• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 29
  • 25
  • Tagged with
  • 114
  • 96
  • 76
  • 35
  • 35
  • 35
  • 32
  • 21
  • 18
  • 18
  • 17
  • 16
  • 14
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Ermittlung der plastischen Anfangsanisotropie durch Eindringversuche

Lindner, Mario 26 August 2010 (has links)
Die Genauigkeit der Ergebnisse einer numerischen Simulation von Umformvorgängen wird maßgeblich durch die Beschreibung des Materialverhaltens bestimmt. Neben der Auswahl eines geeigneten Stoffgesetzes zur Darstellung einer Klasse von Werkstoffen ist die Identifikation der in den Modellen enthaltenen Materialparameter zur Charakterisierung seiner besonderen Eigenschaften notwendig. In der vorliegenden Arbeit wird die Bestimmung der Materialparameter eines elastisch-plastischen Deformationsgesetzes zur Beschreibung der plastischen Anisotropie auf Basis der Fließbedingung von Hill unter Berücksichtigung großer Deformationen vorgenommen. Die Ermittlung der Parameter erfolgt durch die Lösung einer nichtlinearen Optimierungsaufgabe (Fehlerquadratminimum) basierend auf dem Vergleich von experimentell durchgeführten Eindringversuchen mit Ergebnissen der numerischen Simulation.
72

Tracing the evolution of long non-coding RNAs: Principles of comparative transcriptomics for splice site conservation and biological applications

Nitsche, Anne 25 April 2018 (has links)
Eukaryotic cells exhibit an extensive transcriptional diversity. Only about a quarter of the total RNA in the human cell can be accounted for by messenger RNA (mRNA), which convey genetic code for protein generation. The remaining part of the transcriptome consists of rather heterogenous molecules. While some classes are well defined and have been shown to carry out distinct functions, ranging from housekeeping to complex regulatory tasks, a big fraction of the transcriptional output is categorized solely based on the lack of protein-coding capacity and transcript length. Several studies have shown, that as a group, mRNA-like long non-coding RNAs (lncRNAs), are under stabilizing selection, however at much weaker levels than mRNAs. The conservation at the level of primary sequence is even lower, blurring the contrast between exonic and intronics parts, which impedes traditional methods of genome-wide homology search. As a consequence their evolutionary history is a fairly unexplored field and apart from a few experimentally studied cases, the vast majority of them is reported to be poorly conserved. However, the pervasive transcription and the highly spatio-temporal specific expression patterns of lncRNAs suggests their functional importance and makes their evolutionary age and conservation patterns a topic of interest. By employing diverse computational methods, recent studies shed light on the common conservation of lncRNA’s secondary and gene structures, highlighting the significance of structural features on functionality. Splice sites, in particular, are frequently retained over very large evolutionary time scales, as they maintain the intron-exon-structure of the transcript. Consequently, the conservation of splice sites can be utilized in a comparative genomics approach to establish homology and predict evolutionarily well-conserved transcripts, regardless of their coding capacity. Since splice site conservation cannot be directly inferred from experimental evidence, in the course of this thesis a computational pipeline was established to generate comparative maps of splice sites based on multiple sequence alignments together with transcriptomics data. Scoring schemes for splice site motifs are employed to assess the conservation of orthologs. This resource can then be used to systemically study the conservation patterns of RNAs and their gene structures. This thesis will demonstrate the versatility of this method by showcasing biological applications of three distinct studies. First, a comprehensive annotation of the human transcriptome, from RefSeq, ESTs and GENCODE, was used to trace the evolution of human lncRNAs. A large majority of human lncRNAs is found to be conserved across Eutheria, and many hundreds originated before the divergence of marsupials and placental mammals. However, they exhibit a rapid turnover of their transcript structures, indicating that they are actual ancient components of the vertebrate genome with outstanding evolutionary plasticity. Additionally, a public web server was setup, which allows the user to retrieve sets of orthologous splice sites from pre-computed comparative splice site maps and inspect visualizations of their conservation in the respective species. Second, a more specific data set of non-colinearly spliced latimerian RNAs is studied to fathom the origins of atypical transcripts. RNA-seq data from two coelacanth species are analyzed, yielding thousands of circular and trans-spliced products, with a surprising exclusivity of the majority of their splice junctions to atypically spliced forms, that is they are not used in linear isoforms. The conservation analysis with comparative splice site maps yielded high conservation levels for both cir- cularizing and trans-connecting splice sites. This fact in combination with their abundance strongly suggests that atypical RNAs are evolutionarily old and of functional importance. Lastly, comparative splice site maps are used to investigate the role of lncRNAs in the evolution of the Alzheimer’s disease (AD). The human specificity of AD clearly points out a phylogenetic aspect of the disease, which makes the evolutionary analysis a very promising field of research. Protein- coding and non-protein-coding regions, that have been identified to be differentially expressed in AD patients, are analyzed for conservation of their splice site and evolution of their exon-intron-structure. Both non-coding and protein-coding AD-associated genes are shown to have evolved more rapidly in their gene structure than the genome at large. This supports the view of AD as a consequence of the recent rapid adaptive evolution of the human brain. This phylogenetic trait might have far reaching consequences with respect to the appropriateness of animal models and the development of disease-modifying strategies. / Eukaryotische Zellen legen eine umfangreiche transkriptionelle Vielfalt an den Tag. Nur etwa ein Viertel der in der menschlichen Zelle enthaltenen RNA ist messenger RNA (mRNA), welche den genetischen Code für die Proteingenerierung übermittelt. Der verbleibende Anteil des Transkriptoms besteht aus eher heterogenen Molekülen. Während einigen wohldefinierten Klassen spezifische Funktionen zugeordnet werden können, welche von Zellhaushalt bis zu komplexen regulatorischen Aufgaben reichen, wird ein großer Teil der transkriptionellen Produktion ausschließlich auf Grundlage der fehlenden Kodierungskapazität und der Transkriptlänge kategorisiert. Einige Studien zeigten, dass mRNA-ähnliche lange nicht-kodierende RNA (lncRNA) als Gruppe unter stabilisierender Selektion stehen, wenn auch in einem weitaus geringeren Ausmaß als mRNAs. Die Konservierung auf Ebene der primären Sequenz ist sogar noch niedriger, wodurch der Kontrast zwischen exonischen und intronischen Elementen verschwimmt und Methoden der traditionellen Homologiesuche erschwert werden. Infolgedessen ist die evolutionäre Geschichte der lncRNAs ein recht unerforschtes Gebiet und abgesehen von ein paar vereinzelten Fallstudien wird die große Mehrheit als schwach konserviert vermeldet. Die tiefgreifende Transkription und die in Raum und Zeit hochspezifischen Expressionsmuster von lncRNA deuten jedoch auf deren funktionelle Bedeutung hin und machen ihr evolutionäres Alter und ihre Konservierungsmuster zu einem Thema von Interesse. Durch die Verwendung von computergestützten Methoden konnten jüngste Studien die verbreitete Konservierung von Sekundär- und Genstruktur von lncRNAs aufzeigen, was die Signifikanz von strukturellen Merkmalen in Bezug auf deren Funktionalität unterstreicht. Spleißstellen im besonderen werden oft über lange evolutionäre Zeitspannen erhalten, da sie die Intron-Exon-Struktur des Transkripts bewahren. Folglich, kann die Konservierung von Spleißstellen durch einen Ansatz der vergleichenden Genomik benutzt werden, um Homologie herzuleiten und evolutionär gut konservierte Transkripte unabhängig von deren Kodierungskapazität zu prognostizieren. Da es nicht möglich ist die Spleißstellenkonservierung direkt anhand von experimentellen Indikatoren abzulesen, wurde im Zuge dieser These eine computergestützte Methode entwickelt, welche, basierend auf multiplen Sequenzalignments und Transkriptomikdaten, “Vergleichskarten” von Spleißstellen erstellt. Ein Punktebewertungssystem für Spleißstellenmotive wird benutzt um die Konservierung der Orthologen zu beurteilen. Diese Resource kann anschließend verwendet werden um systematisch die Konservierungsmuster von RNAs und deren Genstrukturen zu untersuchen. Diese Arbeit wird die Vielseitigkeit dieser Methode demonstrieren, indem die biologische Anwendung in drei verschiedenen Studien präsentiert wird. Zuerst wird eine umfassende Annotation des menschlichen Transkriptoms, basierend auf RefSeq, EST und GENCODE, benutzt, um die Evolution von humanen lncRNAs nachzuvollziehen. Es konnte festgestellt werden, dass eine große Mehrheit der menschlichen lncRNAs innerhalb der Eutheria konserviert ist und mehrere hundert bereits vor der Auseinanderentwicklung von Beuteltieren und höheren Säugetieren entstanden. Dennoch zeigen sie eine rasante Veränderung in ihren Transkriptstrukturen, welche darauf hindeutet, dass sie tatsächlich alte Bestandteile von Vertebratengenomen mit bemerkenswerter evolutionärer Formbarkeit sind. Zusätzlich wurde ein öffentlicher Webserver aufgesetzt, der dem Nutzer ermöglicht Datensätze orthologer Spleißstellen aus vorgenerierten Vergleichskarten zu extrahieren und Visualisierungen der Konservierung in den jeweiligen Spezies zu betrachten. Als zweites wird ein spezifischerer Datensatz von nicht-linear gespleißten Latimeria-RNA untersucht um die Ursprünge untypischer Transkripte zu ergründen. Die Analyse der RNA-seq Daten zweier Exemplare des Quastenflossers ergab tausende zirkulärer und Transspleiß-Produkte, wobei die Mehrheit der Spleißverbindungen eine überraschende Exklusivität für untypisch gespleißte Formen aufzeigt, d.h. diese werden nicht für lineare Isoformen genutzt. Die Konservierungsanalyse mit Spleißstellen-Vergleichskarten ergibt hohe Konservierungsniveaus sowohl für zirkulärisierende als auch für trans-verbindende Spleißstellen. Diese Tatsache in Kombination mit ihrem häufigen Vorkommen, deutet stark darauf hin, dass untypische RNAs evolutionär alt und von funktioneller Bedeutung sind. Zuletzt werden Spleißstellen-Vergleichskarten benutzt um die Rolle von lncRNAs in der Evolution der Alzheimer-Krankheit (AK) zu untersuchen. Die Spezifität der AK auf den Menschen weist klar auf einen phylogenetischen Aspekt der Krankheit hin, was deren evolutionäre Analyse zu einem vielversprechenden Forschungsgebiet macht. Proteinkodierende und nicht-proteinkodierende Regionen, bei denen eine differentielle Expression in AK-Patienten erkannt wurde, werden auf die Konservierung ihrer Spleißstellen und Evolution ihrer Exon-Intron-Strukturen hin analysiert. Es kann nachgewiesen werden, dass sich die Genstruktur von sowohl nicht-kodierenden als auch von proteinkodierenden AK-assoziierten Genen schneller entwickelt als das Genom im Allgemeinen. Das unterstützt die Auffassung, dass AK die Folge einer kürzlichen rasanten adaptiven Evolution des menschlichen Gehirns ist. Diese phylogenetische Eigenschaft könnte weitreichende Konsequenzen in Bezug auf die Angemessenheit von Tiermodellen und die Entwicklung von krankheitsmodifizierenden Strategien haben.
73

Study of a model for reference-free plasticity

Wohlgemuth, Jens 25 April 2013 (has links)
In meiner Doktorarbeit untersuche ich ein Kac-artiges Vielteilchen-Modell, das eine Beschreibung von plastischen Verformungen ohne Verwendung einer Referenz-Konfiguration ermöglicht. Im Rahmen des Modells wird die Verformung eines Körpers durch Angabe von Atompositionen beschrieben. Es wird eine Mesoskala zwischen der Mikroskala der Atom-Atom Abstände und der Makroskala des Körpers eingeführt. Um jeden Punkt wird die Konfiguration auf dieser Mesoscala mit einem Bravais-Gitters approximiert. Die Matrix, die dieses Gitter aufspannt, wird als Argument eines elastischen Energiefunktionals verwendet. Auf diese Weise wird ein Energiefunktional definiert, das die Eigenschaften des Systems festlegt. Im Ersten Teil meiner Doktorarbeit analysiere ich das Modell im Fall das eine Referenz-Konfiguration lokal existiert. Ich schätze die Energiedichte einer solchen Konfiguration mit einer Störungsrechung von oben ab und erhalte eine obere Schranke für die Energiebarriere für plastische Relaxation in zwei Dimensionen. Im zweiten Teil untersuche ich Möglichkeiten Lagrange-Koordinaten im Rahmen des Modells zu konstruieren. Ich beweise, dass für zwei Punkte deren Abstand klein genug sind und die bestimmte Regularitätseigenschaften erfüllen, die Gitterparameter der approximierenden Bravais-Gitter bis auf eine Reparametrisierung nahe beieinander liegen müssen. Dies erlaubt diskrete Ketten von regulären Punkten zur Definition von Homotopieklassen zu benutzen die mit verallgemeinerten Burgers-Vektoren charakterisiert werden. Es ist mit dieser Technik auch möglich die Kernenergie von Versetzungen nach unten abzuschätzen. Schließlich passe ich eine Methode kontinuierliche Lagrange-Koordinaten, die von L. Mugnai und S. Luckhaus entwickelt wurden, an das Model an und verbessere sie dergestalt, dass ich die Energiedichte mit Hilfe eines Funktionales der Lagrange-Koordinaten nach unten abschätzen kann. / I study a Kac-type many particle model that allows a reference-free description of plastic deformation.In the framework of the model the state of the body is given by a set of atom position. The typical atom-atom distance is the microscopic scale. The size of the body is the macroscopic scale. Around each point a lattice is fitted to the configuration on a mesoscopic scale. The lattice parameters are used as an argument of a non-linear elasticity energy functional. Hence, this procedure allows to define an free-energy functional of a particle configuration. In the first part of my thesis I analyze the model in the case that a reference configuration exists locally. I bound the energy-density of such a configuration from above with a pertubative calculation and obtain an upper bound for the energy barrier of plastic deformation for dimension two. In the second part I explore the possibility to construct Lagrangian coordinates in the framework of the model. I prove that for two points that are close to each other and that fulfill certain regularity assumptions the fitted lattice parameters are close to each other up to a reparametrisation. This allows to use discrete chains of regular points for homotopy type arguments and define a generalized Burgers vector as a topological quantity. I also use this method to get a lower bound for the core energy of a dislocation. Finally, I adapt a method to construct continuous Lagrangian coordinates presented in by L.Mugnai and S.Luckhaus to my model and improve it to a point where I can use a functional of these Lagrangian coordinate as a lower bound for the energy of the model.
74

Effect of Cognitive-Behavioral Therapy on Neural Correlates of Fear Conditioning in Panic Disorder

Kircher, Tilo, Arolt, Volker, Jansen, Andreas, Pyka, Martin, Reinhardt, Isabelle, Kellermann, Thilo, Konrad, Carsten, Lüken, Ulrike, Gloster, Andrew T., Gerlach, Alexander L., Ströhle, Andreas, Wittmann, André, Pfleiderer, Bettina, Wittchen, Hans-Ulrich, Straube, Benjamin January 2013 (has links)
Background: Learning by conditioning is a key ability of animals and humans for acquiring novel behavior necessary for survival in a changing environment. Aberrant conditioning has been considered a crucial factor in the etiology and maintenance of panic disorder with agoraphobia (PD/A). Cognitive-behavioral therapy (CBT) is an effective treatment for PD/A. However, the neural mechanisms underlying the effects of CBT on conditioning processes in PD/A are unknown. Methods: In a randomized, controlled, multicenter clinical trial in medication-free patients with PD/A who were treated with 12 sessions of manualized CBT, functional magnetic resonance imaging (fMRI) was used during fear conditioning before and after CBT. Quality-controlled fMRI data from 42 patients and 42 healthy subjects were obtained. Results: After CBT, patients compared to control subjects revealed reduced activation for the conditioned response (CS+ > CS–) in the left inferior frontal gyrus (IFG). This activation reduction was correlated with reduction in agoraphobic symptoms from t1 to t2. Patients compared to control subjects also demonstrated increased connectivity between the IFG and regions of the “fear network” (amygdalae, insulae, anterior cingulate cortex) across time. Conclusions: This study demonstrates the link between cerebral correlates of cognitive (IFG) and emotional (“fear network”) processing during symptom improvement across time in PD/A. Further research along this line has promising potential to support the development and further optimization of targeted treatments.
75

An extended bounding surface model for the application to general stress paths in sand

Bergholz, Katharina 29 October 2020 (has links)
The prediction of settlements in infrastructural design puts high demands on the numerical analysis of the subsoil and the associated constitutive model: complex installation processes and the repetitive character of live loads pose considerable challenges. Although in this context the main focus is on the analytical requirements of a geotechnical problem in order to realistically capture soil behaviour, the needs of engineering practice should not be neglected in constitutive modelling. Along these lines, a new soil model for non-cohesive soils has been developed in the theoretical framework of elastoplasticity. Based on the concept of bounding surface plasticity according to Manzari and Dafalias (1997), soil properties such as strength, stiffness and dilatancy depend on the distance between the current stress state and a corresponding model surface in stress space. This way the multi surface model correctly reproduces elementary behavioural patterns of soil, including for example shear related phenomena such as hardening/softening, contraction/dilation and attainment of critical state (constant volume shear strength). Moreover, the model captures the state dependence of soil behaviour (barotropy and pycnotropy). Thus, with only one set of material parameters, the mechanical behaviour of a wide range of initial soil states with respect to stress and void ratio can be simulated (unified modelling). The kinematic hardening mechanism of the conical yield surface contributes to a realistic stiffness evolution in un- and reloading and is hence essential for stress or strain accumulation due to load reversals. Since the chosen modelling framework is suitable for further development, the original formulation has been extended to adapt the model to the defined needs. In order to adequately simulate geotechnically relevant stress paths of low and higher complexity, first of all, a cap shaped yield surface was added to allow for plastic straining not only in shear, but also in constant stress ratio loading (e. g. isotropic or oedometric compression). When it comes to stress paths of unconventional orientation, to load reversals or composed stress paths with changes in loading direction, a supplementary stiffness increase at small strains and its subsequent strain dependent degradation have proven valuable. Furthermore, an additional mechanism accounts for a regressive accumulation of stresses or strains with increasing number of load cycles (in terms of dissipated energy). In view of its suitability for practical use, all model extensions are structured in a modular fashion, so that the complexity of the model (and hence the amount of parameters) can be adapted to the complexity of the geotechnical problem by activating or deactivating certain features. Most model parameters can be determined by conventional laboratory testing. An internal routine optionally facilitates the parameter choice by calibrating certain bounding surface related parameters from an alternative user input, which is more oriented towards experimental outcome. Since a good understanding of a material model is crucial for its reasonable and responsible use, the present thesis aims at offering a sound documentation. Thus, the first part gives an outline of the underlying bounding surface concept and describes the innovations on the constitutive level with reference to theoretical considerations. It is followed by a detailed analysis of capabilities and limitations of the extended model. The next part is dedicated to the numerical implementation of the soil model and its calibration procedure on the basis of laboratory test results. Moreover, the embedded calibration routine including the applied optimisation algorithm is presented. The subsequent section serves model validation: by means of element test simulations, generation of response envelopes as well as the reproduction of more general (e. g. composed) stress paths the performance of the extended bounding surface model is demonstrated. Finally, the last chapter draws conclusions and discloses potential future perspectives.:1 Introduction 1.1 General aspects on constitutive modelling 1.2 Motivation and outline of the thesis 1.3 Basic assumptions and terminology 2 Literature review 2.1 From elastoplasticity to bounding surface plasticity 2.1.1 Bounding surface model according to Manzari and Dafalias (1997) 2.2 Further development of the original model 2.2.1 Papadimitriou and Bouckovalas (2002) 2.2.2 Taiebat and Dafalias (2008) 2.3 Small strain stiffness 2.3.1 Observations 2.3.2 Micromechanical considerations 2.3.3 Very small strain shear modulus G0 2.3.4 Constitutive modelling approaches 2.4 Dilatancy 3 The extended bounding surface model 3.1 Fundamental capabilities of the bounding surface concept 3.1.1 Elastic region 3.1.2 Critical state 3.1.3 Shear strength 3.1.4 Shear stiffness (monotonic) 3.1.5 Contractancy and dilatancy 3.1.6 Barotropy and pycnotropy 3.1.7 Compressive stiffness 3.1.8 Shear stiffness in reversed loading 3.1.9 Additional features 3.2 New features of the extended bounding surface model 3.2.1 Minor modifications 3.2.2 Dilatancy formulation 3.2.3 Cap yield surface 3.2.4 Small strain stiffness mechanism 3.2.5 Cyclic loading mechanism 3.2.6 Summary 3.3 Limitations of the bounding surface model 3.3.1 Intrinsic insuffciencies of the bounding surface concept 3.3.2 Remaining shortcomings of the advanced model version 3.3.3 Newly introduced deficiencies 4 The numerical model and its calibration procedure 4.1 Octave implementation of an element test programme 4.2 Calibration procedure 4.2.1 Sands for calibration 4.2.2 Calibration of basic parameters 4.2.3 Calibration of extended model parameters 4.3 User friendly calibration routine 4.3.1 Conceptual background 4.3.2 Optimisation algorithm 5 Performance of the extended bounding surface model 5.1 Model performance in element tests 5.1.1 Monotonic drained triaxial compression test 5.1.2 Monotonic undrained triaxial compression test 5.1.3 Monotonic eta-constant tests 5.2 Model performance in non-standard triaxial testing 5.2.1 Concept of response envelopes 5.2.2 Simulation of response envelopes 5.3 Model performance on general stress paths 5.3.1 Triaxial compression at small strains 5.3.2 Cyclic triaxial loading 6 Conclusions and perspectives 6.1 Conclusions 6.2 Future perspectives Bibliography Appendices A Mathematical background A.1 Fundamental equations of elastoplasticity A.2 Compilation of major constitutive equations (multiaxial formulation) A.3 Elastoplastic stiffness matrix for singular yield surfaces A.4 Coefficient matrices S and E for loading constraints A.5 Derivation of Mcap and Hcap A.6 Intergranular strain adjustment A.7 Intergranular strain correlation B Details on particle swarm optimisation C Compilation of simulation results C.1 Monotonic triaxial loading C.1.1 Toyoura sand C.1.2 Sacramento River sand C.1.3 Hostun sand C.2 Monotonic eta-constant loading C.2.1 Sacramento River sand C.2.2 Hostun sand C.3 Cyclic triaxial loading / Die Prognose von Setzungen für die Bemessung von Infrastrukturbauwerken stellt hohe Anforderungen an die numerische Untersuchung des Baugrunds und das damit verbundene Stoffgesetz: komplexe Herstellungsprozesse und zyklisch wiederkehrende Verkehrslasten stellen beachtliche Herausforderungen dar. Während das Hauptaugenmerk zumeist auf der realitätsnahen Abbildung des Bodenverhaltens liegt und damit die analytischen Anforderungen des geotechnischen Problems im Fokus stehen, sollten die Bedürfnisse der Ingenieurspraxis in der Stoffgesetzmodellierung nicht außer Acht gelassen werden. In diesem Sinne wurde im Rahmen der Elastoplastizität ein neues Materialmodell für nichtbindige Böden entwickelt. Auf dem Konzept der Bounding Surface Plastizität nach Manzari und Dafalias (1997) beruhend, sind Eigenschaften wie Festigkeit, Steifigkeit und Dilatanz Funktion des Abstands zwischen aktuellem Spannungszustand und einer zugeordneten Modellfläche im Spannungsraum. Auf diese Weise bildet das Mehrflächenmodell fundamentale Verhaltensmuster von Boden korrekt ab, einschließlich beispielsweise scherbezogener Phänomene wie Ver- und Entfestigung, Kontraktanz und Dilatanz oder das Erreichen des kritischen Zustands (Scherfestigkeit bei konstantem Volumen). Des Weiteren erfasst das Modell die Zustandsabhängigkeit des Bodenverhaltens (Barotropie und Pyknotropie). So kann mit nur einem Parametersatz das mechanische Verhalten einer großen Spannweite unterschiedlicher Anfangszustände hinsichtlich Spannung und Lagerungsdichte simuliert werden. Der kinematische Verfestigungsmechanismus der konusförmigen Fließfläche trägt bei Ent- und Wiederbelastungen zu einer realistischeren Steifigkeitsentwicklung bei und ist damit von essenzieller Bedeutung für die Akkumulation von Spannungen oder Verformungen infolge von Lastwechseln. Da sich der gewählte konstitutive Rahmen für Weiterentwicklungen eignet, wurde die ursprüngliche Formulierung des Stoffgesetzes erweitert, um das Modell an die definierten Anforderungen anzupassen. Um geotechnisch relevante Spannungspfade niedriger und höherer Komplexität adäquat reproduzieren zu können, wurde zunächst eine kappenförmige Fließfläche ergänzt. So können irreversible Verformungen nicht nur bei Scherung, sondern auch bei Belastungen ohne Änderung des Spannungsverhältnisses, wie z. B. bei isotroper oder ödometrischer Kompression, auftreten. Bei Spannungspfaden ungewöhnlicher Orientierung, bei Lastwechseln oder zusammengesetzten Spannungspfaden mit Änderung der Belastungsrichtung hat sich eine erhöhte Steifigkeit bei kleinen Dehnungen mit anschließendem dehnungsabhängigen Abfall als nützlich erwiesen. Darüber hinaus berücksichtigt ein zusätzlicher Mechanismus die rückläufige Akkumulation von Spannung oder Verformung mit zunehmender Zyklenanzahl (mittels dissipierter Energie). Im Hinblick auf die Eignung des Stoffgesetzes für die Praxis ist das Modell modular aufgebaut. So kann die Komplexität des Modells (und damit die Anzahl der Parameter) durch Ein- und Ausschalten bestimmter Erweiterungen an die Komplexität des geotechnischen Problems angepasst werden. Die Mehrzahl der Modellparameter wird mit Hilfe konventioneller Laborversuche bestimmt. Eine interne Routine erleichtert durch die Kalibrierung bestimmter Bounding Surface bezogener Größen anhand eines alternativen, stärker an Versuchsergebnissen orientierten User-Inputs bei Bedarf die Parameterwahl. Da die Kenntnis eines Stoffgesetzes entscheidend ist für dessen vernünftigen und verantwortungsvollen Einsatz, soll die vorliegende Arbeit eine fundierte und umfassende Dokumentation bieten. Der erste Teil vermittelt daher zunächst einen Überblick über das zugrunde liegende Bounding Surface Konzept und beschreibt die Neuerungen auf konstitutiver Ebene mit Bezug auf theoretische Hintergründe. Er wird gefolgt von einer detaillierten Darlegung von Potenzialen und Einschränkungen für die Nutzung des erweiterten Modells. Der nächste Abschnitt widmet sich der numerischen Implementierung des Stoffgesetzes und seiner Kalibrierung auf Basis von Versuchsergebnissen. Des Weiteren wird die Kalibrierungsroutine einschließlich des verwendeten Optimierungsalgorithmus präsentiert. Der nachfolgende Teil dient der Modellvalidierung: durch die Simulation von Elementversuchen, die Erzeugung von Antwortellipsen sowie die Abbildung allgemeinerer (beispielsweise zusammengesetzter) Spannungspfade wird die Leistungsfähigkeit des erweiterten Bounding Surface Modells demonstriert. Abschließend werden Schlussfolgerungen gezogen und potenzielle Perspektiven aufgezeigt.:1 Introduction 1.1 General aspects on constitutive modelling 1.2 Motivation and outline of the thesis 1.3 Basic assumptions and terminology 2 Literature review 2.1 From elastoplasticity to bounding surface plasticity 2.1.1 Bounding surface model according to Manzari and Dafalias (1997) 2.2 Further development of the original model 2.2.1 Papadimitriou and Bouckovalas (2002) 2.2.2 Taiebat and Dafalias (2008) 2.3 Small strain stiffness 2.3.1 Observations 2.3.2 Micromechanical considerations 2.3.3 Very small strain shear modulus G0 2.3.4 Constitutive modelling approaches 2.4 Dilatancy 3 The extended bounding surface model 3.1 Fundamental capabilities of the bounding surface concept 3.1.1 Elastic region 3.1.2 Critical state 3.1.3 Shear strength 3.1.4 Shear stiffness (monotonic) 3.1.5 Contractancy and dilatancy 3.1.6 Barotropy and pycnotropy 3.1.7 Compressive stiffness 3.1.8 Shear stiffness in reversed loading 3.1.9 Additional features 3.2 New features of the extended bounding surface model 3.2.1 Minor modifications 3.2.2 Dilatancy formulation 3.2.3 Cap yield surface 3.2.4 Small strain stiffness mechanism 3.2.5 Cyclic loading mechanism 3.2.6 Summary 3.3 Limitations of the bounding surface model 3.3.1 Intrinsic insuffciencies of the bounding surface concept 3.3.2 Remaining shortcomings of the advanced model version 3.3.3 Newly introduced deficiencies 4 The numerical model and its calibration procedure 4.1 Octave implementation of an element test programme 4.2 Calibration procedure 4.2.1 Sands for calibration 4.2.2 Calibration of basic parameters 4.2.3 Calibration of extended model parameters 4.3 User friendly calibration routine 4.3.1 Conceptual background 4.3.2 Optimisation algorithm 5 Performance of the extended bounding surface model 5.1 Model performance in element tests 5.1.1 Monotonic drained triaxial compression test 5.1.2 Monotonic undrained triaxial compression test 5.1.3 Monotonic eta-constant tests 5.2 Model performance in non-standard triaxial testing 5.2.1 Concept of response envelopes 5.2.2 Simulation of response envelopes 5.3 Model performance on general stress paths 5.3.1 Triaxial compression at small strains 5.3.2 Cyclic triaxial loading 6 Conclusions and perspectives 6.1 Conclusions 6.2 Future perspectives Bibliography Appendices A Mathematical background A.1 Fundamental equations of elastoplasticity A.2 Compilation of major constitutive equations (multiaxial formulation) A.3 Elastoplastic stiffness matrix for singular yield surfaces A.4 Coefficient matrices S and E for loading constraints A.5 Derivation of Mcap and Hcap A.6 Intergranular strain adjustment A.7 Intergranular strain correlation B Details on particle swarm optimisation C Compilation of simulation results C.1 Monotonic triaxial loading C.1.1 Toyoura sand C.1.2 Sacramento River sand C.1.3 Hostun sand C.2 Monotonic eta-constant loading C.2.1 Sacramento River sand C.2.2 Hostun sand C.3 Cyclic triaxial loading
76

Adaptive changes in striatal projection neurons explain the long duration response and the emergence of dyskinesias in patients with Parkinson’s disease: Neurology and Preclinical Neurological Studies - Review Article

Falkenburger, Björn, Kalliakoudas, Theodoros, Reichmann, Heinz 22 March 2024 (has links)
Neuronal activity in the brain is tightly regulated. During operation in real time, for instance, feedback and feedforward loops limit excessive excitation. In addition, cell autonomous processes ensure that neurons’ average activity is restored to a setpoint in response to chronic perturbations. These processes are summarized as homeostatic plasticity (Turrigiano in Cold Spring Harb Perspect Biol 4:a005736–a005736, 2012). In the basal ganglia, information is mainly transmitted through disinhibition, which already constraints the possible range of neuronal activity. When this tightly adjusted system is challenged by the chronic decline in dopaminergic neurotransmission in Parkinson’s disease (PD), homeostatic plasticity aims to compensate for this perturbation. We here summarize recent experimental work from animals demonstrating that striatal projection neurons adapt excitability and morphology in response to chronic dopamine depletion and substitution. We relate these cellular processes to clinical observations in patients with PD that cannot be explained by the classical model of basal ganglia function. These include the long duration response to dopaminergic medication that takes weeks to develop and days to wear off. Moreover, dyskinesias are considered signs of excessive dopaminergic neurotransmission in Parkinson’s disease, but they are typically more severe on the body side that is more strongly affected by dopamine depletion. We hypothesize that these clinical observations can be explained by homeostatic plasticity in the basal ganglia, suggesting that plastic changes in response to chronic dopamine depletion and substitution need to be incorporated into models of basal ganglia function. In addition, better understanding the molecular mechanism of homeostatic plasticity might offer new treatment options to avoid motor complications in patients with PD.
77

Subtle Differences in Brain Architecture in Patients with Congenital Anosmia

Thaploo, Divesh, Georgiopoulos, Charalampos, Haehner, Antje, Hummel, Thomas 18 April 2024 (has links)
People suffering from congenital anosmia show normal brain architecture although they do not have functional sense of smell. Some studies in this regard point to the changes in secondary olfactory cortex, orbitofrontal cortex (OFC), in terms of gray matter volume increase. However, diffusion tensor imaging has not been explored so far. We included 13 congenital anosmia subjects together with 15 controls and looked into various diffusion parameters like FA. Increased FA in bilateral OFC confirms the earlier studies reporting increased gray matter thickness. However, it is quite difficult to interpret FA in terms of gray matter volume. Increased FA has been seen with recovery after traumatic brain injury. Such changes in OFC point to the plastic nature of the brain.
78

Coarse-grained modeling of crystals by the amplitude expansion of the phase-field crystal model: an overview

Salvalaglio, Marco, Elder, Ken R 22 May 2024 (has links)
Comprehensive investigations of crystalline systems often require methods bridging atomistic and continuum scales. In this context, coarse-grained mesoscale approaches are of particular interest as they allow the examination of large systems and time scales while retaining some microscopic details. The so-called phase-field crystal (PFC) model conveniently describes crystals at diffusive time scales through a continuous periodic field which varies on atomic scales and is related to the atomic number density. To go beyond the restrictive atomic length scales of the PFC model, a complex amplitude formulation was first developed by Goldenfeld et al (2005 Phys. Rev. E 72 020601). While focusing on length scales larger than the lattice parameter, this approach can describe crystalline defects, interfaces, and lattice deformations. It has been used to examine many phenomena including liquid/solid fronts, grain boundary energies, and strained films. This topical review focuses on this amplitude expansion of the PFC model and its developments. An overview of the derivation, connection to the continuum limit, representative applications, and extensions is presented. A few practical aspects, such as suitable numerical methods and examples, are illustrated as well. Finally, the capabilities and bounds of the model, current challenges, and future perspectives are addressed.
79

FEM-basierte Modellierung stark anisotroper Hybridcord-Elastomer-Verbunde / FE-based modeling of strongly anisotropic hybrid cord-rubber composites

Donner, Hendrik 27 September 2017 (has links) (PDF)
Zur Analyse der Beanspruchungen in textilverstärkten Elastomerbauteilen wie Luftfedern, Reifen, Riemen und Schläuchen sind Berechnungsmodelle mit einer feinen Balance zwischen Genauigkeit und Effizienz erforderlich. Die großen Deformationen, stark anisotropen Struktureigenschaften und kleinen Abmessungen der Festigkeitsträger gegenüber denen des Bauteils bedürfen einerseits einer detaillierten Modellierung, andererseits sind die kritischen Bereiche in diesen Bauteilen räumlich stark begrenzt, sodass eine Reduktion des Berechnungsaufwands erstrebenswert ist. Diese Modellreduktion führt zu Simulationen mit geringer Rechenzeit, die für eine praxistaugliche Optimierung von Hybridcord-Elastomer-Verbunden unerlässlich sind. Die beiden Hauptschwerpunkte der vorliegenden Arbeit bilden die kontinuumsmechanische Modellierung von Hybridcorden und die Erstellung repräsentativer Volumenelemente hochbeanspruchter Hybridcord-Elastomer-Verbunde. Aufbauend auf einem anisotropen Plastizitätsmodell zur Erfassung der Reibung in Multifilamentgarnen stellt ein Finite-Elemente-Modell zur Simulation der Verzwirnung von Hybridcorden das Fundament der Arbeit dar. Anhand experimenteller Ergebnisse aus Zug- und Torsionsversuchen sowie einem Vergleich mit Querschnittsaufnahmen wird gezeigt, dass das Modell die komplexen Eigenschaften eines Hybridcords abbilden kann. Die Grundlage der repräsentativen Volumenelemente stellt eine Erweiterung der klassischen periodischen Randbedingungen dar, die eine Berücksichtigung von Krümmungen und Drucklasten ermöglicht. Das Modell eignet sich daher, die Beanspruchungen in den hochbelasteten Bereichen textilverstärkter Elastomerbauteile wie der Rollfalte einer Luftfeder effizient zu analysieren. Mittels Parameterstudien werden abschließend Hybridcorde und Hybridcord-Elastomer-Verbunde untersucht und einige Hinweise für eine optimale Gestaltung hinsichtlich minimaler Beanspruchungen des Elastomers, des Hybridcords sowie der Grenzfläche gegeben. / The analysis of stresses and strains within textile-reinforced rubber components like air springs, tyres, driving belts, and tubes requires accurate as well as efficient computational models. On the one hand, the large deformations, the composite's strongly anisotropic properties, and the large ratio between the size of the cords and the composite necessitate a precise modeling. On the other hand, the highly loaded parts of the components are spatially confined and thus a reduction of the computational effort is desirable. These reduced models are efficient enough for performing engineering-oriented optimizations. The two main priorities of this work are the continuum mechanical modeling of hybrid cords and the development of representative volume elements of highly loaded hybrid cord-rubber composites. Based on an anisotropic plasticity model, which takes the frictional sliding between the filaments within multifilament yarns into account, a finite element model for the simulation of the twisting process of a hybrid cord is the fundament of this work. A comparison with experimental results from tensile and torsional tests as well as images of cross sections validate the proposed hybrid cord model. The basis of the representative volume element is the extension of the classical periodic boundary conditions, which now enable to take the curvature and pressure load into account. Thus, the model is suitable to analyze the highly loaded parts of hybrid cord-rubber composites like the rolling lobe of an air spring. Finally, the set-ups of hybrid cords and hybrid cord-rubber composites are analyzed by means of parameter studies to obtain a minimized loading of the rubber, yarns, and their interface.
80

FEM-basierte Modellierung stark anisotroper Hybridcord-Elastomer-Verbunde

Donner, Hendrik 08 September 2017 (has links)
Zur Analyse der Beanspruchungen in textilverstärkten Elastomerbauteilen wie Luftfedern, Reifen, Riemen und Schläuchen sind Berechnungsmodelle mit einer feinen Balance zwischen Genauigkeit und Effizienz erforderlich. Die großen Deformationen, stark anisotropen Struktureigenschaften und kleinen Abmessungen der Festigkeitsträger gegenüber denen des Bauteils bedürfen einerseits einer detaillierten Modellierung, andererseits sind die kritischen Bereiche in diesen Bauteilen räumlich stark begrenzt, sodass eine Reduktion des Berechnungsaufwands erstrebenswert ist. Diese Modellreduktion führt zu Simulationen mit geringer Rechenzeit, die für eine praxistaugliche Optimierung von Hybridcord-Elastomer-Verbunden unerlässlich sind. Die beiden Hauptschwerpunkte der vorliegenden Arbeit bilden die kontinuumsmechanische Modellierung von Hybridcorden und die Erstellung repräsentativer Volumenelemente hochbeanspruchter Hybridcord-Elastomer-Verbunde. Aufbauend auf einem anisotropen Plastizitätsmodell zur Erfassung der Reibung in Multifilamentgarnen stellt ein Finite-Elemente-Modell zur Simulation der Verzwirnung von Hybridcorden das Fundament der Arbeit dar. Anhand experimenteller Ergebnisse aus Zug- und Torsionsversuchen sowie einem Vergleich mit Querschnittsaufnahmen wird gezeigt, dass das Modell die komplexen Eigenschaften eines Hybridcords abbilden kann. Die Grundlage der repräsentativen Volumenelemente stellt eine Erweiterung der klassischen periodischen Randbedingungen dar, die eine Berücksichtigung von Krümmungen und Drucklasten ermöglicht. Das Modell eignet sich daher, die Beanspruchungen in den hochbelasteten Bereichen textilverstärkter Elastomerbauteile wie der Rollfalte einer Luftfeder effizient zu analysieren. Mittels Parameterstudien werden abschließend Hybridcorde und Hybridcord-Elastomer-Verbunde untersucht und einige Hinweise für eine optimale Gestaltung hinsichtlich minimaler Beanspruchungen des Elastomers, des Hybridcords sowie der Grenzfläche gegeben.:Inhaltsverzeichnis Abkürzungs- und Symbolverzeichnis VIII 1 Einleitung 1 2 Grundlagen der Mathematik und der Mechanik 6 2.1 Tensoralgebra und -analysis 6 2.2 Nichtlineare Kontinuumsmechanik 11 2.3 Nichtlineare Finite-Elemente-Methode 16 3 Einordnung in den Stand der Forschung 22 4 Experimentelle Untersuchungen 26 4.1 Charakterisierung der Standardcorde 26 4.2 Charakterisierung der Hybridcorde 33 5 Materialmodelle für Multi lamentgarne 38 5.1 Anisotropes Plastizitätsmodell der Filamentreibung 38 5.2 Numerische Lösung der Materialgleichungen 43 5.3 Analytische Lösung für reibungsfreies Gleiten 48 5.4 Modellierung des thermischen Schrumpfens 50 6 FEM-basierte Modellierung von Hybridcorden 53 6.1 Simulation der Verzwirnung eines Standardcords 53 6.2 Erweiterung des Berechnungsmodells auf Hybridcorde 60 6.3 Analytisches Modell der Geometrie eines Hybridcords 65 6.4 Qualitative Charakterisierung des Hybridcordmodells 74 6.5 Parameteridenti kation und Validierung 83 6.6 Optimierungsbeispiele 92 7 Schalenartige RVEs für Cord-Elastomer-Verbunde 96 7.1 Geometrie der Axial- und der Kreuzlage 96 7.2 Erweiterte periodische Randbedingungen 98 7.3 E ektive Schaleneigenschaften 111 7.4 Berücksichtigung der Drucklast 118 7.5 Diskretisierung der RVEs 122 7.6 Submodelltechnik 128 7.7 Parameterstudien an Hybridcord-Elastomer-Verbunden 135 8 Zusammenfassung und Ausblick 146 Literaturverzeichnis 151 / The analysis of stresses and strains within textile-reinforced rubber components like air springs, tyres, driving belts, and tubes requires accurate as well as efficient computational models. On the one hand, the large deformations, the composite's strongly anisotropic properties, and the large ratio between the size of the cords and the composite necessitate a precise modeling. On the other hand, the highly loaded parts of the components are spatially confined and thus a reduction of the computational effort is desirable. These reduced models are efficient enough for performing engineering-oriented optimizations. The two main priorities of this work are the continuum mechanical modeling of hybrid cords and the development of representative volume elements of highly loaded hybrid cord-rubber composites. Based on an anisotropic plasticity model, which takes the frictional sliding between the filaments within multifilament yarns into account, a finite element model for the simulation of the twisting process of a hybrid cord is the fundament of this work. A comparison with experimental results from tensile and torsional tests as well as images of cross sections validate the proposed hybrid cord model. The basis of the representative volume element is the extension of the classical periodic boundary conditions, which now enable to take the curvature and pressure load into account. Thus, the model is suitable to analyze the highly loaded parts of hybrid cord-rubber composites like the rolling lobe of an air spring. Finally, the set-ups of hybrid cords and hybrid cord-rubber composites are analyzed by means of parameter studies to obtain a minimized loading of the rubber, yarns, and their interface.:Inhaltsverzeichnis Abkürzungs- und Symbolverzeichnis VIII 1 Einleitung 1 2 Grundlagen der Mathematik und der Mechanik 6 2.1 Tensoralgebra und -analysis 6 2.2 Nichtlineare Kontinuumsmechanik 11 2.3 Nichtlineare Finite-Elemente-Methode 16 3 Einordnung in den Stand der Forschung 22 4 Experimentelle Untersuchungen 26 4.1 Charakterisierung der Standardcorde 26 4.2 Charakterisierung der Hybridcorde 33 5 Materialmodelle für Multi lamentgarne 38 5.1 Anisotropes Plastizitätsmodell der Filamentreibung 38 5.2 Numerische Lösung der Materialgleichungen 43 5.3 Analytische Lösung für reibungsfreies Gleiten 48 5.4 Modellierung des thermischen Schrumpfens 50 6 FEM-basierte Modellierung von Hybridcorden 53 6.1 Simulation der Verzwirnung eines Standardcords 53 6.2 Erweiterung des Berechnungsmodells auf Hybridcorde 60 6.3 Analytisches Modell der Geometrie eines Hybridcords 65 6.4 Qualitative Charakterisierung des Hybridcordmodells 74 6.5 Parameteridenti kation und Validierung 83 6.6 Optimierungsbeispiele 92 7 Schalenartige RVEs für Cord-Elastomer-Verbunde 96 7.1 Geometrie der Axial- und der Kreuzlage 96 7.2 Erweiterte periodische Randbedingungen 98 7.3 E ektive Schaleneigenschaften 111 7.4 Berücksichtigung der Drucklast 118 7.5 Diskretisierung der RVEs 122 7.6 Submodelltechnik 128 7.7 Parameterstudien an Hybridcord-Elastomer-Verbunden 135 8 Zusammenfassung und Ausblick 146 Literaturverzeichnis 151

Page generated in 0.1439 seconds