Spelling suggestions: "subject:"polyethyleneterephthalate"" "subject:"polyethylenterephthalat""
11 |
Struktur, Eigenschaften und Herstellung plasmapolymerisierter Sperrschichten /Göbel, Sebastian Dietrich Oliver. January 2005 (has links)
Techn. Hochsch. Diss., 2005--Aachen.
|
12 |
Einsatz spektroskopischer Verfahren für die Eigenschaftsbestimmung von Polyethylenterephthalat-Multifilamenten /Linnemann, Bernhard. January 2008 (has links)
Techn. Hochsch., Diss.--Aachen, 2007.
|
13 |
Einsatz spektroskopischer Verfahren für die Eigenschaftsbestimmung von Polyethylenterephthalat-MultifilamentenLinnemann, Bernhard January 2007 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2007
|
14 |
Plasmabehandlung und -polymerisation zur Modifizierung von Membranen /Nedelmann, Heinz. January 2001 (has links)
Techn. Universiẗat, Diss.--Hamburg-Harburg, 2000.
|
15 |
Fundamental investigations on the barrier effect of polyester micro fiber fabrics towards particle-loaded liquids induced by surface hydrophobizationIslam, Md. Nazirul 06 November 2004 (has links) (PDF)
As the title implies, the chief goal of the present work is the improvement of the barrier effects of textile fabrics in the medical sector, in particular, in the operating room, which would be an effective safeguard against the causative pathogens allowing the health workers to work in and around hostile atmospheres and to accomplish useful tasks. To overcome the inherent drawbacks of surgical gown from classical fibers of both natural and synthetic origins, polyester micro filament fabric, down to 0.62 dtex per filament, was used to substitute them. Two major pathways have been chosen to render the surface hydrophobic: - Wet-chemical treatment - Plasma modification For the maximum efficiency of a specific wet-chemical, the following application formulations were found to be best effective: pH =4-5 Drying temperature and time=100°C / 90s Pick-up = 80% Curing temperature and time= 160°C / 120s A range of physical and chemical parameters have been found exerting significant influence on the extent of modification of the material: - Wetting agent - Amount of fluorine content in the chemical - Subsequent heat treatment of the finished material after washing - Ironing of the fabric For the plasma enhanced surface fluorination the following plasma gases were used: - Saturated fluorine compounds: CF4 and C2F6 - Reducing agent: H2 and C2H4 The exposure of the substrate to a pure C2F6 discharge resulted in higher hydrophobicity than the substrates exposed to CF4 plasma. Stepwise increased mixture of H2 or C2H4 to a proportionally decreased amount of C2F6 plasma showed a gradual decrease in contact angle and a substantial increase in sliding angle values. In addition to the treatments with gas mixtures a two-step technique, i.e., treatment with C2H4 prior to C2F6 plasma, was applied that appeared to be very promising in modifying the surface characteristics. Both, the contact angles and the sliding angles remaining almost constant on a very high level with increasing amount of C2H4 in the feed composition. An essentially vital concern of the work was the characterization of the treatment effect comprising both physical and chemical aspects. By washing the materials for 20 times no significant impairment of hydrophobic character has been noticed in case of fluorocarbon finishing agents as well as by the surface treated with C2H4 followed by C2F6 plasma (i.e., a two-step technique), wherein a complete loss of hydrophobic effect washing the silicone-treated materials for 10 times was observed. In breathability aspect, the plasma modification was found to be the best-suited technique with zero reduction of air permeability in comparison to wet-chemical finishing. The barrier test as a measure of dye absorption was conducted using protein solution, synthetic and human blood and the efficiency were verified by colorimetric technique. In contrast to pure plasma treatments, modification of the fabric with plasma in two-step treatment as well as with wet-finishing method using fluorocarbon compounds were completely impervious to artificial and real blood. The most striking feature was the zero uptake of the protein solution by all treated surfaces.
|
16 |
Abbau von Polyethylenterephthalat mit PET-Hydrolasen aus Thermobifida fusca KW3Billig, Susan 27 March 2012 (has links) (PDF)
Der Actinomycet T. fusca KW3, isoliert aus Kompost, bildete während der Kultivierung im Mineralsalz-Spurenelement-Vitamin-Minimalmedium nach Zusatz von PET-Fasern eine 52 kDa Carboxylesterase (TfCa), welche effizient zyklische PET Trimere (CTR) hydrolysiert. Die TfCa besitzt einen pI von 4,8, eine Substratspezifität gegenüber kurzkettigen p-Nitrophenyl-Estern und wird durch Phenylmethylsulfonylfluorid (PMSF) und Tosyl-L-Phenylalanin-Chloromethylketon (TPCK) in der Aktivität gehemmt. Die Carboxylesterase hydrolysiert kein Cutin oder Poly-ε-caprolacton (PCL). CTR hingegen wurden durch die TfCa mit einem Km von 0,5 mM und einer Vmax von 9,3 μmol/min/mg bei optimalen Bedingungen (60°C, pH 6) hydrolysiert. Das aktive Zentrum der Carboxylesterase besteht aus den Aminosäuren Ser185, Glu319 und His415, wobei das Serin in das katalytische Motiv G-E-S-A-G eingebettet ist.
Während der Reaktion setzte die TfCa auch Hydrolyseprodukte aus PET-Fasern und -Filmen frei. Der Nachweis der Hydrolyse erfolgte durch Umkehrphasen-Hochleistungsflüssigkeitschromatographie der Abbauprodukte und bei den PET-Filmen zusätzlich mittels Rasterelektronenmikroskopie. Dabei zeigte die Carboxylesterase verglichen mit anderen PET-Hydrolasen eine geringere Effizienz, was durch die Lage des aktiven Zentrums in einer Bindungstasche und der daraus folgenden schlechten Zugänglichkeit für polymere Substrate begründet werden kann. Bei der Hydrolyse der viel kleineren CTR war die TfCa deutlich effektiver, was auf eine höhere Spezifität gegenüber kurzkettigen PET Substraten hinweist.
|
17 |
Abbau von Polyethylenterephthalat mit PET-Hydrolasen aus Thermobifida fusca KW3Billig, Susan 08 February 2012 (has links)
Der Actinomycet T. fusca KW3, isoliert aus Kompost, bildete während der Kultivierung im Mineralsalz-Spurenelement-Vitamin-Minimalmedium nach Zusatz von PET-Fasern eine 52 kDa Carboxylesterase (TfCa), welche effizient zyklische PET Trimere (CTR) hydrolysiert. Die TfCa besitzt einen pI von 4,8, eine Substratspezifität gegenüber kurzkettigen p-Nitrophenyl-Estern und wird durch Phenylmethylsulfonylfluorid (PMSF) und Tosyl-L-Phenylalanin-Chloromethylketon (TPCK) in der Aktivität gehemmt. Die Carboxylesterase hydrolysiert kein Cutin oder Poly-ε-caprolacton (PCL). CTR hingegen wurden durch die TfCa mit einem Km von 0,5 mM und einer Vmax von 9,3 μmol/min/mg bei optimalen Bedingungen (60°C, pH 6) hydrolysiert. Das aktive Zentrum der Carboxylesterase besteht aus den Aminosäuren Ser185, Glu319 und His415, wobei das Serin in das katalytische Motiv G-E-S-A-G eingebettet ist.
Während der Reaktion setzte die TfCa auch Hydrolyseprodukte aus PET-Fasern und -Filmen frei. Der Nachweis der Hydrolyse erfolgte durch Umkehrphasen-Hochleistungsflüssigkeitschromatographie der Abbauprodukte und bei den PET-Filmen zusätzlich mittels Rasterelektronenmikroskopie. Dabei zeigte die Carboxylesterase verglichen mit anderen PET-Hydrolasen eine geringere Effizienz, was durch die Lage des aktiven Zentrums in einer Bindungstasche und der daraus folgenden schlechten Zugänglichkeit für polymere Substrate begründet werden kann. Bei der Hydrolyse der viel kleineren CTR war die TfCa deutlich effektiver, was auf eine höhere Spezifität gegenüber kurzkettigen PET Substraten hinweist.:Inhaltsverzeichnis
1 Einführung 1
1.1 Actinomyceten 1
1.1.1 Klassifizierung 1
1.1.2 Thermobifida (Thermomonospora) fusca 2
1.2 Biopolyester Cutin und Suberin 4
1.2.1 Bestandteile des Cutins 4
1.2.2 Bestandteile des Suberins 5
1.2.3 Struktur der Biopolymere 7
1.3 Hydrolasen 12
1.3.1 Struktur und katalytischer Mechanismus 12
1.3.2 Carboxylesterasen 16
1.3.3 Lipasen 19
1.3.4 Cutinasen 22
1.4 Polyethylenterephthalat 23
1.4.1 Konventionelle PET-Faserbehandlung 24
1.4.2 Charakterisierung von PET 26
1.4.3 Biofunktionalisierung von PET 30
1.4.4 PET-Hydrolasen 38
1.5 Zielsetzung 49
2 Material und Methoden 50
2.1 Materialien 50
2.1.1 Verwendete Mikroorganismen 50
2.1.2 Verwendete Enzyme 50
2.1.3 Größenstandards 51
2.1.3.1 Low Molecular Weight Marker (GE Healthcare) 51
2.1.3.2 Roti®-Mark Standard (Fa. Carl Roth GmbH) 51
2.1.3.3 SpectraTM Multicolor Broad range Protein Ladder (Fermentas) 51
2.1.3.4 PageRulerTM plus prestained protein ladder (Fermentas) 51
2.1.3.5 Kalibrierungskit für pI Bestimmung (pH 3-10, GE Healthcare) 52
2.1.3.6 Kalibrierungskit für die Größenausschlusschromatographie (LMW, GE Healthcare) 52
2.1.4 Chemikalien 53
2.1.5 Geräte und Materialien 55
VI
2.1.6 Software 58
2.1.7 Nährmedien 58
2.1.8 Suberin- und Cutin-Präparationen 60
2.1.9 PET-Substrate für die Abbauuntersuchungen 60
2.1.10 Puffer und Lösungen 60
2.2 Mikrobiologische Methoden 65
2.2.1 Stammhaltung und Kultivierung 65
2.2.2 Mikroskopische Untersuchungen 65
2.2.3 Trockengewichtsbestimmung 65
2.3 Proteinchemische Methoden 66
2.3.1 Proteinaufreinigung der Wildtyp TfCa 66
2.3.2 Proteinaufreinigung der rekombinanten TfCa, TfCut1 und TfCut2 67
2.4 Analytische Methoden 67
2.4.1 Esterase-Aktivitätsbestimmung 67
2.4.1.1 Bestimmung mittels Spektrophotometer 68
2.4.1.2 Bestimmung mittels Plattenleser 68
2.4.2 Cutinase-Aktivitätsbestimmung 68
2.4.3 PCL-Abbauuntersuchung 69
2.4.3.1 Bestimmung mittels Hofbildung 69
2.4.3.2 Bestimmung mittels Plattenleser 69
2.4.4 Quantitative Protein-Bestimmung nach Bradford (1976) 69
2.4.5 SDS Polyacrylamidgelelektrophorese (SDS-PAGE) 70
2.4.5.1 Esteraseaktivitäts-Färbung 70
2.4.5.2 Coomassie-Färbung 71
2.4.5.3 Silberfärbung der Proteine 71
2.4.6 Bestimmung des pI 71
2.4.7 Bestimmung der Molaren Masse 72
2.4.8 Bestimmung der Temperatur und pH-Wert Stabilität 72
2.4.9 Bestimmung der Stabilität gegenüber Inhibitoren 72
2.4.10 Bestimmung der kinetischen Konstanten für die Hydrolyse von p-NP Ester 72
2.4.11 Bestimmung der kinetische Konstanten für die Hydrolyse von CTR 73
2.4.12 Bestimmung optimaler Temperatur und pH-Wert für die Hydrolyse von CTR 73
2.4.13 N-terminale Sequenzierung 73
2.4.14 MALDI-TOF Sequenzierung 74
2.4.15 Abbaustudien 74
VII
2.4.16 Analytik der PET Abbauprodukte 75
2.4.17 Konzentrationabhängige CTR-Abbaustudien 75
2.5 Homologie-Modelling der TfCa und weitere PET-Hydrolasen 76
3 Ergebnisse und Diskussion 77
3.1 Screening nach PET-Hydrolasen aus T. fusca 77
3.1.1 Wachstum von T. fusca KW3 im Czapek-Medium 77
3.1.2 Wachstum von T. fusca KW3 im MSV-Medium 78
3.1.2.1 Esterasebildung mit verschiedenen synthetischen und natürlichen Polyestern 78
3.1.2.2 Esterasebildung mit einer Suberinpräparation 81
3.1.2.3 Esterasebildung mit PET-Fasern 83
3.1.3 Esterasebildung bei T. fusca KW3 DSM 6013, T. fusca DSM 43792 und DSM 43793 mit PET-Fasern und Diethylterephthalat 85
3.2 Charakterisierung der PET-Hydrolasen aus T. fusca KW3 95
3.2.1 Aufreinigung 95
3.2.1.1 Aufreinigung der TfCa 95
3.2.1.2 Aufreinigung der rekombinanten PET-Hydrolasen 105
3.2.2 pI der TfCa 113
3.2.3 Molare Masse der TfCa 113
3.2.4 Temperatur- und pH-Stabilität der TfCa 114
3.2.5 Wirkung von Inhibitoren auf die TfCa 117
3.2.6 Kinetik der Hydrolyse von verschiedenen Esterasesubstraten durch die TfCa 118
3.2.7 Optimale Temperatur und optimaler pH-Wert der CTR-Hydrolyse durch die TfCa 119
3.2.8 Cutinaseaktivität der TfCa 120
3.2.9 PCL-Abbau durch die TfCa 121
3.2.10 N-terminale Sequenz der TfCa 122
3.2.11 MALDI-TOF Sequenzierung der TfCa 123
3.2.12 Homologie-Modeling der TfCa und Vergleich der Struktur mit anderen Hydrolasen 126
3.2.13 Vergleich der TfCa mit bekannten PET-Hydrolasen 128
3.3 Hydrolyse von PET Substraten durch prokaryotische und eukaryotische Hydrolasen 138
3.3.1 Partielle Hydrolyse von APET-Filmen durch die PET-Hydrolasen 140
3.3.2 Partielle Hydrolyse von PET-Fasern durch die PET-Hydrolasen 148
3.3.3 Hydrolyse von PET-Trimeren durch die PET-Hydrolasen 151
4 Zusammenfassung 165
VIII
5 Literaturverzeichnis 166
6 Publikationen 181
7 Poster und Vorträge 182
8 Lebenslauf 183
|
18 |
Fundamental investigations on the barrier effect of polyester micro fiber fabrics towards particle-loaded liquids induced by surface hydrophobizationIslam, Md. Nazirul 30 November 2004 (has links)
As the title implies, the chief goal of the present work is the improvement of the barrier effects of textile fabrics in the medical sector, in particular, in the operating room, which would be an effective safeguard against the causative pathogens allowing the health workers to work in and around hostile atmospheres and to accomplish useful tasks. To overcome the inherent drawbacks of surgical gown from classical fibers of both natural and synthetic origins, polyester micro filament fabric, down to 0.62 dtex per filament, was used to substitute them. Two major pathways have been chosen to render the surface hydrophobic: - Wet-chemical treatment - Plasma modification For the maximum efficiency of a specific wet-chemical, the following application formulations were found to be best effective: pH =4-5 Drying temperature and time=100°C / 90s Pick-up = 80% Curing temperature and time= 160°C / 120s A range of physical and chemical parameters have been found exerting significant influence on the extent of modification of the material: - Wetting agent - Amount of fluorine content in the chemical - Subsequent heat treatment of the finished material after washing - Ironing of the fabric For the plasma enhanced surface fluorination the following plasma gases were used: - Saturated fluorine compounds: CF4 and C2F6 - Reducing agent: H2 and C2H4 The exposure of the substrate to a pure C2F6 discharge resulted in higher hydrophobicity than the substrates exposed to CF4 plasma. Stepwise increased mixture of H2 or C2H4 to a proportionally decreased amount of C2F6 plasma showed a gradual decrease in contact angle and a substantial increase in sliding angle values. In addition to the treatments with gas mixtures a two-step technique, i.e., treatment with C2H4 prior to C2F6 plasma, was applied that appeared to be very promising in modifying the surface characteristics. Both, the contact angles and the sliding angles remaining almost constant on a very high level with increasing amount of C2H4 in the feed composition. An essentially vital concern of the work was the characterization of the treatment effect comprising both physical and chemical aspects. By washing the materials for 20 times no significant impairment of hydrophobic character has been noticed in case of fluorocarbon finishing agents as well as by the surface treated with C2H4 followed by C2F6 plasma (i.e., a two-step technique), wherein a complete loss of hydrophobic effect washing the silicone-treated materials for 10 times was observed. In breathability aspect, the plasma modification was found to be the best-suited technique with zero reduction of air permeability in comparison to wet-chemical finishing. The barrier test as a measure of dye absorption was conducted using protein solution, synthetic and human blood and the efficiency were verified by colorimetric technique. In contrast to pure plasma treatments, modification of the fabric with plasma in two-step treatment as well as with wet-finishing method using fluorocarbon compounds were completely impervious to artificial and real blood. The most striking feature was the zero uptake of the protein solution by all treated surfaces.
|
Page generated in 0.0843 seconds