• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 15
  • 9
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 122
  • 22
  • 19
  • 16
  • 16
  • 13
  • 12
  • 12
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

On the phase behavior and particle formation in polyimide/solvent/nonsolvent ternary systems

Lin, Tingdong 06 June 2008 (has links)
The thermodynamic and kinetic phenomena involved in the formation of sub-micron polyimide particles from polyimide/solvent/nonsolvent ternary systems were studied. A quantitative equilibrium approach was considered in the B-bonding studies of these ternary systems. The effect of H-bonding on the physical properties and phase behavior of the ternary systems was investigated. The critical requirements for the control of polymer particle size and size distribution during particle formation by precipitation from solution are discussed. It was found that the equilibrium constants, enthalpies and entropies of H-bonding in the ternary systems containing water can be obtained by analysis of the <sup>l</sup>H_NMR data. Using the calculated equilibrium constants, the determination of the concentration of H-bonds between N-methylpyrrolidinone (NHP) and water is possible. We found a very good correlation between the B-bond concentrations and the deviations of the specific volume and viscosity from ideal mixing in the NHP/water mixtures. / Ph. D.
92

HIGH FREQUENCY DIELECTRIC PROPERTIES OF POLYIMIDES FOR MULTILAYER INTERCONNECT STRUCTURES

Hinedi, Mohamad Fahd, 1964- January 1987 (has links)
One of the most important electrical requirements in high performance electronic systems or high speed integrated circuits, is to process larger numbers of electrical signals at much higher speeds. Signal propagation delay must be minimized in order to maximize signal velocities. Therefore, material with low dielectric constant and low dissipation factor is being sought. In this thesis research measurements of dielectric constant and dissipation factor were performed on commercially available polyimides that are used in multilayer interconnect structures. Capacitor structures with a polyimide dielectric were measured up to a 1GHz frequency and 220°C temperature. Polyimides were concluded to be compatible for use in high performance systems such as multilayer interconnect structures.
93

ETUDE ET REALISATION DE MATRICES DE MICROCAPTEURS INFRAROUGES EN TECHNOLOGIE SILICIUM POUR IMAGERIE BASSE RESOLUTION

Haffar, Mehdi 29 November 2007 (has links) (PDF)
La détection de présence humaine est devenu un enjeu important dans de nombreux domaines comme la domotique ou l'automobile, par exemple. Les détecteurs infrarouges grand public, actuellement disponibles sur le marché ne sont pas aptes à faire la distinction entre une personne ou un animal domestique de façon absolument fiable. Pour répondre à ce problème, les matrices imageantes infrarouges classiques sont beaucoup trop onéreuses et trop performantes. C'est pourquoi nous avons choisi de développer des réseaux de microcapteurs de rayonnement infrarouge de quelques pixels avec le souci permanent de minimiser au maximum le coût de fabrication. Ces microcapteurs de type thermoélectrique, sont basés sur une structure originale permettant de les utiliser à l'air libre, sans encapsulation. Un modèle mathématique, prenant en compte les caractéristiques technologiques du microcapteur ainsi que son environnement thermique, a été mis au point et permet de définir la structure optimale à partir d'un cahier des charges. Une étude approfondie a été menée pour chaque étape technologique nécessaire à la réalisation de ces microcapteurs, depuis la membrane compensée en contrainte, jusqu'au dépôt de la couche de polyimide constituant l'absorbant infrarouge. Les résultats obtenus ont montré une bonne corrélation entre le modèle mathématique et les valeurs expérimentales. Des microcapteurs destinés à optimiser la sensibilité à l'éclairement puis la détectivité spécifique ont été étudiés et fabriqués. L'objectif initial de réaliser une matrice imageante infrarouge basse résolution et faible coût a été atteint.
94

Advanced Methods, Materials, and Devices for Microfluidics

White, Celesta E. 26 November 2003 (has links)
Advanced Methods, Materials, and Devices for Microfluidics Celesta E. White 217 Pages Directed by Dr. Clifford L. Henderson Microfluidics is a rapidly growing research area that has the potential to influence a variety of industries from clinical diagnostics to drug discovery. Unlike the microelectronics industry, where the current emphasis is on reducing the size of transistors, the field of microfluidics is focusing on making more complex systems of channels with more sophisticated fluid-handling capabilities, rather than reducing the size of the channels. While lab-on-a-chip devices have shown commercial success in a variety of biological applications such as electrophoretic separations and DNA sequencing, there has not been a significant amount of progress made in other potential impact areas for microfluidics such as clinical diagnostics, portable sensors, and microchemical reactors. These applications can benefit greatly from miniaturization, but advancement in these and many other areas has been limited by the inability or extreme difficulty in fabricating devices with complex fluidic networks interfaced with a variety of active and passive electrical and mechanical components. Several techniques exist for the fabrication of microfluidic devices, but these methods have significant limitations, and alternative fabrication approaches are currently desperately needed. One such method that shows promise for its ability to integrate the desired high levels of functionality utilizes thermally sacrificial materials as place holders. An encapsulating overcoat material provides structural stability and becomes the microchannel walls when the sacrificial material is removed from the channel through thermal decomposition. Disadvantages of this method, however, include numerous processing steps required for sacrificial layer patterning and elevated temperatures needed for the decomposition of initial sacrificial materials. These limitations keep this method from becoming an economical alternative for microfluidic device fabrication. The materials needed for this method to reach its full potential as a valid fabrication technology for m-TAS are not currently available, and it was a major focus of this work to develop and characterize new sacrificial materials, particularly photosensitive polycarbonate systems. In addition to the development of new sacrificial polymers, the framework for a working microfluidic device was developed to show that this concept will indeed provide significant advancements in the development of future generations of microfluidic systems. Finally, novel fabrication methods for microfluidics through combined imprinting and photopatterning of photosensitive sacrificial materials was demonstrated.
95

Investigation of Dithiolenes for Propylene/Propane Membrane Separations

Sejour, Hensley 24 August 2007 (has links)
Polyimide membranes containing nickel dithiolenes were investigated for the separation of propylene and propane. Permeation and sorption experiments were conducted as well thermal property analyses. Results indicate that the dithiolene has an antiplasticizing effect on the polymers studied. Upon addition of the dithiolene there is a subsequent reduction in the permeability coefficient and the permeability selectivity remains relatively unchanged. There is some evidence of increases in solubility selectivity, but a larger decrease in diffusivity selectivity results in a decrease in the permeability selectivity. Investigation of the thermal and mechanical properties of dithiolene-containing films indicates a reduction in fractional free volume as well as the glass transition temperature when compared to the pure polymer. There is also an increase in the modulus of the films upon addition of the dithiolene. The implications of these results and their correlation with antiplasticization are discussed.
96

Synthesis and Characterization of Benzobisthiazole Derived Polymers

Chen, Chien-Fan 29 March 2004 (has links)
In this study, two series of polymers based on benzobisthiazole were synthesized. The poly(benzobisthiazoles) (PBTs) have been synthesized by the solution polycondensation of 2,5-diamino-1,4-benzenedithiol in poly(phosphoric acid)s (PPA). The diacids used were systematically varied to find the best for the solubilization of the aromatic heterocyclic rigid-rod polymers. The role of PPA is identified and the effects of phosphorous pentoxide and water on PBT during polycondensation are discussed. Polymer properties such as the inherent viscosity, decomposition temperature are correlated to systematically varied diacids. Finally, the effect of diacid architecture on the synthesis and microstructure of PBT is studied. The results are further discussed in terms of resonance, symmetry, and solubilization of the diacids. Next, we extend the rigidity and resonance of benzobisthiazole for the application as second-order nonlinear optics. Novel nonlinear optical (NLO) polyimides containing benzobisthiazole chromophores have been synthesized. The soluble polyimides containing different ratios of carboxylic acids (COOH) were first prepared and the precursors of NLO chromophores reacted with those carboxylic acids, followed by the benzobisthiazole derived chromophores synthesized at 300 oC under vaccum. The formation of benzobisthiazole was evidenced by FTIR and UV-vis spectra in combination with the analysis of model polyimides. The excellent thermal properties of those NLO polyimides were examined by TGA and TMA. PI-1 shows thermal decomposition temperature as high as 554 oC at 10 wt % loss and a Tg of 324 oC. The amorphous morphology of those polyimides was verified by XRD traces and some ordered alignments were found, due to the rigidity of the benzobisthiazole derivatize chromophores. The electrooptic coefficient of PI-1 (r33 = 5.3 pm/V) was obtained.
97

Imprint lithography and characterization of photosensitive polymers for advanced microelectronics packaging

Rajarathinam, Venmathy 23 June 2010 (has links)
To enable fast and reliable processors, advances must be made in the interconnections on the printed circuit board and in the interconnections from the chip to the printed circuit board. Processing techniques have been demonstrated to fabricate a copper-clad encapsulated air dielectric layer to enable low loss off-chip electrical signal lines using sacrificial polymers and the three dimensional patterning capabilities of imprint lithography. The inclusion of an air gap can eliminate the dielectric loss allowing the signal to propagate over longer lengths. Additionally, the low dielectric constant of air lowers the loss contributions from the conductor and increases the signal propagation velocity reducing delay. The metal shielding could minimize the crosstalk noise and radiation losses that are significant at high frequencies. The three dimensional patterning capabilities of imprint lithography fabricated curved structures and rounded terminations which can reduce reflections at discontinuities. Furthermore, imprint lithography also created planarized surfaces which simplified the buildup process. Since imprint lithography, only uses temperature and pressure to make a pattern it is an inexpensive and simple process advancement. The metal-clad encapsulated air dielectric structures were fabricated in a comparable number of registration steps to traditional transmission lines. Implementation of all copper chip to substrate interconnects would provide high conductivity electrical connections, resistance to electromigration while avoiding formation of brittle intermetallics. High aspect ratio polymer molds for copper electroplating interconnects could enable improved integrated circuit electrical performance. The properties of a new aqueous base develop, negative-tone photosensitive polynorbornene polymer have been characterized to develop mechanically compliant all copper connections between the chip and printed circuit board. High aspect ratio features of 7:1 (height:width) were produced in 70 ìm thick films in a single coat with straight side-wall profiles and high fidelity. The polymer films studied had a contrast of 11.6 and a low absorption coefficient. To evaluate the polymer's suitability to microelectronics applications, epoxy cross-linking reactions were studied as a function of processing condition through Fourier transform infrared spectroscopy, nano-indentation, and dielectric measurements. The fully cross-linked films had an elastic modulus of 2.9 GPa and hardness of 0.18 GPa which can improve the mechanical compliance of the copper interconnections. A photo-imprint lithography process was developed to improve the photo-patterning of the polynorbornene polymer for high aspect ratio hollow structures. A shallow photo-imprint stamp was developed to physically displace material in the polymer core. Since the imprint stamp displaces material in the area of the feature, the effective film thickness is reduced compared to the bulk film. The reduction in film height reduced the effects of scattering in the core and also facilitated transport of developer within the core. The photo-imprint lithography process resulted in high aspect ratio hollow core pillars that exceeded optical resolution capabilities for comparable feature sizes.
98

Membrane based separations of carbon dioxide and phenol under supercritical conditions

Damle, Shilpa C. 28 August 2008 (has links)
Not available / text
99

Design, synthesis, and characterization of novel, low dielectric, photodefinable polymers

Romeo, Michael Joseph 08 July 2008 (has links)
Polymers play an integral part in the semiconductor electronic industry. Due to the expanding diversity of a polymer s structural design and the resulting properties, different polymers serve as different components in the makeup and fabrication of the electronic package. The limiting factor in computer processing speed shifts from the transistors gate delay to the interconnect delay below a circuit line width of 1.8 μm for interlayer dielectrics. Silicon dioxide has been used as the insulating layer between metal lines for many computer chip generations. Low dielectric constant polymers will need to supplant silicon dioxide as interlayer dielectrics in order to develop reliable circuits for future generations. Along with serving as interlayer dielectrics, low dielectric constant polymers are also incorporated in first and second level electronic packaging. Deposition and patterning of these polymers can be significantly reduced by using photodefinable polymers. Most photodefinable polymers are in a precursor form for exposure and development in order to dissolve in industrial developers. Once developed, the polymer precursors are cured to produce the final polymer structure. This temperature is as high as 350 oC for many polymers. Thermal curing sets limitations on the use of the polymer in the electronics industry because of either the unwanted stress produced or the incompatibility of other electronic components that do not survive the thermal cure. In addition to a low dielectric constant and photodefinability, many other properties are needed for successful implementation. Polymers must be soluble in organic solvents in order to spin coat films. Water absorption increases the dielectric constant of the patterned films and can lead to various adhesion problems and cause delamination of the film. Mismatches between the coefficients of thermal expansion in adjacent layers can produce residual film stresses which leads to warping of the substrate or interfacial delamination. The glass transition temperature must be high because the thermal expansion is greatly increased when the glass transition temperature is exceeded. A high Young s modulus is also required to withstand external forces from thermal, electrical, and packaging stresses. The goal of this research was to develop novel, low dielectric, photodefinable polymers that can be processed at low temperatures. All polymers discussed will contain one of two monomers with hexafluoroalcohol (HFA) functional groups. Fluorine provides many properties that are advantageous for low dielectric applications whereas alcohols absorb water and increase the dielectric constant. Characterization of the polymers show the effect the fluorine has on the alcohol s high water absorption. All polymers will be synthesized by condensation polymerization of a diamine with a dianhydride or diacid chloride. All other polymers will contain a novel HFA diamine. A new thermoplastic polymer structure based on the cyclization of an HFA situated ortho to an amide linkage produces a benzoxazine ring in the polymer backbone. Cyclization to form polybenzoxazines occurs at temperatures considerably lower than that needed to form polyimides. The lowest processing temperatures are achieved with protection of the HFA that can be cleaved with a photoacid generator.
100

Silicon carbide coatings by plasma-enhanced chemical vapor deposition on silicon and polyimide substrates

Chakravarthy, Pramod. January 1995 (has links)
Thesis (M.S.)--Ohio University, August, 1995. / Title from PDF t.p.

Page generated in 0.0564 seconds