Spelling suggestions: "subject:"pneumatic"" "subject:"pneumatically""
1 |
Development and testing of controller that introduces the functionality to lift the second front axle on a heavy vehicle / Utveckling och testning av en regulator som introducerar funktionaliteten att lyfta den andra framaxeln på ett tungt fordonVikgren, Mattias January 2021 (has links)
The transition to more environmentally sustainable transports, as well as rising fuel prices create a demand for efficient means of transportation. Liftable axles have shown potential to save fuel and reduces tire wear on heavy vehicles. This thesis proposes a simulation environment and a control method for the electronically controlled air suspension system on a four axle truck that enables axle lifting. The goal of the work is to propose a control method that fulfills certain safety criteria and is robust to disturbances introduced by an external un-modeled controller. A simulation environment is proposed, based upon two different physical models of the suspension system. The first model offers simplicity for the initial tuning of the controller and the second model serves as a platform for more realistic testing of the controller before the final vehicle test. The results from the vehicle tests show that the proposed controller is able to regulate the pressure in the suspension bellows to the desired load distribution between the axles of the vehicle, while the vehicle is maintaining a certain height above ground. The vehicle test showed that it was difficult to read the correct pressure in the suspension bellows when the valves controlling the airflow in and out of the suspension bellow were open. A method for compensating the error when the valves are open is proposed. / Övergången till hållbara och miljövänliga transporter samt stigande bränslepriser skapar en efterfrågan av mer effektiva transportmedel. Lyftbara axlar har visats medföra minskad bränsleförbrukning och däckslitage. Denna uppsats föreslår en simuleringsmiljö samt en metod för reglering av det elektroniskt styrda luftfjädringssystemet på en fyraxlig lastbil som möjliggör lyftning av en axel. Målet med arbetet är att föreslå en metod för reglering av systemet som uppfyller en rad säkerhetskriterier och är robust för störningar introducerade av en extern, icke-modellerad styrenhet. Den föreslagna simuleringsmiljön är baserad på två olika fysiska modeller av fjädringssystemet. Den första modellen karakteriseras av dess enkelhet och används för inledande testning och justering av regulatorn. Den andra modellen används för mer realistisk testning av regulatorn innan det avslutande fordonstestet. Resultatet från fordonstesterna visar att den föreslagna regulatorn kan reglera trycket i luftbälgen till den önskade lastfördelningen mellan axlarna på fordonet medan dess höjd bibehålls. Under fordonstestet konstaterades att det inte gick att avläsa det korrekta trycket i luftbälgen när ventilerna som styr luftflödet till och från luftbälgen var öppna. En metod för att kompensera felet som uppstår när ventilerna är öppna föreslås.
|
2 |
Investigation of the transient nature of rolling resistance on an operating Heavy Duty VehicleLundberg, Petter January 2014 (has links)
An operating vehicle requires energy to oppose the subjected driving resistances. This energy is supplied via the fuel combustion in the engine. Decreasing the opposing driving resistances for an operating vehicle increases its fuel efficiency: an effect which is highly valued in today’s industry, both from an environmental and economical point of view. Therefore a lot of progress has been made during recent years in the area of fuel efficient vehicles, even though some driving resistances still rises perplexity. These resistances are the air drag Fd generated by the viscous air opposing the vehicles propulsion and the rolling resistance Frr generated mainly by the hysteresis caused by the deformation cycle of the viscoelastic pneumatic tires. The energy losses associated with the air drag and rolling resistance account for the majority of the driving resistances facing an operating vehicle, and depends on numerous stochastic and ambient parameters, some of which are highly correlated both within and between the two resistances. To increase the understanding of the driving mechanics behind the energy losses associated with the complexity that is rolling resistance, a set of complete vehicle tests has been carried out. These tests were carried out on the test track Malmby Fairground, using a Scania CV AB developed R440 truck equipped with various sensors connected in one measurement system. Under certain conditions, these parameters can allow for an investigation of the rolling resistance, and a separation of the rolling resistance and air drag via explicit subtraction of the air drag from the measured traction force. This method is possible since the aerodynamic property AHDVCd(β) to some extent can be generated from wind tunnel tests and CFD simulations. Two measurement series that enable the above formulated method of separation were designed and carried out, using two separate measurement methods. One which enables the investigation of the transient nature of rolling resistance as it strives for stationarity, where the vehicle is operated under constant velocities i.e. no acceleration, and one using the well established method of coastdown, where no driving torque is applied. The drive cycles spanned a range of velocities, which allowed for dynamic and stationary analyses of both the tire temperature- and the velocity dependence of rolling resistance. When analysing the results of the transient analysis, a strong dependence upon tire temperature for given constant low velocity i.e. v ≤ 60 kmh−1 was clearly visible. The indicated dependency showed that the rolling resistance decreased as the tire temperature increased over time at a given velocity, and vice versa, towards a stationary temperature and thereby rolling resistance. The tire temperature evolution from one constant velocity to another, took place well within 50 min to a somewhat stationary value. However, even though the tire temperature had reached stationarity, rolling resistance did not; there seemed to be a delay between stationary tire temperature, and rolling resistance. The results did not indicate any clear trends for v ≥ 60 kmh−1, where the results at v = 80 kmh−1 were chaotic. This suggests that some additional forces were uncompensated for, or that the compensation for air drag was somehow wrongly treated at higher velocities. Several factors ruled out any attempts at proposing a new rolling resistance model. These included: the chaotic results for v = 80 kmh−1, the delayed rolling resistance response upon tire temperature stabilization, and the lack of literature support for the observed tendency. The results from the coastdown series on the other hand, showed good agreement with a dynamical model suggested in literature. The stationary temperature behaviour for the considered velocity range at assumed constant condition is also supported in literature. Finally, an investigation of the aerodynamic property AHDVCd inspired by ongoing work in ACEA (European Automobile Manufacturers’ Association), was carried out assuming both zero and non-zero air drag at low velocities. The results indicated surprisingly good agreement with wind tunnel measurements, especially when neglecting air drag at low velocities: as suggested by ACEA. / För att övervinna de motstånd som ett fordon utsätts för under drift krävs energi, vilket levereras genom förbränningen av bränsle. Genom att minska de körmotstånd som ett fordon utsätts för under drift, kan man öka dess energieffektivitet. Denna potential är idag högt värderad i fordonsindustrin, både ur ett miljömässigt och ekonomiskt perspektiv. På senare år har stora framsteg gjorts inom området energieffektiva fordon, men fortfarande råder det förvirring kring de energiförluster som förknippas med luftmotstånd Fd och rullmotstånd Frr, där luftmotståndet skapas av den omkringliggande viskösa luften, medan rullmotståndet genereras av hysteresen som uppstår när fordonets viskoelastiska pneumatiska däck utsätts för deformation. De energiförluster som förknippas med luft- och rullmotstånd motsvarar den största delen av de motstånd som ett fordon påverkas av, och beror på en mängd stokastiska och yttre parametrar, varav vissa är starkt korrelerade både inom och mellan nämnda motstånd. För att förbättra förståelsen kring dessa energiförluster, med fokus på förståelsen av rullmotstånd, har ett antal helfordonstest genomförts. Dessa genomfördes på provbanan Malmby Fairground med en R440 lastbil från Scania CV AB, utrustad med en mängd sensorer sammankopplade i ett mätsystem. Det uppbyggda mätsystemet möjliggjorde samtida mätningar av bl.a. drivande moment, motorvarv, fordonshastighet, däcktemperatur, omkringliggande lufts hastighet och dess riktning. Under specifika förhållanden kunde dessa parametrar möjliggöra analys av rullmotstånd genom en explicit subtraktion av luftmotstånd från den uppmätta drivande kraften. Denna metod är möjlig tack vare en förhållandevis bra modell av ekipagets aerodynamiska egenskap AHDVCd(β), som generats från vindtunneltest och CFD simuleringar. Två körcykler som möjliggjorde ovan formulerade separation designades och genomfördes. Dessa använder två skilda mätmetoder, varav den ena möjliggör analys av rullmotståndets övergående förlopp från dynamiskt till stationärt genom att hålla konstant hastighet. Den andra studerade det dynamiska förloppet genom den väletablerade metoden utrullning, dvs. utan något drivande moment. Dessa körcyklar genomfördes, för ett antal hastigheter, vilket möjliggjorde analys av både hastighets- och däcktemperaturberoendet hos rullmotstånd, under dynamiska såväl som stationära förlopp. Analysen av rullmotståndets dynamik i strävan mot stationära förhållanden visade på ett starkt temperaturberoende vid låga hastigheter dvs. v ≤ 60 kmh−1. Beroendet visade på att rullmotståndet avtog med ökande däcktemperatur och vice versa, tills dess att en någorlunda stationär temperatur för given hastighet uppnåtts. Däcktemperaturen stabiliserades till ett nytt stationärt värde inom 50 min från att hastigheten ändrats. Resultaten tyder dock på att även om stationär däcktemperatur uppnåtts finns det en fördröjning i rullmotståndets tidsspann innan rullmotståndet stabiliserat sig. För högre hastigheter, dvs. v ≥ 60 kmh-1, var dock inga klara trender synliga, varken i hastighet eller temperatur och resultaten vid v = 80 kmh-1 var kaotiska. Detta antyder att man missat att kompensera för någon kraft vid höga hastigheter, alternativt att man på något sätt kompenserar fel för luftmotståndet vid högre hastigheter. Flera faktorer hindrade försök att föreslå någon ny rullmotståndsmodell. Dessa faktorer inkluderar det kaotiska resultatet vid v = 80 kmh-1, tidsfördröjningen mellan stationärt rullmotstånd och däcktemperatur samt att resultatet för antagna stationära värden inte finner stöd i litteraturen. Resultatet från utrullningsprovet överstämmer dock bra med tidigare föreslagen dynamisk modell, samt att resultaten av beteendet hos stationär temperatur för olika hastigheter även de överensstämmer med och finner stöd i litteraturen. Slutligen har en studie kring den aerodynamiska egenskapen AHDVCd, inspirerad av pågående arbete inom ACEA (European Automobile Manufacturers’ Association) utförts både med antagandet av ett noll- skilt och med ett försumbart luftmotstånd vid låga hastigheter. Resultatet visar på en överraskande god överensstämmelse med vindtunnelmätningar, framför allt under antagandet av försumbart luftmotstånd vid låga hastigheter i enlighet med förslagen metod från ACEA.
|
3 |
Dynamic Modelling of a Fluidic Muscle with a Comparison of Hysteresis Approaches / Dynamisk Modellering av en Fluidisk Muskel med en Jämförelse av HysteresmetoderAntonsson, Tess January 2023 (has links)
n recent years, there has been a surge in interest and research into the utilisation of soft actuators within the field of robotics, driven by the novel capabilities of their inherently compliant material. One such actuator is the Pneumatic Artificial Muscle (PAM) which offers a high power-to-mass ratio, compliance, safety, and biological mimicry when compared to their traditional counterparts. However, because of their flexible and complex physical structure and the compressibility of air inside the PAM, they exhibit nonlinear dynamic behaviour, largely due to the influence of the hysteresis phenomenon. In order to implement strategies to counteract this effect, it first needs to be modelled. As such, this thesis investigates two approaches, namely the Maxwell-Slip (MS) and generalised Bouc-Wen (BW) models. Firstly, the test muscle's initial braid angle, maximum displacement, and maximum force are determined to establish the static force using a modified model. Data is then collected on the PAM's force-displacement hysteresis for 2-6 bar of pressure. Using the results from these experiments, the MS and BW model parameters are identified through optimisation. With the static and hysteresis force components characterised, two complete dynamic models are created. The findings show that, when compared to the collected force-displacement data, the BW model has greater accuracy for all pressures except at 4 bar, although both approaches demonstrate results within a satisfactory margin. Lastly, a model validation is conducted to compare the models using a new dataset, separate from the one on which they were trained. Data for this test is recorded at a pressure of 4 bar with a more complex reference that covers four different regions of the muscle's displacement range. Thereafter, both dynamic models are applied to assess their performance. It is evident from the results that the BW model produces a better outcome than the MS, achieving a normalised error of 5.3746% as compared to the latter's 12.835%. The higher accuracy of the generalised BoucWen method is likely due to it having a more complex structure, specialised parameters, and the ability to model asymmetric hysteresis. The Maxwell-Slip model may however still be preferable in some applications due to its relative simplicity and faster optimisation. / Under de senaste åren har intresset och forskningen ökat kring användningen av mjuka ställdon inom robotik, drivet av den innovativa potentialen som erbjuds av egenskaperna hos deras naturligt flexibla material. Ett sådant ställdon är den Pneumatiska Artificiella Muskeln (PAM) som erbjuder hög kraft i förhållande till vikten, elasticitet, säkerhet och biologisk imitation jämfört med dess traditionella motsvarigheter. Trots dessa fördelar så uppvisar PAM:s ett icke-önskvärt olinjärt dynamiskt beteende, till stor del på grund av deras flexibla och komplexa fysiska struktur samt kompressibiliteten av luft inuti PAM:en. Dessa olinjäriteter orsakar hysteresfenomenet i muskeln. För att implementera strategier för att kunna motverka denna effekt så måste den först modelleras. Till följd därav så undersöker denna avhandling två tillvägagångssätt, nämligen Maxwell-Slip (MS) och den generaliserade Bouc-Wen (BW) modellen. Inledningsvis identifieras testmuskelns initiala flätvinkel, maximala förskjutning och maximala kraft för att fastställa den statiska kraften med hjälp av en modifierad modell. Data samlas sedan in på PAM:ens kraft-förskjutningshysteres för 2-6 bar av tryck. Med hjälp av resultaten från dessa experiment identifieras MS- och BW-modellparametrarna genom optimering. Med de statiska och hystereskraftskomponenterna karakteriserade kan två kompletta dynamiska modeller framkallas. Resultaten visar att jämfört med den insamlade kraft-förskjutningsdatan har BW-modellen en större noggrannhet för alla tryck förutom vid 4 bar, men båda metoderna uppvisar resultat som är inom en godtagbar marginal. Slutligen genomförs en modellvalidering för att jämföra modellerna med hjälp av ett nytt dataset, annorlunda från den som de tränades på. Datan för detta test mäts vid ett tryck på 4 bar med en mer komplex referens som täcker fyra olika regioner av muskelns förskjutningsområde. Därefter tillämpas båda dynamiska modellerna för att bedöma deras prestanda. Det är uppenbart från resultaten att BW-modellen ger ett bättre resultat än MS-modellen, och uppnår ett normaliserat fel på 5,3746% jämfört med den sistnämndas 12,835%. Den högre noggrannheten hos den generaliserade Bouc-Wen-metoden beror sannolikt på att den har en mer komplex struktur, specialiserade parametrar och förmågan att modellera asymmetrisk hysteres. Maxwell-Slipmodellen kan däremot ändå vara att föredra i vissa sammanhang på grund av dess relativa simplicitet och snabbare optimering
|
4 |
Beräkningsmodell för slagtider av pneumatiska manöverdon : En experimentell och teoretisk studie av beteendet för pneumatiska cylindrar samt manöverdon / Calculation model for determining the stroke time of pneumatic actuators : An experimental and theoretical study regarding the behavior of pneumatic cylinders and actuatorsRydén, Gustav, Anarp, Fredrik January 2020 (has links)
Denna rapport redogör framtagningen av en beräkningsmodell för slagtider av pneumatiska cylindrar och manöverdon. Slagtiderna för ett manöverdon kan bestämmas genom experimentella tester. För att underlätta och minska tiden som krävs i samband med testerna skapas en beräkningsmodell som presenterar teoretiska värden för slagtiderna. Denna beräkningsmodell stämmer kvalitativt överens med de experimentella tester som också genomförs i detta arbete. Testerna genomförs först på en enkel pneumatisk cylinder vilket bidrar till kunskaper om slagkarakteristik och slagtider. Denna kunskap är till hjälp för utveckling av beräkningsmodellen. Under testerna mäts bland annat slagtid, kammartryck och kolvens förflyttning vid en mängd olika driftförhållanden. Testerna visar att en av de mest kritiska parametrarna för beräkningsmodellen är C-värdet, en parameter som beskriver flödeskarakteristiken för pneumatiska komponenter. För att få beräkningsmodellen att fungera väl behöver ett så korrekt C-värde som möjligt användas. Beräkningsmetodiken består i stora drag av samband för fyllning och tömning av pneumatiska volymer samt tryckförändringar i cylinderkamrarna vid kompression och expansion. Med en kombination av dessa ekvationer är det möjligt att beräkna slagtiden. Eftersom beräkningsmodellen vill hållas relativt enkel görs ett antal antaganden om systemets parametrar. Dessa antaganden utvärderas efter deras påverkan på slagtiden. Validering mot experimentella resultat visar att beräkningsmodellen generellt fungerar bättre vid höga matningstryck och kritiska flöden. När matningstrycket är lågt och underkritiska flöden erhålls påverkas slagtiden av många fler parametrar, vilket gör att beräkningsmodellen får något sämre precision. Detta resultat är inte helt oväntat eftersom sambandet för kritiskt flöde är relativt enkelt. / This thesis work describes the development of a calculation model for stroke times of pneumatic cylinders and actuators. The stroke time of an actuator can be determined by experimental tests. To facilitate and reduce the time required in connection with the tests, a calculation model is created which presents theoretical values of the stroke time. This calculation model is qualitatively consistent with the experimental tests carried out in this work. The tests are first carried out on a simple pneumatic cylinder, which contributes to knowledge of stroke characteristics and stroke times. This knowledge is helpful for the development of the calculation model. During the tests the stroke time, chamber pressure and piston movement are measured in a variety of operating conditions. The tests show that one of the most critical parameters for the calculation model is the C value, a parameter that describes the flow characteristics of pneumatic components. To make the calculation model reliable, a reasonable C value need to be used. The calculation method consists largely of equations for filling and emptying of pneumatic volumes as well as pressure changes in the cylinder chambers during compression and expansion. With a combination of these equations it is possible to calculate the stroke time. Since the calculation model wants to be kept relatively simple, several assumptions are made about parameters in the system. These assumptions are evaluated according to their potential and impact on the stroke time. Validation experiments show that the calculation model generally works better at high supply pressures and critical flows. When the supply pressure is low and subcritical flow are obtained, the stroke time is affected by many more parameters, which lower the precision of the calculation model. This result is not entirely unexpected since the critical flow equations are relatively simple.
|
Page generated in 0.0564 seconds