• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Les invariants de la chaleur en dimensions 1 et 2, et application à la hiérarchie de Korteweg-De Vries

Gagné, Jean-Sébastien January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

"När ljuset börjar falla lika" : Sökandet efter en jämlik modernitet i Sonja Berg Pleijels Java-serie

Almgren, Sissel January 2020 (has links)
Denna uppsats undersöker en barnbokstrilogi, som skrevs av Sonja Berg Pleijel under sjuttiotalet, och som utspelar sig under de sista åren av nederländskt kolonialt styre i nuvarande Indonesien, och under tiden för den japanska invasionen. I uppsatsen undersöker jag hur två av modernitetens utopier kontrasteras emot varandra, den ena är idén om ett gott kolonialt styre, och den andra är idén om en värld där rättvisa och frihet råder. I alla tre böcker visas exempel upp på varför ett etiskt kolonialt styre varken är möjligt eller önskvärt, och hur utopin om en rättvis värld kan realiseras inom den enskilde människan, även om den inte kan realiseras i världen. För att komma åt dessa frågor kommer jag att sätta boken i ett historiskt idésammanhang, och diskutera de tankar som hörde till de ethische politiek, som var den officiella koloniala policyn i Nederländerna under den tid som boken utspelar sig. Dessa idéer uttrycks ibland av bokens karaktärer, och dessa argumenteras alltid emot eller avslöjas som ohållbara eller felaktiga. Jag kommer dessutom att jämföra bokserien med några barnböcker som gavs ut i Nederländerna under trettio- och fyrtiotalet, och som var tydligt inspirerade av denna tankeströmning. Genom att jämföra Sonja Berg Pleijels böcker med dessa blir argumenten emot denna idéströmning i dessa böcker, och därmed analysen av de två kontrasterande modernitetsprojekten ännu tydligare. Dessutom sätter jag in Sonja Berg Pleijels böcker i det svenska sjuttiotalssammanhang i vilket de skrevs.
3

Domaines nodaux et points critiques de fonctions propres d’opérateurs de Schrödinger

Charron, Philippe 06 1900 (has links)
La présente thèse porte sur les fonctions propres du laplacien et d’opérateurs de Schrödinger en dimension quelconque. Plus précisément, pour une variété (M,g) de dimension d et une fonction V : M → R, on considère les solutions de l’équation suivante: (∆_g + V ) f_λ = λ f_λ . On appelle l’opérateur ∆_g + V un opérateur de Schrödinger et V le potentiel. Le cas le plus simple et le plus étudié est le laplacien (on pose V ≡ 0 sur M ). Si M est compacte et sans bord, alors il existe une suite 0 = λ_0 < λ_1 ≤ λ_2 -> +∞ qui forme le spectre de ∆_g et une suite de fonctions propres f_n qui satisfont à ∆_g f_n = λ_n f_n . Cette propriété est aussi respectée pour beaucoup de potentiels et de variétés. Premièrement, nous avons étudié le nombre de domaines nodaux des fonctions propres quand la valeur propre tend vers l’infini. Les domaines nodaux d’une fonction f sur M sont les composantes connexes de l’ensemble M \f^{−1} (0). Ils nous permettent de mesurer le caractère oscillatoire de f en comptant le nombre de fois où f change de signe. L’objectif principal de la thèse était de généraliser le théorème de Pleijel [52] sur le nombre de domaines nodaux des fonctions propres du laplacien à d’autre opérateurs de Schrödinger. Dans l’article [2], nous avons montré que la borne du théorème de Pleijel s’applique aussi à l’oscillateur harmonique quantique dans R^d . De plus, nous avons remarqué que cette borne pouvait être améliorée en fonction de la forme quadratique qui définit le potentiel. Ensuite, dans l’article [3], nous avons généralisé le résultat obtenu dans [2] à une large classe de potentiels radiaux, incluant des potentiels qui tendent vers zéro à l’infini ou ayant une singularité à l’origine. Cela inclut le potentiel de Coulomb, qui modélise un atome d’hydrogène isolé dans l’espace. Pour ces potentiels, nous considérons les valeurs propres strictement inférieures au spectre essentiel. Nous avons aussi étudié les points critiques des fonctions propres du laplacien. Jusqu’à tout récemment, il y avait seulement une borne inférieure sur le nombre de points critiques pour certaines variétés [36], mais il n’y avait pas de borne supérieure connue. En 2019, Buhovsky, Logunov et Sodin ont construit une métrique sur T^2 et une suite de fonctions propres du laplacien qui ont toutes une infinité de points critiques. Dans l’article [4], nous utilisons une nouvelle méthode pour construire des métriques sur T^2 et S^2 et des fonctions propres pour ces métriques qui ont une infinité de points critiques. De plus, nous montrons que ces métriques peuvent être arbitrairement proches de la métrique plate sur T^2 et de la métrique standard sur S^2 . Ces métriques donnent aussi des contre-exemples à la conjecture de Courant-Hermann sur le nombre de domaines nodaux des combinaisons linéaires de fonctions propres du laplacien. / The theme of this thesis is the study of the eigenfunctions of the Laplacian and Schrödinger operators. Let (M,g) be a manifold and V : M → R. We are looking at solutions of the following equation: (∆_g + V ) f_λ = λ f_λ . The operator ∆_g + V is called a Schrödinger operator and V is called the potential. The simplest and most studied example is the Laplacian (we put V ≡ 0 on M ). If M is compact and without boundary, then there exists a sequence 0 = λ_0 < λ_1 ≤ λ_2 -> +∞ that makes the spectrum of ∆_g and a sequence of eigenfunctions f_n such that ∆_g f_n = λ_n f_n . This decomposition also holds for various potentials and manifolds. Firstly, we studied the nodal domains of the eigenfunctions as the eigenvalues tend to infinity. The nodal domains of a function f on M are the connected components of M \f^{−1} (0). They can be used to understand the oscillatory character of eigenfunctions by counting the number of times that f changes sign. The principal goal of this thesis was to generalize Pleijel’s nodal domain theorem [52] to other Schrödinger operators. In the article [2], we showed that the upper bound in Pleijel’s theorem also holds for the quantum harmonic oscillator. Furthermore, this bound can be improved depending on the quadratic form that defines the potential. Afterwards, in the article [3], we generalized the result from [2] to a large class of radial potentials, including ones that tend to zero at infinity. These include the Coulomb potential, which modelizes the hydrogen atom in free space. We also studied the number of critical points of Laplace eigenfunctions. Until recently, there were only known lower bounds for certain manifolds [36], but no upper bound was known. In 2019, Buhovsky, Logunov and Sodin [18] constructed a metric on T^2 and a sequence of Laplace eigenfunctions which all have infinitely many critical points. In our article [4], we used a different method to create metrics on T^2 and S^2 and Laplace eigenfunctions for these metrics that have infinitely many critical points. Furthermore, these metrics can be taken arbitrarily close to the flat metric on T^2 and the round metric on S^2. These constructions also provide strong counterexamples to the Courant-Hermann conjecture on the number of nodal domains of linear combinations of Laplace eigenfunctions.
4

Théorème de Pleijel pour l'oscillateur harmonique quantique

Charron, Philippe 08 1900 (has links)
L'objectif de ce mémoire est de démontrer certaines propriétés géométriques des fonctions propres de l'oscillateur harmonique quantique. Nous étudierons les domaines nodaux, c'est-à-dire les composantes connexes du complément de l'ensemble nodal. Supposons que les valeurs propres ont été ordonnées en ordre croissant. Selon un théorème fondamental dû à Courant, une fonction propre associée à la $n$-ième valeur propre ne peut avoir plus de $n$ domaines nodaux. Ce résultat a été prouvé initialement pour le laplacien de Dirichlet sur un domaine borné mais il est aussi vrai pour l'oscillateur harmonique quantique isotrope. Le théorème a été amélioré par Pleijel en 1956 pour le laplacien de Dirichlet. En effet, on peut donner un résultat asymptotique plus fort pour le nombre de domaines nodaux lorsque les valeurs propres tendent vers l'infini. Dans ce mémoire, nous prouvons un résultat du même type pour l'oscillateur harmonique quantique isotrope. Pour ce faire, nous utiliserons une combinaison d'outils classiques de la géométrie spectrale (dont certains ont été utilisés dans la preuve originale de Pleijel) et de plusieurs nouvelles idées, notamment l'application de certaines techniques tirées de la géométrie algébrique et l'étude des domaines nodaux non-bornés. / The aim of this thesis is to explore the geometric properties of eigenfunctions of the isotropic quantum harmonic oscillator. We focus on studying the nodal domains, which are the connected components of the complement of the nodal (i.e. zero) set of an eigenfunction. Assume that the eigenvalues are listed in an increasing order. According to a fundamental theorem due to Courant, an eigenfunction corresponding to the $n$-th eigenvalue has at most $n$ nodal domains. This result has been originally proved for the Dirichlet eigenvalue problem on a bounded Euclidean domain, but it also holds for the eigenfunctions of a quantum harmonic oscillator. Courant's theorem was refined by Pleijel in 1956, who proved a more precise result on the asymptotic behaviour of the number of nodal domains of the Dirichlet eigenfunctions on bounded domains as the eigenvalues tend to infinity. In the thesis we prove a similar result in the case of the isotropic quantum harmonic oscillator. To do so, we use a combination of classical tools from spectral geometry (some of which were used in Pleijel’s original argument) with a number of new ideas, which include applications of techniques from algebraic geometry and the study of unbounded nodal domains.

Page generated in 0.0242 seconds