• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 36
  • 22
  • 10
  • 9
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 263
  • 61
  • 61
  • 46
  • 46
  • 44
  • 30
  • 30
  • 29
  • 29
  • 29
  • 28
  • 25
  • 24
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Periodic Plasmonic Nanoantennas in a Piecewise Homogeneous Background

Siadat Mousavi, Saba January 2012 (has links)
Optical nanoantennas have raised much interest during the past decade for their vast potential in photonics applications. This thesis investigates the response of periodic arrays of nanomonopoles and nanodipoles on a silicon substrate, covered by water, to variations of antenna dimensions. These arrays are illuminated by a plane wave source located inside the silicon substrate. Modal analysis was performed and the mode in the nanoantennas was identified. By characterizing the properties of this mode certain response behaviours of the system were explained. Expressions are offered to predict approximately the resonant length of nanomonopoles and nanodipoles, by accounting for the fringing fields at the antenna ends and the effects of the gap in dipoles. These expressions enable one to predict the resonant length of nanomonopoles within 20% and nanodipoles within 10% error, which significantly facilitates the design of such antennas for specific applications.
32

The effect of electron-hole pairs in semiconductor and topological insulator nanostructures on plasmon resonances and photon polarizations.

Paudel, Hari 01 January 2014 (has links)
The generation of electron-hole pairs in materials has great importance. In direct bandgap semiconductor materials, the mechanism of radiative recombination of electron-hole pairs leads to the emission of photons, which is the basis of Light Emitting Diodes (LEDs). The excitation of electron-hole pairs by absorption of photons is the active process in photodiodes, solar cells, and other semiconductor photodetector devices. In optoelectronic devices such as optical switches which are based on transmission and reflection of the photons, electron-hole pairs excitation is a key for the device performance. Diodes and transistors are also great discoveries in electronics which rely on the generation and recombination of electron-hole pairs at p-n junctions. In three-dimensional topological insulators (3D TIs) materials nanostructures excitation of electron-hole pairs can be utilized for the quantum memory, quantum information and quantum teleportation. In two-dimensional (2D) layered materials like graphene, MoS2, MoSe2, WS2 and WSe2 generation and recombination of electron hole pairs is main process at p-n junctions, infrared detectors and sensors. This PhD thesis is concerned with the physics of different types of electron-hole pairs in various materials, such as wide-bandgap semiconductors, 3D topological insulators, and plasmonic excitations in metallic nanostructures. The materials of interest are wide bandgap semiconductors such as TiO2 , 3D TIs such as Pb1-xSnxTe and the 2D layered materials such as MoS2 and MoO3. We study the electronic and optical properties in bulk and nanostructures and find applications in the area of semiclassical and quantum information processing. One of the interesting applications we focus in this thesis is shift in surface plasmon resonance due to reduction in index of refraction of surrounding dielectric environment which in turns shifts the wavelength of surface plasmon resonance up to 125 nm for carrier density of 10^22/cm^3. Employing this effect, we present a model of a light controlled plasmon switching using a hybrid metal-dielectric heterostructures. In 3D TIs nanostructures, the time reversible spin partners in the valence and conduction band can be coupled by a left and a right handed circular polarization of the light. Such coupling of light with electron-hole pair polarization provides an unique opportunity to utilize 3D TIs in quantum information processing and spintronics devices. We present a model of a 3D TI quantum dot made of spherical core-bulk heterostructure. When a 3D TI QD is embedded inside a cavity, the single-photon Faraday rotation provides the possibility to implement optically mediated quantum teleportation and quantum information processing with 3D TI QDs, where the qubit is defined by either an electron-hole pair, a single electron spin, or a single hole spin in a 3D TI QD. Due to excellent transport properties in single and multiple layers of 2D layered materials, several efforts have demonstrated the possibility to engineer electronic and optoelectronic devices based on MoS2. In this thesis, we focus on theoretical and experimental study of electrical property and photoluminescence tuning, both in a single-layer of MoS2.We present theoretical analysis of experimental results from the point of view of stability of MoO3 defects in MoS2 single layer and bandstructures calculation. In experiment, the electrical property of a single layer of MoS2 can be tuned from semiconducting to insulating regime via controlled exposure to oxygen plasma. The quenching of photoluminescence of a single sheet of MoS2 has also been observed upon exposure to oxygen plasmas. We calculate the direct to indirect band gap transitions by going from MoS2 single sheet to MoO3 single sheet during the plasma exposure, which is due to the formation of MoO3 rich defect domains inside a MoS2 sheet.
33

Plasmonic Nanomaterials for Biosensing, Optimizations and Applications

He, Jie 29 May 2018 (has links)
No description available.
34

Hybrid nanoplasmonic-nanophotonic devices for on-chip biochemical sensing and spectroscopy

Chamanzar, Maysamreza 27 August 2012 (has links)
Hybrid plasmonic-photonic structures were introduced as novel platforms for on-chip biochemical sensing and spectroscopy. By appropriate coupling of photonic and plasmonic modes, a hybrid architecture was realized that can benefit from the advantages of integrated photonics such as the low propagation loss, ultra-high Q modes, and robustness, as well as the advantages of nanoplasmonics such as extreme light localization, large sensitivities, and ultra-high field enhancements to bring about unique performance advantages for efficient on-chip sensing. These structures are highly sensitive and can effectively interact with the target biological and chemical molecules. It was shown that interrogation of single plasmonic nanoparticles is possible using a hybrid waveguide and microresonator-based structure, in which light is efficiently coupled from photonic structures to the integrated plasmonic structures. The design, implementation, and experimental demonstration of hybrid plasmonic-photonic structures for lab-on-chip biochemical sensing applications were discussed. The design goal was to achieve novel, robust, highly efficient, and high-throughput devices for on-chip sensing. The sensing scenarios of interest were label-free refractive index sensing and SERS. Nanofabrication processes were developed to realize the hybrid plasmonic-photonic structures. Silicon nitride was used as the material platform to realize the integrated photonic structure, and gold was used to realize plasmonic nanostructures. Special optical characterization setups were designed and implemented to test the performance of these nanoplasmonic and nanophotonic structures. The integration of the hybrid plasmonic-photonic structures with microfluidics was also optimized and demonstrated. The hybrid plasmonic-photonic-fluidic structures were used to detect different analytes at different concentrations. A complete course of research from design, fabrication, and characterization to demonstration of sensing applications was conducted to realize nanoplasmonic and integrated photonic structures. The novel structures developed in this research can open up new potentials for biochemical sensors with advanced on-chip functionalities and enhanced performances.
35

Emission and Dynamics of Charge Carriers in Uncoated and Organic/Metal Coated Semiconductor Nanowires

Kaveh Baghbadorani, Masoud 10 October 2016 (has links)
No description available.
36

Nanoplasmonics: properties and applications in photocatalysis, antimicrobials and surface-enhanced Raman spectroscopy

An, Xingda 30 September 2022 (has links)
Localized surface plasmon resonance (LSPR) describes the collective oscillation of conductive electrons in noble metal nanostructures, such as gold, silver and copper; or in selected doped semiconductor nanocrystals. Nanoplasmonics is emerging as a useful and versatile platform that combines the intense and highly tunable optical responses derived from LSPR with the intriguing materials properties at the nanoscale, including high specific surface areas, surface and chemical reactivity, binding affinity, and rigidity. LSPRs in plasmonic nanoparticles (NPs) can provide large optical cross-sections, and can lead to a wide variety of subsequent photophysical responses, such as localization of electric (E-)fields, production of plasmonic hot charge carriers, photothermal heating, etc. Plasmonic NPs can also be combined with other molecular or nanoscale systems into plasmonic heterostructures to further harvest the resonant E-field enhancement or to prolong the lifetime of plasmonic charge carriers. In this dissertation, we study the photophysical properties of plasmonic Ag and Au NPs, particularly E-field localization and hot charge carrier production performances; and illustrate how they can be optimized towards plasmonic photocatalysis, development of nano-antimicrobials, and surface-enhanced Raman spectroscopy (SERS) sensing. We demonstrate that with a lipid-coated noble metal nanoparticle (L-NP) model, the E-field localization properties could be optimized through positioning molecular photosensitizers or photocatalysts within a plasmonic “sweet spot”. This factor renders the plasmonic metal NPs efficient nanoantenna for resonant enhancement of the intramolecular transitions as well as the photocatalytic properties of the molecular photocatalysts. The enhanced photoreactivity have been applied to facilitate fuel cell half reactions for the enhancement of light energy conversion efficiencies; as well as to facilitate the release of broad-band bactericidal compounds that enables plasmonic nano-antimicrobials. Localized E-fields in L-NPs also enhance the inelastic scattering from molecules through SERS. This is utilized to obtain molecular-level information on the configuration of sterol-based, alkyne-containing Raman tags in hybrid lipid membranes, which enables spectroscopic sensing and targeted imaging of biomarker-overexpressing cancer cells at the single-cell level. In contrast to the localized E-field, plasmonic charge carrier generation mechanism relies on non-radiative decay pathways of the excited plasmons that lead to production of ballistic charge carriers. The plasmonic hot charge carriers directly participate in chemical redox processes with degrees of controllability over the nature of the charge carrier produced and direction of their transfers. The implementation and optimization of these mechanisms are explored, and the significances of some relevant applications are discussed.
37

Active Control of Surface Plasmons in MXenes for Advanced Optoelectronics

El Demellawi, Jehad K. 18 November 2020 (has links)
MXenes, a new class of two-dimensional (2D) materials, have recently demonstrated impressive optoelectronic properties associated with its ultrathin layered structure. Particularly, Ti3C2Tx, the most studied MXene by far, was shown to exhibit intense surface plasmons (SPs), i.e. collective oscillations of free charge carriers, when excited by electromagnetic waves. However, due to the lack of information about the spatial and energy variation of those SPs over individual MXene flakes, the potential use of MXenes in photonics and plasmonics is still marginally explored. Hence, the main objective of this dissertation is to shed the light upon the plasmonic behavior of MXenes at the nanoscale and extend their use beyond their typical electrochemical applications. To fulfill our objective, we first elucidated the underlying characteristics governing the plasmonic behavior of MXenes. Then, we revealed the existence of various tunable SP modes supported by different MXenes, i.e. Ti3C2Tx and Mo2CTx, and investigated their energy and spatial distribution over individual flakes. Further, we fabricated an array of MXene-based flexible photodetectors that only operate at the resonant frequency of the SPs supported by MXenes. We also unveiled the existence of tunable SPs supported by another 2D nanomaterial (i.e. MoO2) and juxtaposed its plasmonic behavior with that of MXenes, to underline the uniqueness of the latter. Noteworthy, as in the case of MXenes, this was the first progress made on studying specific SP modes supported by MoO2 nanostructures. In this part of the dissertation, we were able to identify and tailor multipolar SPs supported by MoO2 and illustrate their dependence on their bulk band structure. In the end, we show that, on the contrary, SPs in MXenes are mainly controlled by the surface band structure. To confirm this, we selectively altered the subsurface band structure of Ti3C2Tx and modulated its work function (from 4.37 to 4.81 eV) via charge transfer doping. Interestingly, thanks to the unchanged surface stoichiometry of Ti3C2Tx, the plasmonic behavior of Ti3C2Tx was not affected by its largely tuned electronic structure. Notably, the ability to attain MXenes with tunable work functions, yet without disrupting their plasmonic behavior, is appealing to many application fields.
38

Hybrid Plasmon Waveguides: Theory and Applications

Alam, Muhammad 06 December 2012 (has links)
The study and applications of surface plasmon polaritons (SP) – also known as plasmonics – has attracted the interest of a wide range of researchers in various fields such as biology, physics, and engineering. Unfortunately, the large propagation losses of the SP severely limit the usefulness of plasmonics for many practical applications. In this dissertation a new wave guiding mechanism is proposed in order to address the large propagation losses of the plasmonic guides. Possible applications of this guiding scheme are also investigated. The proposed hybrid plasmonic waveguide (HPWG) consists of a metal layer separated from a high index slab by a low index spacer. A detailed analysis is carried out to clarify the wave guiding mechanism and it is established that the mode guided by the HPWG results from the coupling of a SP mode and a dielectric waveguide mode. A two dimensional HPWG is proposed and the effects of various parameters on the HPWG performance are analyzed in detail. This structure offers the possibility of integrating plasmonic devices on a silicon platform. The proposed waveguide supports two different modes: a hybrid TM mode and a conventional TE mode. The hybrid TM mode is concentrated in the low index layer, whereas the conventional TE mode is concentrated in the high index region. This polarization diversity is used to design a TM- and a TE-pass polarizer and a polarization independent coupler on a silicon-on-insulator (SOI) platform. Moreover, the performance of a HPWG bend is investigated and is compared with plasmonic waveguide bends. The proposed devices are very compact and outperform previously reported designs. The application of HPWG for biosensing is also explored. By utilizing the polarization diversity, the HPWG biosensor can overcome some of the limitations of plasmonic sensors. For example, unlike plasmonic sensors, the HPWG biosensor can remove the interfering bulk and surface effects.
39

Synthesis of hybrid nanosheets of graphene oxide, titania and gold and palladium nanoparticles for catalytic applications / Síntese de nanofolhas de óxido de grafeno e titânia decoradas com nanopartículas de ouro, paládio e prata para aplicações catalíticas

Papa, Letizia 21 March 2017 (has links)
Nanocatalysis has emerged in the last decades as an interface between homogeneous and heterogeneous catalysis, offering simple solutions to problems that conventional materials have not been able to solve. In fact, nanocatalyst design permits to obtain structures with high superficial area, reactivity and stability, and at the same time presenting good selectivity and facility of separation from reaction mixtures. In this work, we prepared hybrid structures comprising gold, palladium and silver nanoparticles (Au, Pd and Ag NPs), titanate nanosheets (TixO2), graphene oxide (GO), and partially reduced graphene oxide (prGO). We focused on bi- and tri-components hybrids, namely TixO2, M/(pr)GO and M/TixO2/(pr)GO (M = Au, Pd or Ag) and developed facile, versatile and environment-friendly preparation methods with an emphasis on control over physicochemical features such as size, shape and composition. In order to exploit the catalytic applications, we employed the reduction of 4-nitrophenol as a model reaction, followed by visible-light assisted oxidation of p-aminothiophenol (PATP). With these tests, we unraveled metal-support interactions and cooperative effects that render hybrid structures superior to their individual counterparts. / A nanocatálise surgiu nas últimas décadas como uma interface entre catálise homogênea e heterogênea, oferecendo soluções simples a problemas que os materiais convencionais não conseguiram resolver. De fato, o design de nanocatalisadores permite obter estruturas com grande área superficial, reatividade e estabilidade, e ao mesmo tempo apresentando boa seletividade e facilidade de separação de misturas reacionais. Neste trabalho apresentamos a preparação de estruturas híbridas compostas por nanopartículas de ouro, paládio e prata (Au, Pd e Ag NPs), nanofolhas de titanato (TixO2), óxido de grafeno (GO) e óxido de grafeno parcialmente reduzido (prGO). Focamos em híbridos do tipo M/TixO2, M/(pr)GO e M/TixO2/(pr)GO (M = Au, Pd ou Ag) e desenvolvemos métodos de preparação simples, versáteis e ambientalmente amigáveis, com ênfase no controle sobre tamanho, forma e composição. Para explorar as potencialidades catalíticas utilizamos a redução do 4-nitrofenol como reação modelo, e em seguida a oxidação assistida por luz do p-aminotiofenol (PATP). Com esses testes, investigamos interações metal-suporte e efeitos cooperativos que tornam as estruturas hibridas superiores a cada um dos materiais que as compõem.
40

Interconnecting controlled synthesis, plasmonic, and catalysis: from education to the next generation of nanomaterials for triggering green transformations / Interconectando síntese controlada, plasmônica e catálise: da educação à próxima geração de nanomateriais para transformações verdes

Silva, Anderson Gabriel Marques da 27 March 2017 (has links)
This dissertation is directed towards the fundamental understanding of the controlled synthesis of noble-metal (silver, gold, and palladium) and metal oxide (manganese and copper oxide) nanostructures as well as their applications in heterogeneous and plasmonic catalysis. In the first part of this work (Section 1), we provided a general background concerning the science of controlled nanomaterials, their syntheses, properties, and applications in catalysis and plasmonic catalysis. Then, we describe and developed a series of protocols for the synthesis of these nanomaterials with controlled sizes and structures (spheres, cubes, rods, shells, flowers, dendrites, and tadpoles), mainly focusing on the mechanistic understanding of their formation and how physical and chemical parameters (size, shape, composition, surface morphology) may influence/modify their catalytic properties (Sections 2 and 3). In Section 4, we turned our attention for the design of simple protocols for the synthesis of advanced nanomaterials that are interesting for green catalytic transformations applications. In this case, we envisioned the use of MnO2-Au nanomaterials (nanowires and nanoflowers) displaying several properties (unique pore structure, high surface area, ultrasmall Au NPs at the surface, high concentration of oxygen vacancies and Auδ+ species, strong metal-support interactions, and uniform shapes and sizes) that are desirable for catalyzing a series of green oxidation reactions in mild conditions (low temperatures and molecular oxygen or atmospheric air as the oxidants). In Section 5, we have demonstrated that catalysis and optical properties can be merged together to improve catalytic processes, the so called-plasmonic catalysis. This allowed us the use of visible light as the energy input to drive chemical transformations in mild conditions and then provide new insights regarding the various factors that affect SPR-mediated catalytic activities in plasmonic nanostructures. Finally, in Section 6, we focused our attention on how important is to introduce both nanoscience and the synthesis/characterization of nanomaterials having controlled physicochemical features to undergraduate students. Specifically, we have described simple laboratory experiments for the synthesis of nanomaterials (gold nanospheres and Cu(OH)2/CuO nanowires) displaying uniform sizes and shapes in order to investigate and explain their optical properties, catalytic activities and formation mechanisms. / Não consta resumo na publicação.

Page generated in 0.0607 seconds