TAD. This study investigated 26 such soils for presence of TAD and possible suppressive mechanisms, and characterised the microorganisms from wheat roots and rhizosphere using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). A preliminary pot trial of 29 soils (including three from ryegrass fields) amended with 12.5% w/w Ggt inoculum, screened their suppressiveness against take-all in a growth chamber. Results indicated that the inoculum level was too high to detect the differences between soils and that the environmental conditions used were unsuitable. Comparison between the Ggt DNA concentrations of the same soils collected in 2003 and in 2004 (collected for the pot trial), showed that most soils cropped with 2, 3 and 4 y of successive wheat had reduced Ggt DNA concentrations (by 195-2911 pg g-1 soil), and their disease incidences revealed 11 of the 29 test soils with potential take-all suppressiveness. Further pot trials improved the protocols, such that they were able to differentiate the magnitudes of suppressiveness among the soils. The first of the subsequent trials, using 4% w/w Ggt inoculum level, controlled conditions at 16°C, 80% RH with alternate 12 h light/dark conditions, and watering the plants twice weekly to field capacity (FC), screened 13 soils for their suppressiveness against take-all. The 13 soils consisted of 11 from the preliminary trial, one wheat soil that had been cropped with 9 y of wheat (considered likely to be suppressive), and a conducive ryegrass soil. The results revealed that 10 of these soils were suppressive to take-all. However, in only four of them were the effects related to high levels of microbial/biological involvement in the suppression, which were assessed in an experiment that first sterilised the soils. In a repeat trial using five of the soils H1, H3, M2, P7 (previously cropped with 3, 3, 4 and 9 y successive wheat, respectively) and H15 (previously cropped with 5 y of ryegrass), three of them (H1, H3 and M2) had reduced Ggt DNA concentrations (>1000 pg g-1 soil reductions), and were confirmed to be suppressive to take-all. A pot trial, in which 1% of each soil was transferred into a γ-irradiated base soil amended with 0.1% Ggt inoculum, indicated that soils H1 and H3 (3 y wheat) were specific in their suppressiveness, and M2 (4 y wheat) was general in its suppressiveness. The microbial communities within the rhizosphere and roots of plants grown in the soils, which demonstrated conduciveness, specific or general suppressiveness to take-all, were characterised using PCR-DGGE, and identities of the distinguishing microorganisms (which differentiated the soils) identified by sequence analysis. Results showed similar clusters of microorganisms associated with conducive and suppressive soils, both for specific and general suppression. Further excision, re-amplification, cloning and sequencing of the distinguishing bands showed that some actinomycetes (Streptomyces bingchengensis, Terrabacter sp. and Nocardioides sp.), ascomycetes (Fusarium lateritium and Microdochium bolleyi) and an unidentified fungus, were associated with the suppressive soils (specific and general). Others, such as the proteobacteria (Pseudomonas putida and P. fluorescens), an actinomycete (Nocardioides oleivorans), ascomycete (Gibberella zeae), and basidiomycete (Penicillium allii), were unique in the specific suppressiveness. This indicated commonality of some microorganisms in the take-all suppressive soils, with a selected distinguishing group responsible for specific suppressiveness. General suppressiveness was considered to be due to no specific microorganisms, as seen in soil M2. An attempt to induce TAD by growing successive wheat crops in pots of Ggt-infested soils was unsuccessful with no TAD effects shown, possibly due to variable Ggt DNA concentrations in the soils and addition of nutrients during the experiment. Increasing numbers of Pseudomonas fluorescens CFU in the rhizosphere of plants, during successive wheat crops was independent of the Ggt DNA concentrations and disease incidence, suggesting that increases in P. fluorescens numbers were associated with wheat monoculture. This study has demonstrated that TAD in New Zealand was due to both specific and general suppressiveness, and has identified the distinguishing microorganisms associated with the suppression. Since most of these distinguishing microorganisms are known to show antagonistic activities against Ggt or other soilborne pathogens, they are likely to act as antagonists of Ggt in the field. Future work should focus on validating their effects either individually, or interactively, on Ggt in plate and pot assays and under field conditions.
|
115 |
Phenology of hazelnut big bud mites in Canterbury and implications for managementWebber, J. D. January 2007 (has links)
Eriophyoid big bud mites are key pests of hazelnuts throughout the world, although little is known of the identity and impact of the species on New Zealand hazelnut crops. The key objectives of this study were to determine the species of mite present on New Zealand crops, explore a method of monitoring mite emergence from overwintering big buds, determine the phenology of mites in relation to tree phenology and weather, and identify the optimum timing for control measures. The presence of both Phytoptus avellanae (Nalepa 1889) (Acari: Phytoptidae) and Cecidophyopsis vermiformis (Nalepa 1889) (Acari: Eriophyidae) was confirmed, the latter species being a new record for New Zealand. Preliminary diagnostic DNA sequences were determined for both species. A sticky band technique was developed to monitor mite emergence from overwintering big buds, and mite emergence was found to occur between early and late spring. Mite emergence and movement occurred when daily temperatures were greater than 15 degrees C and when mean temperatures were greater than 9 degrees C, with mite emergence increasing with temperature. It proved difficult to relate the phenology of hazelnut to mite emergence, however, the development of new buds during mite emergence was a crucial factor in the infestation of new buds. An accumulated heat sum model (DD), started at Julian date 152 and using a lower threshold temperature of 6 degrees C, predicted the onset of emergence on two cultivars and at two sites as occurring at approximately 172 DD. A regression model based on leaf number, bud height, bud width, DD and Julian date provided a more satisfactory prediction of percent accumulated mite emergence. It is recommended both peak mite emergence and the appearance of hazelnut buds should be used to optimise the time to apply control measures. Therefore, a control should be applied before buds measure 0.5 x 0.5 mm (width x height), are enclosed within the axil, and have a rounded tip, or, when 50% accumulated mite emergence has occurred, which ever occurs first. A preliminary field experiment tested the application of sulphur (40 g/10 litres of 800 g/kg No Fungus Super Sulphur) at 2, 50 and 80% accumulated mite emergence. The greatest reduction in mite numbers was achieved with an application at approximately 50% emergence. Considerable variation in mite emergence occurred between years, therefore optimum timing of controls would need to be determined by monitoring mites, new buds and weather conditions each year. Field collection of mites also identified the presence of Typhlodromus doreenae Schicha (Acari: Phytoseiidae) which would warrant further study for inclusion in an integrated mite control programme.
|
116 |
Understorey management for the enhancement of populations of a leafroller (Lepidoptera: Tortricidae) parasitoid (Dolichogenidea tasmanica (Cameron)) in Canterbury, New Zealand apple orchardsIrvin, N. A. January 1999 (has links)
This study investigated understorey management in Canterbury, New Zealand, apple orchards for the enhancement of populations of Dolichogenidea tasmanica (Cameron) (Braconidae) for leafroller (Lepidoptera: Tortricidae) biological control. The first objective was to determine the influence of understorey plants on the abundance of D. tasmanica and leafroller parasitism, and to investigate the mechanisms behind this influence. The second was to determine the most suitable understorey plants in terms of their ability to enhance parasitoid abundance, leafroller parasitism, parasitoid longevity, parasitoid fecundity and its ability to not benefit leafroller. Results from three consecutive field trials showed that buckwheat (Fagopyrum esculentum Moench), coriander (Coriandrum sativum L.), alyssum (Lobularia maritima (L.) Desv), and, to a lesser extent, broad bean (Vicia faba L.), enhanced parasitoid abundance and leafroller parasitism. The mechanisms behind the effects of understorey plants had previously been unexplored. However, results here showed that it was the flowers or the buckwheat that 'attracted' the parasitoid to the plant and not the shelter, aphids or microclimate that the plant may also provide. Providing flowering plants in the orchard understorey also increased immigration of parasitoids and enhanced parasitoids and enhanced parasitoid longevity and fecundity in the laboratory. In contrast, the understorey plants had no influence on the female:male ratio of D. tasmanica. Although coriander enhanced leafroller parasitism three-fold in field experiments compared with controls, it failed to enhance the longevity of both sexes of D. tasmanica in the laboratory compared with water-only. Broad bean significantly enhanced parasitoid abundance three-fold and significantly increased parasitism from 0% to 75% compared with the controls on one leafroller release date. However, laboratory trials showed that of male D. tasmancia but it did not enhance female longevity. Also, female D. tasmanica foraging on broad bean produced a total of only three parasitoid cocoons, but this result was based on an overall 6.5% survival of larvae to pupae or to parasitoid cocoon. Furthermore, results suggested that extrafloral nectar secretion decreased as the plants matured. Phacelia (Phacelia tanacetifolia Benth.) did not significantly enhance parasitism rate in the field compared with controls, and numbers of D. tasmanica captured by suction sampling were significantly lower in phacelia treatments compared with alyssum, buckwheat and control plots. Also, laboratory experiments showed that survival of D. tasmanica on phacelia flowers was equivalent to that on water-only and significantly lower than on buckwheat. These results suggest that phacelia does not provide nectar to D. tasmanica, only pollen, and therefore is not a suitable understorey plant for D. tasmanica enhancement in orchards. Buckwheat and alyssum showed the most potential as understorey plants for the enhancement of natural enemies. Buckwheat not only increased numbers of D. tasmanica seven-fold, but also increased numbers of beneficial lacewings (Micromus tasmaniae (Walker)) and hover flies (Syrphidae) captured on yellow sticky traps compared with the controls. It significantly increased leafroller parasitism by D. tasmanica from 0% to 86% compared with the controls (on one date only), and in the laboratory enhanced D. tasmanica longevity and increased fecundity compared with water-only. Similarly, alyssum significantly increased parasitism rate compared with controls, and two-fold more D. tasmanica were suction sampled in these plots compared with controls. It also enhanced longevity of both sexes of D. tasmanica compared with water, and showed the most favourable characteristics in terms of being of no benefit to leafrollers. This is because it was not preferred over apple by leafroller larvae and when they were forced to feed on it, it caused high mortality (94.3%) and low pupal weight (15 mg). Furthermore, alyssum did not enhance the number of fertile eggs produced by adult leafrollers compared with water only. However, further research is required to address the overall effect of buckwheat and alyssum on crop production and orchard management, including effects on fruit yield and quality, frost risk, disease incidence, soil quality, weeds and other pests. Also, research into the ability of these plants to survive in the orchard with little maintenance, and into the optimal sowing rates, would be useful. Sampling natural populations of leafroller within each treatment showed that damage from leafrollers and the number of leafroller larvae were respectively 20.3% and 29.3% lower in the flowering treatments compared with the controls. Furthermore, field trials showed up to a six-fold increase in leafroller pupae in controls compared with buckwheat and alyssum. This suggests that increasing leafroller parasitism rate from understorey management in orchards will translate into lower pest populations, although neither larval numbers/damage nor pupal numbers differed significantly between treatments. Trapping D. tasmanica at a gradient of distances showed that this parasitoid travels into rows adjacent to buckwheat plots, indicating that growers may be able to sow flowering plants in every second or third row of the orchard, and still enhance leafroller biocontrol while minimising the adverse effects of a cover crop. Sowing buckwheat and alyssum in orchard understoreys may enhance biological control of apple pests in organic apple production and reduce the number of insect growth regulators applied in IFP programmes. However, the challenge still remains to investigate whether conservation biological control can reduce leafroller populations below economic thresholds.
|
117 |
Epidemiological aspects of MBC resistance in Monilinia fructicola (Wint.) Honey and mechanisms of resistanceSanoamuang, Niwat January 1992 (has links)
Isolates of Monilinia fructicola (Wint.) Honey obtained from stone fruit orchards in Hawkes Bay, North Island and from Californian fruit exported to New Zealand, were tested for resistance to methyl benzimidazole carbamate (MBC). Resistant isolates from the North Island had EC₅₀ values of >30,000, and most isolates from the imported fruit had of values approximately 1.5 mg a.i./l carbendazim. Sensitive isolates failed to grow on 1 mg a.i./l carbendazim. A detached peach shoot system was used in controlled conditions for estimation of values for incubation period, latent period and rate of spore production on flowers (cv Glohaven). The same variables and the rate of colonisation of host tissue were measured on fruit (cv Fantasia) in controlled conditions. An inoculum density of 1x10⁴ spore/flower or fruit greatly increased fitness in vivo compared to an inoculum density of 1x10² spore/flower (fruit). Isolates varied considerably, but there was no consistent relationship between the degrees of resistance and fitness. This was in contrast to earlier studies with dicarboximide resistant strains of M. fructicola. The survival in the field of 10 isolates resistant or sensitive to MBC or dicarboximide fungicides on twig cankers and mummified fruit was compared. The ability to produce conidia on twig cankers inoculated in late spring 1989 was maintained by all sensitive and MBC resistant isolates for at least 1 year. The production of conidia on mummified fruit inoculated in February 1990 decreased after 2-3 months in the field but some conidia were still produced on all fruit in the following spring. Dicarboximide resistant isolates produced less conidia than either the MBC resistant and the sensitive isolates. The pathogenicity and fitness of all isolates were similar to the original values after survival for 1 year. A technique was developed to produce apothecia reliably from inoculated peach (cv Black Boy) and nectarine (cv Fantasia) fruit in controlled conditions in the laboratory. The fruit were inoculated with resistant or sensitive isolates, or combinations, and were incubated for 8 weeks at 25°C (±1°C) with 12 hours photoperiod of fluorescent light (Sylvania 2x65 W, daylight) to produce mummified fruit. The fruit were then buried in moist autoclaved peat moss for 10 weeks at 25°C (±1°C) in the dark to form stromata. These fruit were then hydrated with running tap-water (total hardness (CaCO₃) = 47 g/m³ and conductivity at 20°C = 12.7 mS/m) for 72 hours. The hydrated mummified fruit were placed in moist peat moss and were incubated for 13-14 weeks at 8°C (±0.5°C) in the dark. At the end of this period, stipe initials were visible. Differentiation of stipe initials into mature apothecia occurred within 15-20 days after transfer to 12°C (±2 °C) with a 12 hour photoperiod of fluorescent and incandescent light. All isolates produced apothecia when treated in this way. A technique for isolation of ascospore sets in linear arrangement was developed for tetrad analysis of the inheritance of resistance. At least 3 hours of fluorescent and incandescent light at 12°C (±2°C) was essential to allow ascospore ejection from individual asci taken from apothecia previously maintained in a 12 hour photoperiod at 12°C (±1°C). A water film on the surface of water agar was necessary to hold a set of ejected ascospores in linear sequence. Single ascospores were obtained in sequence with the aid of a micromanipulator. Genetic analysis of MBC resistant isolates was carried out on ascospores derived from apothecia produced in the laboratory. Analysis of ascospore sets in linear arrangement and ascospore populations indicated that resistance to >30,000 mg a.i./l carbendazim (high-resistant) is governed by a single major gene and is affected by gene conversion mechanisms. Crossing over was frequent, suggesting that recombination of resistance with other characters, such as pathogenicity and fitness, may occur readily. The segregation ratio (1:1) from most resistant isolates revealed that heterokaryons containing both resistant and sensitive alleles were common in resistant populations and that resistance is dominant. Allozyme analysis of ascospore progeny through electrophoresis revealed a narrow genetic base of M. fructicola in New Zealand. The technique for reliable apothecial production in controlled conditions developed in this study provided an important step for the determination of the biology of M. fructicola strains resistant to MBC fungicides, and the complexity of its life cycle. Genetic heterogeneity in field populations can be conserved in one isolate through heterokaryosis, thus providing for adaptability of the pathogen to the changing environmental conditions. Knowledge on genetic variability, overwintering ability, pathogenicity and fitness factors may be useful for future management strategies of stone fruit brown rot. Special emphasis should be made in particular to prevent primary infection on blossoms, which would delay the establishment of recombinant strains of M. fructicola and the onset of brown rot epidemics.
|
118 |
Metapopulation theory in practiceKean, J. M. January 1999 (has links)
A metapopulation is defined as a set of potential local populations among which dispersal may occur. Metapopulation theory has grown rapidly in recent years, but much has focused on the mathematical properties of metapopulations rather than their relevance to real systems. Indeed, barring some notable exceptions, metapopulation theory remains largely untested in the field. This thesis investigates the importance of metapopulation structure in the ‘real world’, firstly by building additional realism into metapopulation models, and secondly through a 3-year field study of a real metapopulation system. The modelling analyses include discrete-and continuous-time models, and cover single species, host-parasitoid, and disease-host systems, with and without stochasticity. In all cases, metapopulation structure enhanced species persistence in time, and often allowed long-term continuance of otherwise non-persistent interactions. Spatial heterogeneity and patterning was evident whenever local populations were stochastic or deterministically unstable in isolation. In metapopulations, the latter case often gave rise to self-organising spatial patterns. These were composed of spiral wave fronts (or ‘arcs of infection’ in disease models) of different sizes, and were related to the stability characteristics of local populations as well as the dispersal rates. There was no evidence for self-organising spatial patterns in the host-parasitoid system studied in the field (the weevil Sitona discoideus and its braconid parasitoid Microctonus aethiopoides), and a new model for the interaction suggested that this is probably due to the strong host density-dependence and stabilising parasitism acting on local populations. Dispersal may be important because of very high mortality in dispersing weevils, which may be related to the scarcity of their host plant in the landscape. If this is the case, the model suggested that local weevil density may be sensitive to the area of crop grown. Stochastic models showed that species in suitably large metapopulations may persist for very long times at relatively low overall density and with very low incidence of density-dependence. This suggests that metapopulation processes may explain a general inability to detect density-dependence in many real populations, and may also play an important part in the persistence of rare species. For host-parasitoid metapopulation models, persistence often depended on the way in which they were initialised. Initial conditions corresponding to a biological control release were the least likely to persist, and the maximum host suppression observed in this case was 84%, as compared with 60% for the corresponding non-spatial models and >90% often observed in the field. Metapopulation structure also allowed persistence of ‘boom-bust’ disease models, although the dynamics of these were particularly dependent on assumptions about what happens to disease classes at very low densities. Models assuming infinitely divisible units of density, models incorporating a non-zero extinction threshold, and individual-based models all gave differing results in terms of disease persistence and rate of spatial spread. Fitting models to overall metapopulation dynamics often gave misleading results in terms of underlying local dynamics, emphasising the need to sample real populations at an appropriate scale when seeking to understand their behaviour.
|
119 |
A study of the growth and development of yarrow (Achillea millefolium L.)Bourdot, G. W. January 1980 (has links)
The response of yarrow (Achillea millefolium L.) seedlings to reduced light, interference from barley (Hordeum vulgare) and some aspects of regeneration from rhizomes were the subject of investigations from 1976 until 1980. Seedlings grown under four intensities of photosynthetically active radiation (100, 46.8, 23.7 and 6.4% of full summer daylight) were harvested on six occasions and the changes with time in the logarithms of leaf area, leaf, stem, root and total dry weights per plant were described by polynomial regression equations. Relative growth (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf weight ratio (LWR) were derived directly from the growth curves. SLA and LWR increased with increased shading causing LAR to rise, while NAR declined. Response curves of RGR on light intensity, derived from linear regressions of LAR and NAR on the logarithm of relative light intensity predicted maximum RGR to occur at light intensities which decreased with time. This was a consequence of ontogenetic changes in LAR, and changes in NAR apparently related to self shading. Linear regressions of LAR and NAR at a constant total plant dry weight of 1.62 g showed that the increase in LAR almost completely compensated for the reduction in NAR down to approximately 40% full daylight, and maximum RGR was predicted to occur at 59% full daylight. The light compensation point was estimated to be 3.6% full daylight. Yarrow populations established from 25 and 50 10 cm rhizome fragments m⁻² were grown alone and with barley at 194 or 359 plants m⁻². The barley populations were also grown alone. Growth analysis employing the regression technique showed the RGR of yarrow was reduced by barley from before jointing (Feekes Scale, Stage 6) as a consequence of reduced NAR. The NAR of yarrow was significantly reduced in the continued presence of barely, which by the time of the final barely harvest resulted in 91 and 94% reduction in the accumulated yarrow dry matter at 194 and 359 barely plants m⁻² respectively. The proportion of total dry matter allocated to seed and rhizome was also reduced by barley but the barley was unaffected by the yarrow. During the autumn and early winter, after removal of the barley, the suppressed yarrow had a higher RGR than the unsuppressed population, owing to higher LAR and NAR. Rhizome growth was vigorous during both autumn and winter in all yarrow populations, but the RGR of rhizome dry matter was higher in the suppressed yarrow during the autumn. This resulted in a progressive reduction in the difference in rhizome dry matter between suppressed and unsuppressed populations. Several aspects of the development and regenerative potential of rhizomes were investigated. In the first experiment, plants were established from seed and rhizome fragments and harvested on several occasions. Plants from both propagules formed rhizomes on which approximately 97% of auxiliary buds remained dormant, as long as the plants were undisturbed. Buds on rhizomes attached to the parent plant formed rhizome branches when the apex was damaged, had emerged from the soil, or in situations where internodes were congested. In the second experiment, rhizome fragments of 4, 8 and 16 cm in length were planted in soil at depths of 0, 2.5, 5.0, 10.0, 20.0 and 30.0 cm. All fragments on the soil surface died without forming shoots owing to desiccation whilst 100% mortality at 20 and 30 cm was probably the result of flooding. Within the 2.5 to 10.0 cm range, an increasing percentage of fragments survived (produced an aerial shoot(s)) as burial depth was reduced and fragment length increased. Within this depth range, the percentage of buds which had become active on undecayed fragments declined with increased length and burial depth. In the third experiment, single-node rhizome pieces were excised from rhizomes retrieved from field populations over a one year period, and incubated at 25°C for 10 days in darkness. More than 90% of buds formed vertical shoots throughout the year, indicating there was no period of innate dormancy in isolated buds. The effect of time of planting on the pattern of early regenerative development was assessed in the fourth experiment, in which 10 cm rhizome fragments were planted at 5 cm depth in soil on two occasions (in November and April). The developmental pattern was the same regardless of month of planting and new rhizomes were initiated at nodes on the vertical subterranean shoots when 5 to 6 aerial leaves had developed. The planted rhizome fragments declined in dry weight and a minimum weight occurred at about the time when rhizome initiation began.
|
120 |
Development of a mass rearing technique for the Tasmanian brown lacewing, Micromus tasmaniae WalkerSimeonidis, Andrew January 1995 (has links)
Aphids are one of the most important insect pests of greenhouse crops yet to be controlled by biological means. Broad spectrum chemical control is becoming increasingly difficult to use in integrated pest management programmes, therefore, there is a need for a suitable biocontrol agent to be mass reared and released. The Tasmanian brown lacewing, Micromus tasmaniae Walker is an aphid predator that is found commonly throughout Australasia and has suitable characteristics that make it a candidate for mass rearing. A technique for rearing M. tasmaniae was developed. Eggs of M. tasmaniae were reared in batches of 50, 100 and 200 in 20 litre clear plastic containers. The oat aphid, Rhopalosiphum padi L. was fed to the larvae. The results revealed that the highest initial egg density (200 eggs per container) produced the cheapest adults at 22 cents per adult. However, mass rearing adults was considered not practical because of the high production cost, although, mass production of eggs is considered to be economically viable. The cost of producing one egg was 0.015 cents. M tasmaniae was maintained in mass culture for six generations. Simple experiments were carried out to monitor the quality of laboratory-reared insects. The 'wild' insect was used as a quality standard and comparisons with laboratory-reared insect populations were made. The fecundity, development rates and tolerance to pirimicarb, a carbamate insecticide, were determined. Fecundity was found to decline with successive generations in mass culture. The lacewing development experiment indicated that larval stages of each generation suffered the highest mortality rate and that between 35-45% of individuals emerged as adults. The tolerance of adults to pirimicarb did not alter over five generations. Recommendations for improving the mass rearing of M. tasmaniae are discussed.
|
Page generated in 0.0924 seconds