• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 8
  • 1
  • Tagged with
  • 55
  • 55
  • 55
  • 32
  • 20
  • 19
  • 19
  • 16
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Routes to N-Heterocycle Functionalized Poly(arylene ether sulfone)s

Picker, Jesse L. 03 September 2014 (has links)
No description available.
22

Exploration Using Reaction Temperature to Tailor the Degree of Order in Micro-Block Copolymer Proton Exchange Membranes

Buquoi, John Quentin, III 07 June 2010 (has links)
No description available.
23

Modified Poly(arylene ether sulfone) Compositions and their Segmented Block Copolymers

Cureton, LaShonda Tanika 06 December 2010 (has links)
A series of modified poly(arylene ether sulfone)s (PAES) incorporating hexafluoroisopropylidene units and co-monomers, bisphenol A (BA), 4,4′-dihydroxyterphenyl (DHTP) and triptycene-1,4-hydroquinone (TPDH), were synthesized using a polyetherification synthetic method. These thermoplastic PAES were copolymerized with the elastomer, polydimethylsiloxane (PDMS) to form segmented block copolymers. The segmented block copolymers with diverse PAES structures were studied and investigated for their thermal, tensile, and morphological properties. These multiphase segmented block copolymer materials have the potential to impart useful combinations of optical transparency, thermal stability, and enhanced tensile properties, and enhanced environmentally resistant properties for various high impact, high performance applications. In Chapter 2, hexafluoroisopropylidene bisphenol PAES (BAF PAES) segmented block copolymers containing various volume fraction of PDMS were synthesized. Analysis of the segmented block copolymer films by atomic force microscopy (AFM) and small angle x-ray scattering (SAXS) show the materials are microphase separated. Further analysis of the BAF PAES segmented block copolymers by transmission electron microscopy (TEM) show an increased morphological order with decreasing PDMS content, with lamellar morphologies formed at higher or near equal PAES and PDMS volume fractions. Comparatively, the morphological properties of the BAF PAES segmented block copolymers are considerably different from the isopropylidene bisphenol PAES (BA PAES) segmented block copolymer of similar PDMS volume percents. In this document, segmented block copolymers prepared from BA PAES incorporating 4,4′-dihydroxyterphenyl (DHTP) and triptycene-1,4-hydroquinone (TPDH) co-monomers were characterized by proton nuclear magnetic resonance spectroscopy (¹H NMR). Films of these materials, prepared from THF solution, were tested for thermal and tensile properties. These materials provide higher thermal stabilities over the BA PAES segmented block copolymers with thermal degradation ranging 380–435 °C under nitrogen at 5%-wt. loss. Similarly, the PAES incorporating co-monomers gave higher Tg (200 °C) than the BA PAES (183 °C) synthesized in our labs. Previously synthesized BA PAES segmented block copolymers showed plastic to elastomeric tensile properties upon increasing addition of PDMS content. These new segmented block copolymers, incorporating co-monomers, provided comparable results with the reported BA PAES segmented block copolymers analogues. The last research topic discussed in this dissertation covers the preparation of blends from 5% of segmented block copolymer and 95% of Udel®, donated by Solvay Advanced Polymers. The preparation of blends from the segmented block copolymers containing random copolymers led to materials with higher moduli than Udel® as observed by dynamic mechanical analysis (DMA). Tensile measurements performed by Instron also show the blends have high moduli, though no changes in the tensile elongation comparable to Udel®. / Ph. D.
24

Synthesis and Characterization of Multiblock Copolymer Proton Exchange Membranes for High Temperature Fuel Cell Applications

Lee, Hae-Seung 04 June 2009 (has links)
The potential success of a proton exchange membrane (PEM) fuel cell as an alternative energy source depends highly upon the development of high performance PEMs. Typically, state-of-the-art PEMs have been perfluorinated sulfonated ionomer membranes such as Nafion® by DuPont. Although these membranes demonstrate good mechanical and electrochemical properties under moderate operating conditions (e.g., < 80 ºC), their performance at high temperature (e.g., > 80 ºC) and low relative humidity (RH) drastically deteriorates. To overcome these problems, PEM materials with enhanced properties are essential. Recently, the McGrath group has shown that PEM materials with hydrophilic-hydrophobic segments can significantly improve proton conductivity under low RH by forming enhanced hydrophilic domain connectivity. In this dissultation, novel multiblock copolymers based on disulfonated hydrophilic-hydrophobic multiblocks were synthesized and investigated for their potential application as PEMs. The relationship between copolymer chemical composition and resulting properties was probed with a variety of hydrophilic and hydrophobic segments. Most multiblock copolymers in this research were developed with fully disulfonated poly(arylene ether sulfone) (BPS100) as the hydrophilic segment, and various high performance polymers including polyimides, poly(arylene ether sulfone)s, and poly(arylene ether ketone)s as the hydrophobic segment. Ionic groups on the hydrophilic blocks act as proton conducting sites, while the non-ionic hydrophobic segments provide mechanical and dimensional stability. The correlation between the fuel cell performances and the hydrophilic-hydrophobic sequences was also evaluated. The morphological structures of the multiblock copolymers were investigated using tapping mode atomic force microscopy (TM-AFM), transmission electron microscopy (TEM), and dynamic mechanical analysis (DMA). The experiments demonstrated a well-defined nanophase separated morphology. Moreover, changes in block length had a pronounced effect on the development of phase separated morphology of the system. Proton conductivity measurements elucidated the transport process in the system, with the multiblock copolymers demonstrating higher conductivities compared to Nafion and random copolymer systems with similar ion exchange capacity (IEC) values. The new materials are strong candidates for use in PEM systems. / Ph. D.
25

Benign Processing of High Performance Polymeric Foams of Poly(arylene ether sulfone)

VanHouten, Desmond J. 18 December 2008 (has links)
This work is concerned with the production of high performance polymer foams via a benign foaming process. The first goal of this project was to develop a process and the conditions necessary to produce a low density (>80% density reduction) foam from poly(arylene ether sulfone) (PAES). Water and supercritical carbon dioxide (scCO2) were used as the blowing agents in a one-step batch foaming process. Both water and scCO2 plasticize the PAES, allowing for precise control on both the foam morphology and the foam density. To optimize the foaming conditions, both thermogravimetric analysis and differential scanning calorimetery (DSC) were used to determine the solubility and the reduced glass transition temperature (Tg) due to plasticization of the polymer. It was determined that 2 hours was sufficient time to saturate the PAES with water and scCO2 when subjected to a temperature of 220 oC and 10.3 MPa of pressure. Under these conditions, a combination of 7.5% of water and scCO2 were able to diffuse into the PAES specimen, correlating to ~60 oC reduction in the Tg of the PAES. The combination of water and scCO2 produced foam with up to an 80% reduction in density. The compressive properties, tensile modulus, and impact strength of the foam were measured. The relative compressive properties were slightly lower than the commercially available structural foam made of poly(methacrylimide). The second objective of the dissertation was to enhance the compressive properties of the PAES foam, without concern for the foam density. Foam was produced over a range of density, by controlling the cell size, in order to optimize the compressive properties. Carbon nanofibers (CNFs) were also added to the PAES matrix prior to foaming to both induce heterogeneous nucleation, which leads to smaller cell size, and to reinforce the cell walls. Dynamic mechanical thermal analysis (DMTA), on saturated CNF-PAES, was used to determine the reduced Tg due to plasticization and establish the temperature for pressure release during foaming. DMTA proved to be more effective than DSC in establishing quantitative results on the reduction in the Tg. The CNF-PAES foam produced had compressive properties up to 1.5 times the compressive properties of the PAES foam. / Ph. D.
26

High Temperature Polymers for Proton Exchange Membrane Fuel Cells

Einsla, Brian Russel 27 April 2005 (has links)
Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80 C compared to the state-of-the-art PEM (Nafion®); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3′-disulfonate-4,4′-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of Nafion® membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was synthesized in order to investigate this possible advantage and to couple this with the excellent hydrolytic stability of poly(arylene ether)s. The methoxy groups were deprotected to afford reactive phenolic sites and nucleophilic substitution reactions with functional aryl sulfonates were used to prepare simple aryl or highly acidic fluorinated sulfonated copolymers. The proton conductivity and water sorption of the resulting copolymers increased with the ion exchange capacity, but changing the acidity of the sulfonic acid had no apparent effect. / Ph. D.
27

Synthesis and Characterization of Sulfonated Poly (Arylene Ether Sulfone) Copolymers Via Direct Copolymerization: Candidates for Proton Exchange Membrane Fuel Cells

Harrison, William Lamont 13 December 2002 (has links)
A designed series of directly copolymerized homo- and disulfonated copolymers containing controlled degrees of pendant sulfonic acid groups have been synthesized via nucleophilic step polymerization. Novel sulfonated poly (arylene ether sulfone) copolymers using 4,4'-bisphenol A, 4,4'-biphenol, hexafluorinated (6F) bisphenol AF, and hydroquinone, respectively, with dichlorodiphenyl sulfone (DCDPS) and 3,3'-disodiumsulfonyl-4,4'-dichlorodiphenylsulfone (SDCDPS) were investigated. Molar ratios of DCDPS and SDCDPS were systematically varied to produce copolymers of controlled compositions, which contained up to 70 mol% of disulfonic acid moiety. The goal is to identify thermally, hydrolytically, and oxidatively stable high molecular weight, film-forming, ductile ion conducting copolymers, which had properties desirable for proton exchange membranes (PEM) in fuel cells. Commercially available bisphenols were selected to produce cost effective alternative PEMs. Partially aliphatic bisphenol A and hexafluorinated (6F) bisphenol AF produced amorphous copolymers with different thermal oxidative and surface properties. Biphenol and hydroquinone was utilized to produce wholly aromatic copolymers. The sulfonated copolymers were prepared in the sodium-salt form and converted to the acid moiety via two different methodologies and subsequently investigated as proton exchange membranes for fuel cells. Hydrophilicity increased with the level of disulfonation, as expected. Moreover, water sorption increased with increasing mole percent incorporation of SDCDPS. The copolymers' water uptake was a function of both bisphenol structure and degree of disulfonation. Furthermore, the acidification procedures were shown to influence the Tg values, water uptake, and conductivity of the copolymers. Atomic force microscopy (AFM) in the tapping mode confirmed that the morphology of the copolymers could be designed to display nanophase separation in the hydrophobic and hydrophilic (sulfonated) regions. Morphology with either co-continuous hydrophobic or hydrophilic domains could be attained for all the sulfonated copolymers. The degree of disulfonation required for continuity of the hydrophilic phase varied with biphenol structure. Proton conductivity values for the sulfonated copolymers, under fully hydrated conditions, were a function of bisphenol and degree of sulfonation. However, at equivalent ion exchange capacities the proton conductivities were comparable. A careful balance of copolymer composition and acidification method was necessary to afford a morphology that produced ductile films, which were also sufficiently proton conductive. The copolymers of optimum design produced values of 0.1 S/cm or higher, which were comparable to the commercial polyperfluorosulfonic acid material Nafion™ control. / Ph. D.
28

Synthesis, crosslinking and characterization of disulfonated poly(arylene ether sulfone)s for application in reverse osmosis and proton exchange membranes

Paul, Mou 14 August 2008 (has links)
Novel proton exchange (PEM) and reverse osmosis (RO) membranes for application in fuel cell and water purification respectively were developed by synthesis and crosslinking of disulfonated biphenol-based poly (arylene ether sulfone)s (BPS). Crosslinking is a prospective option to reduce the water swelling and improve the dimensional stability of hydrophilic BPS copolymers. Several series of controlled molecular weight, phenoxide-endcapped BPS copolymers were synthesized via direct copolymerization of disulfonated activated aromatic halide monomers. The degree of disulfonation was controlled by varying the molar ratio of sulfonated to non-sulfonated dihalide monomers. The molecular weights of the copolymers were controlled by offsetting the stoichiometry between biphenol and the dihalides. Biphenol was utilized in excess to endcap the copolymers with phenoxide groups, so that the phenoxide groups could be further reacted with a suitable crosslinker. Several crosslinking reagents such as methacrylate, multifunctional epoxy, phthalonitrile and phenylethynyls were investigated. A wide range of crosslinking chemistries i.e. free radical (methacrylate), step growth (epoxy), heterocyclic (phthalonitrile) and acetylenic (phenylethynyl) was explored. The effects of crosslinking on network properties as functions of molecular weight and degree of disulfonation of copolymers, crosslinking time and concentration of crosslinker were studied. The crosslinked membranes were characterized in terms of gel fraction, water uptake, swelling, self-diffusion coefficients of water, proton conductivity, methanol permeability, water permeability and salt rejection. In general, all of the crosslinked membranes had lower water uptake and swelling relative to their uncrosslinked counterparts, and less water uptake and volume swelling were correlated with increasing gel fractions. It was possible to shift the percolation threshold for water absorption of BPS copolymers to a higher ion exchange capacity (IEC) value compared to that of the uncrosslinked copolymers by means of crosslinking. This reduced water uptake increased the dimensional stability of higher IEC materials and extended their application for potential PEM or RO membranes. The reduction in water uptake and swelling also increased the effective proton concentration, resulting in no significant change in proton conductivity of the membranes after crosslinking. The self-diffusion coefficients of water and methanol permeability decreased with crosslinking, indicating restricted water and methanol transport. Therefore an improvement in the selectivity (ratio of proton conductivity to water swelling or methanol permeability) of PEMs for application in either H2/air or direct methanol fuel cells was achieved by crosslinking. The epoxy crosslinked BPS copolymers also had significantly enhanced salt rejection with high water permeability when tested in for RO applications. Reductions in salt permeability with increasing crosslinking density suggested that crosslinking inhibited salt transport through the membrane. In addition to the random copolymers, two series of multiblocks endcapped with either a phenoxide-terminated hydrophilic unit or a hydrophobic unit were synthesized and crosslinked with a multifunctional epoxy. Besides the crosslinking study, the effect of sequence distributions of the hydrophilic and hydrophobic blocks in the multiblock copolymers was also investigated. Similar to randoms, crosslinked multiblocks had lower water uptake and swelling but comparable proton conductivities relative to their uncrosslinked analogues. / Ph. D.
29

Structure-Property Relationships in the Design of High Performance Membranes for Water Desalination, Specifically Reverse Osmosis, Using Sulfonated Poly(Arylene Ether Sulfone)s

Kazerooni, Dana Abraham 19 January 2022 (has links)
Over 30% of the world's population does not have access to safe drinking water, and the need for clean water spans further than just for human consumption. Currently, we use freshwater for growing agriculture, raising livestock, generating power, sanitizing waste, mining resources, and fabricating consumer goods. With that being said, the world is beginning to feel pressure from the excessive freshwater withdrawal compared to the current freshwater supply. This water stress is causing a water crisis. Places including Australia, South Africa, and California in the United States, just to name a few, are beginning to run out of fresh water to support daily societal demands. This is a phenomenon that is indiscriminately observed in all ranges of economically and politically developed countries and environments. However, it is important to note that less politically and economically developed countries especially those in arid climates, experience higher water stress than countries without such qualities. With only 2.5% of the world's water being freshwater and 30% of it being accessible as either ground or surface water, freshwater is a scarce resource, especially with the growing population and society's demand for water. Since the remaining 97.5% of water is composed of either brackish or seawater (saline water sources), one way to overcome the water stress would be to convert saline water into freshwater. As a result, various desalination techniques have been developed in the last 80 years that employ either membrane technology or temperature alterations to desalinate either brackish or seawater. One of the fastest growing methods for producing freshwater is reverse osmosis. Reverse osmosis uses an externally applied pressure, in the form of a cross flow back pressure, to overcome the osmotic pressure produced by the saline gradient across a semi-permeable membrane. The semi permeable membrane commercially consists of an interfacially polymerized aromatic polyamide thin film composite with a polysulfone porous backing that allows water to pass through while barring the transport of salt ions. This research focuses on the development of sulfonated poly(arylene ether sulfone) derivatives with differing amounts of sulfonation and with the ions placed at different structural positions. Previously, such materials were tested as potential high performance fuel cell membranes, but they are also of interest as potential high performance water desalination membranes, specifically for reverse osmosis. Two different methods were used to synthesize the sulfonated polysulfone derivatives: direct polymerization and post-modification of a non-sulfonated active polysulfone. The polysulfones from direct polymerization incorporated specialty sulfonated monomers, which were stoichiometrically controlled during the polymerization. Sulfonated polysulfones that were synthesized from post sulfonation incorporated biphenol and hydroquinone monomer units randomly throughout the polysufone backbones. These units could be sulfonated selectively because of their activation towards electrophilic aromatic substitution with sulfuric acid. Each of the polymers were cast into films ranging between 20-100 microns in thickness and tested for water uptake, hydrated uniaxial tensile properties, crossflow water and salt transport properties, and for crosslinked samples, gel fractions. The water uptakes from all the polysulfones were tuned by the degree of sulfonation or disulfonation present in the polymer. This was either controlled via the presence of a sulfonated monomer or a monomer that was active toward electrophilic aromatic substitution after polycondensation of the polysulfone. All polymers exhibited increases in their water uptake as the degree of sulfonation increased. We also observed a decreasing trend in the hydrated mechanical properties of the films for all the high molecular weight linear polymers as the water uptake was increased. The directly polymerized sulfonated polysulfones were found to have high hydrated elastic moduli ranging between 400 and 1000 MPa, while the post sulfonated counterparts (with either hydroquinone or biphenol incorporated in their structures) exhibited elastic moduli ranging between 1000 and 1500 MPa. It is important to note that the structures of the polymers were slightly different from one another because of the technique used to synthesize them. Thus, the increases in hydrated moduli among polymers synthesized via different routes may have influences from differences in chemical structures. Some of the polymers with higher degrees of sulfonation were synthesized as amine terminated oligomers with varying controlled molecular weights. The two targeted molecular weights were 5 and 10 kDa. Those oligomers were then crosslinked with a tetra-functional epoxide agent. The increases in sulfonation allowed for increases in water uptake and in theory, the water throughput through the sulfonated polysulfone membrane. Decreases in hydrated mechanical performance of the crosslinked networks with increasing degrees of sulfonation were also observed, similar to their high molecular weight linear counterparts. The directly polymerized crosslinked networks had salt permeabilities that plateaued at 70% disulfonation for both the 5 and 10 kDa polymers. Thus, we expect disulfonation content greater than 70% would lead to higher water throughput without significant increases in salt transport. / Doctor of Philosophy / A worldwide shortage of freshwater is becoming more problematic by each passing day. The World Health Organization and the United Nation's World Water Assessment Program predict that by 2025, 50-66% of the world's population will be living in a water-stressed area. This includes any area that experiences higher clean water withdrawals than are available. This includes but is not limited to areas that are politically unstable, technologically disadvantaged, resource deficient, located in arid climates, and highly populated. To put this further into perspective, only 2.5% of the available water on earth is freshwater. Freshwater typically has low concentrations of dissolved salts that are safe for human consumption and use. Of the available freshwater, only 30% of it is actually accessible for use through either surface or groundwater reservoirs, making the amount of clean water available for usage already a scarce resource. On the other hand, 97.5% of the world's water is composed of saline water reservoirs in the form of brackish and seawater. Through harnessing, seawater and removing the excess dissolved salt ions, the salt water can be converted to freshwater. Two major methods have been developed to remove the dissolved ions from water through either membrane filtration or thermal phase changes. One of the fastest growing membrane filtration techniques used worldwide is reverse osmosis. Reverse osmosis refers to the use of applied pressure across a semipermeable membrane to desalinate saline water. The semipermeable membrane prevents the migration of salt ions through the membrane while allowing transport of water. This work has focused on developing new polymers that can increase the overall efficiency of water desalination. Different types of high performance sulfonated polysulfone derivative polymers were synthesized and used to make membranes that were subsequently tested for performance. Relationships between the polymer structure, process, and properties were quantified through different analytical techniques. This study showed how the properties of sulfonated polysulfone membranes may be manipulated depending on structural modifications and processing to increase both the material's water throughput and salt rejection.
30

Synthesis and Characterization of Glycomaterials for Antibacterial Applications

Hall, Brady Allen 02 September 2021 (has links)
Every year, millions of people contract antibiotic-resistant bacterial infections, and tens of thousands die from infection-related complications in the United States alone. Bacterial infections are one of the leading causes of death worldwide, especially in healthcare institutes such as hospitals and nursing homes where people are more susceptible to infection and complications. Bacteria can cause infections in any part of the body and often interact with sugar molecules on the surface of cells; once bacteria are attached, the cells stop functioning properly. When a bacterial infection is suspected, samples from the patient's blood or urine are taken to confirm the diagnosis. If the bacterial infection is sever enough, patients are treated with broad-spectrum antibiotics before the type of bacteria is known, and once it has been identified they are given antibiotics that target the specific bacterial strain. The high death rate associated with bacterial infections is largely due to the emergence of antibiotic-resistant bacterial strains. Although antibiotic resistance is present in some naturally occurring bacterial strains, misuse and over-prescription of antibiotics have accelerated the process. To combat the ever-growing threat of antibiotic-resistant bacteria, antibacterial polymers have been developed. Antibacterial polymers prevent bacterial infections by either killing the bacteria themselves or by preventing them from interacting with the body altogether This dissertation primarily focuses on using sugar-containing polymers to prevent bacterial growth. These materials may potentially be used as a replacement for or supplement to traditional antibiotics. / Doctor of Philosophy / All living cells possess a coating of glycomaterials on, or as critical components of their cell walls. Bacteria, including invasive bacterial pathogens, are no exception and have cell walls comprised of peptidoglycans. Glycomaterials on cell surfaces play a role in critical biological processes such as molecular recognition, cellular interaction, infection, and inflammation. Traditional antibiotic remediations are becoming less effective in treating bacterial infections due to the emergence of antibiotic-resistant strains. The formation of biofilms, an extracellular coating composed of polysaccharides, contributes to the antibiotic resistance of bacteria. The development of novel antibiotics is extremely costly and often unsuccessful, with billions in investment often producing zero new drugs. As a result, antibacterial polymers have been investigated as they are comparatively less expensive and offer unique characteristics to combat bacterial infections. Polymers with inherently antibacterial properties, or those that can be conjugated with antibacterial compounds, offer a replacement for traditional antibiotic remediation. To investigate the role of glycomaterials in antibacterial activity, a series of sugar-containing norbornene homopolymers were prepared and evaluated for their antibacterial activity. Protected glycomonomers consisting of galactose, glucose, N-acetyl glucose, and mannose were prepared in a two- or three-step synthesis by first appending an acrylate to the anomeric carbon through Koenigs-Knorr-type chemistry. After generation of the -anomer, the norbornene carboxylate was prepared by the Diels-Alder reaction of the acrylate with cyclopentadiene. Homopolymers with molecular weights ranging from 25–250 KDa were synthesized using ring-opening metathesis polymerization (ROMP) catalyzed by Grubbs 3rd generation catalyst, and subsequently deprotected to reveal the sugar-norbornene. While the galactose polymers showed no bacterial inhibition, those composed of glucose, N-acetyl glucose, or mannose prevented the growth of Escherichia coli (E. coli) and were effective at concentrations as low as 1.25 mg mL-1. Some strains of pathogenic bacteria, such as Clostridioides difficile (formerly known as Clostridium difficile), interfere with the normal cell functions by indirect means, producing toxins that adversely interact with the surrounding tissue. To sequester the toxins produced by C. difficile before they cause damage to the gastrointestinal (GI) tract, polymers containing the -gal epitope, a naturally occurring trisaccharide, were also prepared. The -gal epitope possessing a propyl azide handle at the anomeric carbon was prepared in a 15-step reaction, followed by reaction with an alkyne-functionalized polymer resin using copper-catalyzed azide-alkyne Huisgen cycloaddition. After global deprotection and thorough washing to remove residual copper from the glycomaterial, cell viability studies showed >80% cell survival. While these materials showed good cell viability, the rigorous synthesis of -Gal and the affinity of the polymer scaffolding for copper was a deterrent to further toxin-binding studies. Non-biological surfaces are also often susceptible to bacterial colonization and fouling. Although such materials may be modified to impart antimicrobial properties, their modification may also be a detriment to other key physical properties. To investigate the tradeoffs between material properties and functionalization, we synthesized a series of poly(arylene ether)s from monomers that possessed a modifiable handle and differed only in the pattern of leaving group on the aromatic ring. These polymers were further modified using post-polymerization thiol-ene reactions to evaluate the effect of the side-chains on the material's properties. The regioisomer incorporated into the polymer was found to influence its thermal properties irrespective of the installed functional group, suggesting that new functionality can be incorporated into these polymers without adversely impacting their physical properties.

Page generated in 0.0803 seconds