• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 5
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 55
  • 55
  • 55
  • 14
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The Modular Domain Structure of ASF/SF2: Significance for its Function as a Regulator of RNA Splicing

Dauksaite, Vita January 2003 (has links)
ASF/SF2 is an essential splicing factor, required for constitutive splicing, and functioning as a regulator of alternative splicing. ASF/SF2 is modular in structure and contains two amino-terminal RNA binding domains (RBD1 and RBD2), and a carboxy-terminal RS domain. The results from my studies show that the different activities of ASF/SF2 as a regulator of alternative 5’ and 3’ splice site selection can be attributed to distinct domains of ASF/SF2. I show that ASF/SF2-RBD2 is both necessary and sufficient to reproduce the splicing repressor function of ASF/SF2. A SWQDLKD motif was shown to be essential for the splicing repressor activity of ASF/SF2. In conclusion, this study demonstrated that ASF/SF2 encodes for distinct domains responsible for its function as a splicing enhancer (the RS domain) or a splicing repressor (the RBD2) protein. Using a model transcript containing two competing 3’ splice sites it was further demonstrated that the activity of ASF/SF2 as a regulator of alternative 3’ splice site selection was directional: i.e. resulting in RS or RBD1 mediated activation of upstream 3’ splice site selection while simultaneously causing an RBD2 mediated repression of downstream 3’ splice site usage. In alternative 5’ splice site selection, the RBD2 alone was sufficient to reproduce the activity of the full-length protein as an inducer of proximal 5’ splice site usage, while RBD1 had the opposite effect and induced distal 5’ splice site selection. The conserved SWQDLKD motif and the RNP-1 type RNA recognition motif in ASF/SF2-RBD2 were both essential for this induction. The activity of the ASF/SF2-RBD2 domain as a regulator of alternative 5’ splice site was shown to correlate with the RNA binding capacity of the domain. Collectively, my results suggest that the RBD2 domain in ASF/SF2 plays the most decisive role in the alternative 5’ and 3’ splice site regulatory activities of ASF/SF2.
42

Functional Characterization Of The Saccharomyces Cerevisiae Splicing Factor, Prp17 In pre-mRNA Splicing And Cell Cycle Progression: An Analysis Through Global Expression Profiling, Protein Interactions And Spliceosomal Associations

Katoch, Aparna 07 1900 (has links)
The presence of introns in all the eukaryotic genomes identified so far underscores the fundamental and ubiquitous role of pre-mRNA splicing. The spliceosomal machinery, comprised of five small nuclear RNAs and several protein factors, catalyzes the two-transesterification reactions of splicing with precision and consistency. Through a complex network of protein-protein and RNA-protein interactions it ensures the removal of the intron and ligation of the flanking exons to yield the mature mRNA. Prpl7 is a splicing factor that functions at the second-step of splicing (Vijayraghavan et all, 1989). Null alleles of prpl7 are viable at 23°C but die at temperatures above 33°C (Jones et al.9 1995). Besides its functions in pre-mRNA splicing, mutants in PRP17ICDC40 were independently shown to affect cell-cycle progression, particularly the Gl/S and G2/M transitions (Chawla et a/., 2003). In this study, we have attempted a further characterization of Prpl7 to analyze both its role in pre-mRNA splicing and in cell-cycle progression with an aim to decipher underlying reasons for the interlinking of these two cellular processes. Different experimental approaches were adopted to achieve this goal. Global gene-expression profiling provided an overview of all the transcripts affected in a prpl 7 mutant and allowed its comparison with mutants of other splicing factors. This exercise aided in identification of both pre-mRNA splicing and cell-cycle related effects of Prpl7. Biochemical analysis of the Prpl7 spliceosomal associations have provided further clarity on the part played by Prpl7 in pre-mRNA splicing. A genome-wide two-Hybrid screen for interacting partners of Prpl7 was undertaken and uncovered two Likely interacting partners of Prpl7. Global expression profiling of splicing mutants Pleiotropic phenotypes observed in mutants of prpl 7 and few other splicing factors have been speculated to arise from either the multi functionality of the factor or more likely due to a specific requirement of the factor in splicing of a select subset of transcripts, that encode proteins essential to the affected cellular pathway. These observations raise questions about the ubiquitous requirement of factors in pre-mRNA splicing. To understand these aspects of splicing, we studied the effects of splicing factor mutants on a genome-wide scale. Using splicing-sensitive DNA microarrays imprinted with all yeast ORFs and in addition, independent spots for a majority of the intron sequences, we analyzed the global expression changes triggered by the inactivation of temperature-sensitive mutations in PRP17 or PRP22. Experiments with prp2-l mutant strain detect, as expected, an increase in pre-mRNA levels at the intron spots and further demonstrated that the ORF spots detect a decrease in mRNA levels in these DNA microarrays. These results established the DNA micro arrays as tools for the analysis of splicing on a global scale. The temporal alterations in transcript profiles in prpl 7 and prp22 mutants, as compared to the wild type, revealed both shared and unique effects of these factors on clusters of intron-containing transcripts. Such differential effects, on intron-containing transcripts, amongst the splicing mutants implicate specialized roles for each of these factors. Through analysis of the set of intron-containing transcripts affected in prpl7Δ cells, we infer those attributes of these pre-mRNA substrates, which predispose a need for Prpl 7. We find that splicing of introns longer than 200nts has a stronger dependence on Prpl7. The distance between consensus intron elements- the branch-nucleotide and the 3'splice-site (B), also imposes a requirement for Prpl7. Introns with a 13nts or lesser distance between these elements are spliced even in the absence of Prpl 7, both in vivo and in vitro. The 5'splice-site to branch-nucleotide distance (A) also influences the need for Prpl7. Most introns with a A/B ratio of less than 2 undergo Prpl7 independent splicing in vivo. Intron-containing genes that could be responsible for the pleiotropic phenotypes of prpl7 were also identified through the global splicing analysis. These included splicing targets that act at the Gl-S phase such as ANC1/TAF14, TMD4, PHO85 and those at the G2-M phase of the cell-cycle; TUB], TUB3, GIM5, MOBl UBC9. Recently, a different study implicates ANC1ITAF14 as the intron-containing gene responsible for the cell-cycle phenotype associated with prpl7 (Dahan and Kupiec, 2004). Our global analysis of all intron-containing transcripts with compromised expression in prpl7A cells identify, in addition, PHO85 as a possible regulator underlying cell-cycle effects in this mutant. Pho85 is a cyclin-dependent kinase that functions at both the Gl/S and M/Gl phases of the division cycle (Moffate* al., 2000). Synergistic growth defects in double mutants of prpl7 and pho85 have uncovered a novel role for Prpl7 in bud morphogenesis. Our micro array data also reveals compromised expression levels for several key intronless cell-cycle rregulatory genes indicating a possible splicing-independent role for Prpl7 in the cell-cycle. Examples of such transcripts are: the Gl cyclins CLN1, CLN2 and CLN3; CDC6, required for assembly of the pre-replication complex at sites of replication origin; and the cell-cycle regulatory transcription factors: SWI5 and ACE2. The global analysis has therefore enabled, for the first time, a characterization of the splicing substrate specificity of Prpl7 and has also uncovered the effects of this protein on gene expression during cell-cycle progression (Fig. V.I A). Spliceosomal interactions of Prpl7 To understand the function and associations of Prpl7 in the spliceosome, we have examined its snRNP interactions and determined the time point of its coalescence on assembling spliceosomes. A functional epitope tagged-Prpl7 was created using the polyoma middle T-antigen and the poly-HIS tags (Stevens et aln 1999). Through immunoprecipitation analyses performed with splicing extracts, from this strain, we find Prpl7 to associate with three spliceosomal snRNPs- U2, U5 and U6, implicating an interaction with active spliceosomes or post-splicing complexes. Specific biochemical depletion of any one of these snRNAs, through oligo-directed RNaseH cleavage, did not have a drastic effect on the association of Prpl7 with the other two snRNAs. To decipher the point at which Prp 17 joins the assembling spliceosomes, we examined the presence of Prp 17 in in vitro assembled complexes generated under various conditions. The conditions adopted were designed to stall and enrich for •assembly intermediates. A co-immunoprecipitation of the input precursor RNA and reaction intermediates revealed an early association of Prp 17 with the assembling Spliceosome prior to its catalytic activation. This association occurred in the A2-1 complex, which contains the U4/U6.U5 tri-snRNP along with the Ul and U2snRNPs. Prpl7 was found to associate with all subsequent complexes until the completion of catalytic transesterification reactions and possibly continue with the spliced-out introns complex (Fig. V.1B). Identification of two novel interacting partners of Prpl7 from a genome-wide two-hybrid screen Although several genetic interacting partners of PRP17 are known, none display a direct physical association with Prpl7. Knowledge of the proteins that Prpl7 interacts with can further the functional characterization of this protein and aid in deciphering its link to cell-cycle progression. A genome-wide screen for interacting partners using Prpl7 as bait was carried out in a two-hybrid system with a yeast genomic DNA-B42 activation-domain library (Gyuris et al., 1993). Through this screen we identified two interacting partners of Prpl 7- YOL078W, an essential gene and SGML The domain in the 1176 amino acid YOL078W protein responsible for interaction with Prpl7 was mapped to a 225 amino acid segment in the C-terminai region of this protein. The N-terminal region of the protein appears to exert a negative effect on the interaction with Prpl7. While YOL078w does not have any apparent role in pre-mRNA splicing, a majority of the cells arrest with small buds indicating a late Gl or early S phase arrest upon transcriptional shut-down of YOL078W. YOL078W has been independently characterized as AVOl, a component of the TOR complex, involved in nutrient sensing and cell size regulation (Loewith et al, 2002). Other reports show it tto be a component of a complex that interacts with Ceglp, a nuclear protein involved in mRNA capping (Gavin et al, 2002). We hypothesize that Prpl7 and Avol may exist in a dynamic nucleocytoplasmic complex possibly functioning in either cell-cycle regulation, RNA processing or both. Through this study we have Established the use of splicing-sensitive microarrays as tools for the characterization of pre-mRNA splicing factors. Simultaneous assessment of the effects on other cellular pathways was accomplished through expression profiling of all the intron-containing and intronless genes. Deciphered the differential dependence of pre-mRNA substrates on spliceosome factors at a global scale. Predicted the substrate-specificity of the second-step splicing factor, Prpl7, and verified some of these predictions in vitro. Gathered evidence for a possible splicing-independent effect of Prpl7 on the cell division cycle. Uncovered a novel function of Prpl7 in bud morphogenesis, as deduced from its synergistic genetic interaction with PHO85. Identified U2, U5 and U6 snRNPs as interacting partners of Prpl7 in both xtracts and in in vitro splicing reactions. Determined the point of coalescence of Prpl7 during spliceosome assembly to be at an early assembly stage soon after the entry of U4/U6.U5 tri-snRNP and prior to catalytic activation. Demonstrated continued Prpl7 association with the spliceosome beyond the completion of the splicing reactions. Identified Avolp and Sgmlp as novel interacting partners of Prpl7 through a genome-wide two-hybrid screen.
43

An experimental and genomic approach to the regulation of alternative pre-mRNA splicing in Drosophila rnp-4f

Fetherson, Rebecca A. January 2005 (has links)
Thesis (M.S.)--Miami University, Dept. of Zoology, 2005. / Title from first page of PDF document. Document formatted into pages; contains [1], ix, 75 p. : ill. Includes bibliographical references (p. 69-75).
44

Ribozomálny proteín Rpl22 reguluje zostrih svojich vlastných transcriptov / Ribosomal protein Rpl22 regulates the splicing of its own transcripts

Nemčko, Filip January 2018 (has links)
Saccharomyces cerevisiae is an intron-poor organism with introns present in only 5% of its genes. The most prominent group of intron-containing genes are ribosomal protein (RP) genes. They are highly expressed and most of them are present as two paralogs. Parenteau et al. described the existence of intron- dependent intergenic regulatory circuits controlling expression ratios of RP paralogs. In this project, we did not confirm the regulation in 6 out of 7 tested regulatory circuits. We validated the regulation between RPL22 paralogs. We further showed that Rpl22 protein blocks the pre-mRNA splicing of both paralogs, with RPL22B paralog being more sensitive. Rpl22 protein binds to the stem-loop of RPL22B intron - disruption of the binding domain of Rpl22 proteins leads to loss of interaction. Moreover, the regulation seems to be working the same way in yeast Kluyveromyces lactis, which has only a single RPL22 copy. Overall, these results lead to better understanding of intergenic regulation, which adjusts the expression ratio between functionally different RPL22 paralogs. Key words introns, ribosomal protein genes, Rpl22, RPL22 paralogs, pre-mRNA splicing, Saccharomyces cerevisiae
45

Intricate RNA:RNA Interactions In U12-dependent Nuclear Pre-mRNA Splicing

Basuroy, Tupa January 2011 (has links)
No description available.
46

An experimental and genomic approach to the regulation of alternative pre-mRNA splicing in Drosophila rnp-4f

Fetherson, Rebecca A. 30 April 2005 (has links)
No description available.
47

Co-transcriptional splicing in two yeasts

Herzel, Lydia 18 September 2015 (has links) (PDF)
Cellular function and physiology are largely established through regulated gene expression. The first step in gene expression, transcription of the genomic DNA into RNA, is a process that is highly aligned at the levels of initiation, elongation and termination. In eukaryotes, protein-coding genes are exclusively transcribed by RNA polymerase II (Pol II). Upon transcription of the first 15-20 nucleotides (nt), the emerging nascent RNA 5’ end is modified with a 7-methylguanosyl cap. This is one of several RNA modifications and processing steps that take place during transcription, i.e. co-transcriptionally. For example, protein-coding sequences (exons) are often disrupted by non-coding sequences (introns) that are removed by RNA splicing. The two transesterification reactions required for RNA splicing are catalyzed through the action of a large macromolecular machine, the spliceosome. Several non-coding small nuclear RNAs (snRNAs) and proteins form functional spliceosomal subcomplexes, termed snRNPs. Sequentially with intron synthesis different snRNPs recognize sequence elements within introns, first the 5’ splice site (5‘ SS) at the intron start, then the branchpoint and at the end the 3’ splice site (3‘ SS). Multiple conformational changes and concerted assembly steps lead to formation of the active spliceosome, cleavage of the exon-intron junction, intron lariat formation and finally exon-exon ligation with cleavage of the 3’ intron-exon junction. Estimates on pre-mRNA splicing duration range from 15 sec to several minutes or, in terms of distance relative to the 3‘ SS, the earliest detected splicing events were 500 nt downstream of the 3‘ SS. However, the use of indirect assays, model genes and transcription induction/blocking leave the question of when pre-mRNA splicing of endogenous transcripts occurs unanswered. In recent years, global studies concluded that the majority of introns are removed during the course of transcription. In principal, co-transcriptional splicing reduces the need for post-transcriptional processing of the pre-mRNA. This could allow for quicker transcriptional responses to stimuli and optimal coordination between the different steps. In order to gain insight into how pre-mRNA splicing might be functionally linked to transcription, I wanted to determine when co-transcriptional splicing occurs, how transcripts with multiple introns are spliced and if and how the transcription termination process is influenced by pre-mRNA splicing. I chose two yeast species, S. cerevisiae and S. pombe, to study co-transcriptional splicing. Small genomes, short genes and introns, but very different number of intron-containing genes and multi-intron genes in S. pombe, made the combination of both model organisms a promising system to study by next-generation sequencing and to learn about co-transcriptional splicing in a broad context with applicability to other species. I used nascent RNA-Seq to characterize co-transcriptional splicing in S. pombe and developed two strategies to obtain single-molecule information on co-transcriptional splicing of endogenous genes: (1) with paired-end short read sequencing, I obtained the 3’ nascent transcript ends, which reflect the position of Pol II molecules during transcription, and the splicing status of the nascent RNAs. This is detected by sequencing the exon-intron or exon-exon junctions of the transcripts. Thus, this strategy links Pol II position with intron splicing of nascent RNA. The increase in the fraction of spliced transcripts with further distance from the intron end provides valuable information on when co-transcriptional splicing occurs. (2) with Pacific Biosciences sequencing (PacBio) of full-length nascent RNA, it is possible to determine the splicing pattern of transcripts with multiple introns, e.g. sequentially with transcription or also non-sequentially. Part of transcription termination is cleavage of the nascent transcript at the polyA site. The splicing status of cleaved and non-cleaved transcripts can provide insights into links between splicing and transcription termination and can be obtained from PacBio data. I found that co-transcriptional splicing in S. pombe is similarly prevalent to other species and that most introns are removed co-transcriptionally. Co-transcriptional splicing levels are dependent on intron position, adjacent exon length, and GC-content, but not splice site sequence. A high level of co-transcriptional splicing is correlated with high gene expression. In addition, I identified low abundance circular RNAs in intron-containing, as well as intronless genes, which could be side-products of RNA transcription and splicing. The analysis of co-transcriptional splicing patterns of 88 endogenous S. cerevisiae genes showed that the majority of intron splicing occurs within 100 nt downstream of the 3‘ SS. Saturation levels vary, and confirm results of a previous study. The onset of splicing is very close to the transcribing polymerase (within 27 nt) and implies that spliceosome assembly and conformational rearrangements must be completed immediately upon synthesis of the 3‘ SS. For S. pombe genes with multiple introns, most detected transcripts were completely spliced or completely unspliced. A smaller fraction showed partial splicing with the first intron being most often not spliced. Close to the polyA site, most transcripts were spliced, however uncleaved transcripts were often completely unspliced. This suggests a beneficial influence of pre-mRNA splicing for efficient transcript termination. Overall, sequencing of nascent RNA with the two strategies developed in this work offers significant potential for the analysis of co-transcriptional splicing, transcription termination and also RNA polymerase pausing by profiling nascent 3’ ends. I could define the position of pre-mRNA splicing during the process of transcription and provide evidence for fast and efficient co-transcriptional splicing in S. cerevisiae and S. pombe, which is associated with highly expressed genes in both organisms. Differences in S. pombe co-transcriptional splicing could be linked to gene architecture features, like intron position, GC-content and exon length.
48

Electron microscopic localization of tagged proteins in the yeast S. cerevisiae spliceosomal U4/U6.U5 trisnRNP / Elektronenmikroskopische Lokalisierung markierter Proteine im spleißosomalen U4/U6.U5 tri-snRNP aus der Hefe S. cerevisae

Häcker, Irina 02 July 2008 (has links)
No description available.
49

The Molecular Architecture and Structure of the Human Prp19/CDC5L Complex and 35S U5 snRNP / Die Molekulare Architektur und Struktur des humanen Prp19/CDC5L-Komplexes und des 35S U5 snRNPs

Grote, Michael 16 February 2011 (has links)
No description available.
50

Design and Application of Temperature Sensitive Mutants in Essential Factors of RNA Splicing and RNA Interference Pathway in Schizosaccharomyces Pombe

Nagampalli, Vijay Krishna January 2014 (has links) (PDF)
Gene deletions are a powerful method to uncover the cellular functions of a given gene in living systems. A limitation to this methodology is that it is not applicable to essential genes. Even for non-essential genes, gene knockouts cause complete absence of gene product thereby limiting genetic analysis of the biological pathway. Alternatives to gene deletions are mutants that are conditional, for e.g, temperature sensitive (ts) mutants are robust tools to understand temporal and spatial functions of genes. By definition, products of such mutants have near normal activity at a lower temperature or near-optimal growth temperature which is called as the permissive temperature and reduced activity at a higher, non-optimal temperature called as the non-permissive temperature. Generation of ts alleles in genes of interest is often time consuming as it requires screening a large population of mutants to identify those that are conditional. Often many essential proteins do not yield ts such alleles even after saturation mutagenesis and extensive screening (Harris et al., 1992; Varadarajan et al., 1996). The limited availability of such mutants in many essential genes prompted us to adopt a biophysical approach to design temperature-sensitive missense mutants in an essential gene of fission yeast. Several studies report that mutations in buried or solvent-inaccessible amino acids cause extensive changes in the thermal stability of proteins and specific substitutions create temperature-sensitive mutants (Rennell et al., 1991; Sandberg et al., 1995). We used the above approach to generate conditional mutants in the fission yeast gene spprp18+encoding an essential predicted second splicing factor based on its homology with human and S. cerevisiae proteins. We have used a missense mutant coupled with a conditional expression system to elucidate the cellular functions of spprp18+. Further, we have employed the same biophysical principle to generate a missense mutant in spago1+ RNA silencing factor that is non-essential for viability but has critical functions in the RNAi pathway of fission yeast. Fission yeast pre-mRNA splicing: cellular functions for the protein factor SpPrp18 Pre-mRNA splicing is an evolutionarily conserved process that excises introns from nascent transcripts. Splicing reactions are catalyzed by the large ribonuclear protein machinery called the spliceosome and occur by two invariant trans-esterification reactions (reviewed in Ruby and Abelson, 1991; Moore et al., 1993). The RNA-RNA, RNA–protein and protein-protein interactions in an assembly of such a large protein complex are numerous and highly dynamic in nature. These interactions in in vitro splicing reactions show ordered recruitment of essential small nuclear ribonucleic particles snRNPs and non–snRNP components on pre-mRNA cis-elements. Further these trans acting factors recognize and poise the catalytic sites in proximity to identify and excise introns. The precision of the process is remarkable given the diversity in architecture for exons and introns in eukaryotic genes (reviewed in Burge et al., 1999; Will and Luhrmann, 2006). Many spliceosomal protein components are conserved across various organisms, yet introns have diverse features with large variations in primary sequence. We hypothesize that co-evolution of splicing factor functions occurs with changes in gene and intron architectures and argue for alternative spliceosomal interactions for spliceosomal proteins that thus enabling splicing of the divergent introns. In vitro biochemical and genetic studies in S. cerevisiae and biochemical studies with human cell lines have indicated that ScPRP18 and its human homolog hPRP18 function during the second catalytic reaction. In S. cerevisiae, ScPrp18 is non-essential for viability at growth temperatures <30°C (Vijayraghavan et al., 1989; Vijayraghavan and Abelson, 1990; Horowitz and Abelson, 1993b). The concerted action of ScSlu7 - ScPrp18 heteromeric complex is essential for proper 3’ss definition during the second catalytic reaction (Zhang and Schwer, 1997; James et al., 2002). These in vitro studies also hinted at a possible intron -specific requirement for ScPrp18 and ScSlu7 factors as they were dispensable for splicing of intron variants made in modified ACT1 intron containing transcripts (Brys and Schwer, 1996; Zhang and Schwer, 1997). A short spacing distance between branch point adenosine to 3’splice site rendered the substrate independent of Prp18 and Slu7 for the second step (Brys and Schwer, 1996; Zhang and Schwer, 1997). Extensive mutational analyses of budding yeast ScPrp18 identified two functional domains and suggested separate roles during splicing (Bacikova and Horowitz, 2002; James et al., 2002). Fission yeast with its genome harboring multiple introns and degenerate splice signals has recently emerged as a unique model to study relationships between splicing factors and their role in genomes with short introns. Previously, studies in our lab had initiated genetic and mutational analysis of S. pombe Prp18, the predicted homolog of budding yeast Prp18. Genetic analysis showed its essentiality, but a set of missense mutants based on studies of budding yeast ScPrp18 (Bacikova and Horowitz, 2002) gave either inactive null or entirely wild type phenotype for the fission yeast protein. In this study, we have extended our previous mutational analysis of fission yeast Prp18 by adopting biophysical and computational approaches to generate temperature-sensitive mutants. A missense mutant was used to understand the splicing functions and interactions of SpPrp18 and the findings are summarized below. Fission yeast SpPrp18 is an essential splicing factor with transcript-specific functions and links efficient splicing with cell cycle progression We initiated our analysis of SpPrp18 by adopting a biophysical approach to generate ts mutants. We used the PREDBUR algorithm to predict a set of buried residues, which when mutated could result in a temperature-sensitive phenotype that complements the null allele at permissive temperature. These predictions are based upon two biophysical properties of amino acids: 1) Hydrophobicity, which is calculated in a window of seven amino acids 2) Hydrophobic moment, which is calculated in a sliding window of nine amino acids in a given protein sequence. Several studies correlate these properties to protein stability and function (Varadarajan et al., 1996). One of the buried residue mutants V194R, in helix 1 of SpPrp18 conferred weak temperature- sensitivity and strong cold-sensitivity even when the protein was over expressed from a plasmid. Through semi-quantitative RT-PCR we showed splicing-defects for tfIId+ intron1 in these cells even when grown at permissive temperature. The primary phenotype was the accumulation of pre-mRNA. Further, we showed this splicing arrest is co-related with reduced levels of SpPrp18 protein, linking protein stability and splicing function. Next we examined the effects of this mutation on function by further reduction of protein levels. This was done by integrating the expression cassette nmt81:spprp18+/spprp18V194R at the leu1 chromosomal locus and by metabolic depletion of the integrated allele. Through RT-PCRs we demonstrated that depletion of wild type or missense protein has intron specific splicing defects. These findings showed its non-global and possibly substrate-specific splicing function. In the affected introns, precursor accumulation is the major phenotype, confirming prior data from our lab that hinted at its likely early splicing role. This contrasts with the second step splicing role of the human or budding yeast Prp18 proteins. Previous data from our lab showed loss of physical interaction between SpPrp18 and SpSlu7 by co-immunoprecipitation studies. This again differs from the strong and functionally important ScPrp18 and ScSlu7 interaction seen in budding yeast. We show the absence of charged residues in SpSlu7 interaction region formed by SpPrp18 helix1 and helix2 which can explain the altered associations for SpPrp18 in fission yeast. Importantly, as the V194R mutation in helix 1 shows splicing defects even at permissive temperature, the data indicate a critical role for helix 1 for splicing interactions, possibly one that bridges or stabilizes the proposed weak association of SpPrp18-SpSlu7 with a yet unknown splicing factor. We also investigated the effects of mutations in other helices; surprisingly we recovered only mutations with very subtle growth phenotypes and very mild splicing defects. Not surprisingly, stop codon at L239 residue predicted to form a truncated protein lacking helices 3, 4 and 5 conferred recessive but null phenotype implicating essential functions for other helices. Other amino acid substitutions at L239 position had near wild type phenotype at 30°C and 37°C. Helix 3 buried residue mutant I259A conferred strong cold-sensitivity when over expressed from plasmid, but semi quantitative analysis indicated no splicing defects for intron1 in the constitutively expressed transcript tfIId+. These findings indicate cold sensitivity either arises due to compromised splicing of yet unknown transcripts or that over-expressed protein has near wild type activity. We find mutations in the helix 5 buried residues L324 also conferred near WT phenotype. Earlier studies in the lab found that substitution of surface residues KR that are in helix 5 with alanine lead to null phenotypes (Piyush Khandelia and Usha Vijayraghavan unpublished data). We report stable expression of all of these mutant proteins; L239A, L239P, L239G, I259A, I259V, L324F, L324A as determined by our immunoblot analysis at 30°C and 37°C. The mild phenotypes of many buried residues can be attributed to orientation of their functional groups into a protein cavity between the helices. Lastly, our microscopic cellular and biochemical analysis of cellular phenotypes of spprp18 mutant provided a novel and direct role of this factor in G1-S transition of cell cycle. Our RT-PCR data suggest spprp18+ is required for efficient splicing of several intron containing transcripts involved in G1-S transition and subsequent activation of MBF complex (MluI cell cycle box-binding factor complex) during S-phase and shows a mechanistic link between cell cycle progression and splicing. A tool to study links between RNA interference, centromeric non-coding RNA transcription and heterochromatin formation S.pombe possesses fully functional RNA interference machinery with a single copy for essential RNAi genes ago1+, dcr1+ and rdp1+. Deletion of any of these genes causes loss of heterochromatinzation with abnormal cytokinesis, cell-cycle deregulation and mating defects (Volpe et al., 2002). In S.pombe, exogenous or endogenously generated dsRNA’s from transcription of centromeric repeats are processed by the RNaseIII enzyme dicer to form siRNA. These siRNA’s are loaded in Ago1 to form minimal RNA induced silencing complex (RISC) complex or specialized transcription machinery complex RNA induced transcriptional silencing (RITS) complex and target chromatin or complementary mRNAs for silencing. Thus as in other eukaryotes, fission yeast cells deploy RNAi mediated silencing machinery to regulate gene-expression and influence chromatin status. Several recent studies point to emerging new roles of RNAi and its association with other RNA processes (Woolcock et al., 2011; Bayane et al., 2008; Kallgren et al., 2014). Many recent reports suggest physical interactions of RISC or RITS and RNA dependent RNA polymerase complex (RDRC) with either some factors of the spliceosomal machinery, heterochromatin machinery (CLRC complex) and the exosome mediated RNA degradation machinery (Bayne et al., 2008 and Chinen et al., 2010 ; Hiriart et al., 2012; Buhler et al., 2008; Bayne et al., 2010 ). Thus we presume conditional alleles in spago1+ will facilitate future studies to probe the genetic network between these complexes as most analyses thus far rely on ago1∆ allele or have been based on proteomic pull down analyses of RISC or RITS complexes. In this study, we employed biophysical and modeling approaches described earlier to generate temperature sensitive mutants in spago1+ and spdcr1+. We tested several mutants for their ability to repress two reporter genes in a conditional manner. Our modeling studies on SpAgo1 PAZ domain indicated structural similarities with human Ago1 PAZ domain. We created site-directed missense mutants at predicted buried residues or in catalytic residues. We also analyzed the effects of random amino acid replacements in specific predicted buried or catalytic residues of SpAgoI. These ago1 mutants were screened as pools for their effects on silencing of GFP or of ura4+ reporter genes. These assays assessed post transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS) activity of these mutants. We obtained three temperature sensitive SpAgo1 mutants V324G, V324S and L215V while the V324E replacement was a null allele. Based upon our modeling, a likely explanation for the phenotype of these mutants is structural distortion or mis-orientation of the functional groups caused due to these mutations, which affect activity in a temperature dependent manner. This distortion in the PAZ domain may affect binding of siRNA and thereby lead to heterochromatin formation defects that we observed. Our data on the SpAgo1 V324 mutant shows conditional centromeric heterochromatin formation confirmed by semi quantitative RT-PCR for dh transcripts levels that shows temperature dependent increase in these transcripts. We find reduced H3K9Me2 levels at dh locus by chromatin immunoprecipitation (ChIP) assay, linking the association of siRNAs for establishment of heterochromatin at this loci. The data on PTGS of GFP transcripts show SpAgo1 V324G mutation has decreased slicing activity as semi-quantitative RT-PCR for GFP transcripts show increased levels at non permissive temperature. These studies point out the importance of siRNA binding to the PAZ domain and its effect on slicing activity of SpAgo1. The mutations in Y292 showed residue loss of centromeric heterochromatin formation phenotype. Thus, we ascribe critical siRNA binding and 3’ end recognition functions to this residue of SpAgo1. These studies point out functional and structural conservation across hAgo1 and SpAgo1. Adopting the aforementioned biophysical mutational approach, we generated mutants in spdcr1+ and screened for those with conditional activity. Our modeling studies on SpDcr1 helicase domain shows it adopts the conserved helicase domain structure seen for other DEAD Box helicases. Our data on mutational analysis of a conserved buried residue I143 in the walker motif B created inactive protein. The data confirm critical functions for dicer in generation of siRNAs and also in recognition of dsRNA ends. Mutants in buried residues L1130 and I1228 of RNase IIIb domain were inactive and the proximity of these residues to the catalytic core suggest that the critical structural alignment of catalytic residues is indispensable for carrying out dsRNA cleavage to generate siRNAs. We also attribute critical catalytic functions to SpDcr1 D1185 residue for generation of siRNA and heterochromatin formation as measured by our transcriptional gene silencing assay. Our studies employing biophysical and computational approaches to design temperature-sensitive mutants have been successfully applied to an essential splicing factor SpPrp18, which was refractory for ts mutants by other methods. Using a missense mutant, we showed its intron-specific splicing function for subsets of transcripts and deduced that its ubiquitous splicing role is arguable. We have uncovered a link between the splicing substrates of SpPrp18 and direct evidence of splicing based cell cycle regulation, thus providing a mechanistic link to the cell cycle arrest seen in some splicing factor mutants. The same methodology was applied to another important biological pathway, the RNAi machinery, where central factors SpAgoI and SpDcrI were examined We report the first instance of conditional gene silencing tool by designing Ago1 ts mutants which will be useful for future studies of the global interaction network between RNAi and other RNA processing events.

Page generated in 0.551 seconds