• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 5
  • Tagged with
  • 25
  • 23
  • 13
  • 12
  • 10
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Preconditioned iterative methods for a class of nonlinear eigenvalue problems

Solov'ëv, Sergey I. 31 August 2006 (has links) (PDF)
In this paper we develop new preconditioned iterative methods for solving monotone nonlinear eigenvalue problems. We investigate the convergence and derive grid-independent error estimates for these methods. Numerical experiments demonstrate the practical effectiveness of the proposed methods for a model problem.
12

A fast and efficient algorithm to compute BPX- and overlapping preconditioner for adaptive 3D-FEM

Eibner, Tino 17 September 2008 (has links) (PDF)
In this paper we consider the well-known BPX-preconditioner in conjunction with adaptive FEM. We present an algorithm which enables us to compute the preconditioner with optimal complexity by a total of only O(DoF) additional memory. Furthermore, we show how to combine the BPX-preconditioner with an overlapping Additive-Schwarz-preconditioner to obtain a preconditioner for finite element spaces with arbitrary polynomial degree distributions. Numerical examples illustrate the efficiency of the algorithms.
13

Betrachtungen zur Spektraläquivalenz für das Schurkomplement im Bramble-Pasciak-CG bei piezoelektrischen Problemen

Meyer, Arnd, Steinhorst, Peter 28 November 2007 (has links) (PDF)
Der Einsatz der Finite-Element-Methode bei linearen piezoelektrischen Problemen führt auf eine Systemmatrix der Struktur \[\left( \begin{array}{lr} C & B \\ B^T & -K \end{array} \right)\] mit positiv definiten Blockmatrizen C und K. Zur Lösung indefiniter Gleichungssysteme, die diese symmetrische Blockstruktur besitzen, kann der Bramble--Pasciak--CG eingesetzt werden. Entscheidend für eine schnelle Lösung ist es dabei, gute Vorkonditionierer für den Block C sowie für ein inexaktes Schurkomplement zu finden. Nachfolgend wird das Schurkomplement auf Spektraläquivalenz zur Blockmatrix K untersucht, für welche gute Vorkonditionierer bekannt sind. / Using the Finite-Element-Method with linear piezoelectric problems leads to a linear system of the structure \[\left( \begin{array}{lr} C & B \\ B^T & -K \end{array} \right)\] with symmetric positive definite matrix blocks C and K. The Bramble--Pasciak--CG is a possible solver for indefinite linear systems of equations with this special symmetric block structure. Essential for fast solving are good preconditioners for the block C as well as for an inexact Schur complement. In the following, the Schur complement is examined to spectral equivalence with the matrix K. For K quite good preconditioners are known.
14

Multilevel preconditioning operators on locally modified grids

Jung, Michael, Matsokin, Aleksandr M., Nepomnyaschikh, Sergey V., Tkachov, Yu. A. 11 September 2006 (has links) (PDF)
Systems of grid equations that approximate elliptic boundary value problems on locally modified grids are considered. The triangulation, which approximates the boundary with second order of accuracy, is generated from an initial uniform triangulation by shifting nodes near the boundary according to special rules. This "locally modified" grid possesses several significant features: this triangulation has a regular structure, the generation of the triangulation is rather fast, this construction allows to use multilevel preconditioning (BPX-like) methods. The proposed iterative methods for solving elliptic boundary value problems approximately are based on two approaches: The fictitious space method, i.e. the reduction of the original problem to a problem in an auxiliary (fictitious) space, and the multilevel decomposition method, i.e. the construction of preconditioners by decomposing functions on hierarchical grids. The convergence rate of the corresponding iterative process with the preconditioner obtained is independent of the mesh size. The construction of the grid and the preconditioning operator for the three dimensional problem can be done in the same way.
15

Randkonzentrierte und adaptive hp-FEM

Eibner, Tino 19 June 2006 (has links)
Die vorliegende Arbeit befasst sich mit verschiedenen Aspekten der hp-FEM. Insbesondere werden hierbei folgende Punkte genauer untersucht: 1. Das effiziente Aufstellen der Steifigkeitsmatrix auf Referenzelementen, die keine Tensorproduktstruktur besitzen. 2. Eine lokale Konvergenzbetrachtung für die randkonzentrierte hp-FEM. 3. Ein Multilevel-Löser für die randkonzentrierte hp-FEM. 4. Eine Strategie für hp-Adaptivität.
16

Preconditioned iterative methods for a class of nonlinear eigenvalue problems

Solov'ëv, Sergey I. 31 August 2006 (has links)
In this paper we develop new preconditioned iterative methods for solving monotone nonlinear eigenvalue problems. We investigate the convergence and derive grid-independent error estimates for these methods. Numerical experiments demonstrate the practical effectiveness of the proposed methods for a model problem.
17

Multilevel preconditioning operators on locally modified grids

Jung, Michael, Matsokin, Aleksandr M., Nepomnyaschikh, Sergey V., Tkachov, Yu. A. 11 September 2006 (has links)
Systems of grid equations that approximate elliptic boundary value problems on locally modified grids are considered. The triangulation, which approximates the boundary with second order of accuracy, is generated from an initial uniform triangulation by shifting nodes near the boundary according to special rules. This "locally modified" grid possesses several significant features: this triangulation has a regular structure, the generation of the triangulation is rather fast, this construction allows to use multilevel preconditioning (BPX-like) methods. The proposed iterative methods for solving elliptic boundary value problems approximately are based on two approaches: The fictitious space method, i.e. the reduction of the original problem to a problem in an auxiliary (fictitious) space, and the multilevel decomposition method, i.e. the construction of preconditioners by decomposing functions on hierarchical grids. The convergence rate of the corresponding iterative process with the preconditioner obtained is independent of the mesh size. The construction of the grid and the preconditioning operator for the three dimensional problem can be done in the same way.
18

Betrachtungen zur Spektraläquivalenz für das Schurkomplement im Bramble-Pasciak-CG bei piezoelektrischen Problemen

Meyer, Arnd, Steinhorst, Peter 28 November 2007 (has links)
Der Einsatz der Finite-Element-Methode bei linearen piezoelektrischen Problemen führt auf eine Systemmatrix der Struktur \[\left( \begin{array}{lr} C & B \\ B^T & -K \end{array} \right)\] mit positiv definiten Blockmatrizen C und K. Zur Lösung indefiniter Gleichungssysteme, die diese symmetrische Blockstruktur besitzen, kann der Bramble--Pasciak--CG eingesetzt werden. Entscheidend für eine schnelle Lösung ist es dabei, gute Vorkonditionierer für den Block C sowie für ein inexaktes Schurkomplement zu finden. Nachfolgend wird das Schurkomplement auf Spektraläquivalenz zur Blockmatrix K untersucht, für welche gute Vorkonditionierer bekannt sind. / Using the Finite-Element-Method with linear piezoelectric problems leads to a linear system of the structure \[\left( \begin{array}{lr} C & B \\ B^T & -K \end{array} \right)\] with symmetric positive definite matrix blocks C and K. The Bramble--Pasciak--CG is a possible solver for indefinite linear systems of equations with this special symmetric block structure. Essential for fast solving are good preconditioners for the block C as well as for an inexact Schur complement. In the following, the Schur complement is examined to spectral equivalence with the matrix K. For K quite good preconditioners are known.
19

A fast and efficient algorithm to compute BPX- and overlapping preconditioner for adaptive 3D-FEM

Eibner, Tino 17 September 2008 (has links)
In this paper we consider the well-known BPX-preconditioner in conjunction with adaptive FEM. We present an algorithm which enables us to compute the preconditioner with optimal complexity by a total of only O(DoF) additional memory. Furthermore, we show how to combine the BPX-preconditioner with an overlapping Additive-Schwarz-preconditioner to obtain a preconditioner for finite element spaces with arbitrary polynomial degree distributions. Numerical examples illustrate the efficiency of the algorithms.
20

Solution strategies for stochastic finite element discretizations

Ullmann, Elisabeth 16 December 2009 (has links) (PDF)
The discretization of the stationary diffusion equation with random parameters by the Stochastic Finite Element Method requires the solution of a highly structured but very large linear system of equations. Depending on the stochastic properties of the diffusion coefficient together with the stochastic discretization we consider three solver cases. If the diffusion coefficient is given by a stochastically linear expansion, e.g. a truncated Karhunen-Loeve expansion, and tensor product polynomial stochastic shape functions are employed, the Galerkin matrix can be transformed to a block-diagonal matrix. For the solution of the resulting sequence of linear systems we study Krylov subspace recycling methods whose success depends on the ordering and grouping of the linear systems as well as the preconditioner. If we use complete polynomials for the stochastic discretization instead, we show that decoupling of the Galerkin matrix with respect to the stochastic degrees of freedom is impossible. For a stochastically nonlinear diffusion coefficient, e.g. a lognormal random field, together with complete polynomials serving as stochastic shape functions, we introduce and test the performance of a new Kronecker product preconditioner, which is not exclusively based on the mean value of the diffusion coefficient.

Page generated in 0.0752 seconds