1 |
Évaluation de la performance des règles de gestion d'un réservoir de production hydroélectrique mises à jour à l'aide de la programmation dynamique stochastique et d'un modèle hydrologiqueMartin, Alexandre January 2016 (has links)
L’entreprise Rio Tinto effectue la gestion du système hydrique de la rivière Nechako, situé en Colombie-Britannique (Canada), à partir de règles de gestion optimisées à l’aide d’un algorithme de programmation dynamique stochastique (PDS) et de scénarios d’apports historiques. Les récents développements en recherche opérationnelle tendent à démontrer que la mise à jour des règles de gestion en mode prévisionnel permet d’améliorer la performance des règles de gestion lorsque des prévisions d’ensemble sont utilisées pour mieux cerner les incertitudes associées aux apports à venir. La modélisation hydrologique permet de suivre l’évolution d’un ensemble de processus hydrologiques qui varient dans le temps et dans l’espace (réserve de neige, humidité du sol, etc.). L’utilisation de modèles hydrologiques, en plus d’offrir la possibilité de construire des prévisions d’ensemble qui tiennent compte de l’ensemble des processus simulés, permet de suivre l’évolution de variables d’état qui peuvent être utilisées à même l’algorithme d’optimisation pour construire les probabilités de transition utiles à l’évaluation de la valeur des décisions futures.
À partir d’un banc d’essais numériques dans lequel le comportement du bassin versant de la rivière Nechako est simulé à l’aide du modèle hydrologique CEQUEAU, les résultats du présent projet démontrent que la mise à jour des règles avec l’algorithme de PDS en mode prévisionnel permet une amélioration de la gestion du réservoir Nechako lorsque comparée aux règles optimisées avec l’algorithme en mode historique. Le mode prévisionnel utilisant une variable hydrologique combinant un modèle autorégressif d’ordre 5 (AR5) et la valeur maximale de l’équivalent en eau de la neige (ÉENM) a permis de réduire les déversements non-productifs et les inondations tout en maintenant des productions similaires à celles obtenues à l’aide de règles optimisées en mode historique utilisant l’ÉENM comme variable hydrologique. De plus, les résultats du projet démontrent que l’utilisation de prévisions hydrologiques d’ensemble en mode historique pour construire une variable hydrologique permettant d’émettre une prévision du volume d’apport médian pour les huit mois à venir (PVAM) ne permettait pas d’obtenir des résultats de gestion supérieurs à ceux obtenus avec la variable d’ÉENM.
|
2 |
Optimisation de Lois de Gestion Énergétiques des Véhicules HybridesGranato, Giovanni 10 December 2012 (has links) (PDF)
L'objectif de ce travail consiste à appliquer des techniques de contrôle optimal pour améliorer la performance des lois de gestion d'énergie. Plus précisément, les techniques étudiées sont les solutions de viscosité de l'équation de Hamilton-Jacobi, des méthodes level-set pour l'étude de l'atteignabilité, la programmation dynamique stochastique, la programmation dynamique stochastique duale et les contraintes en probabilité. En premier lieu, ce document débute avec la présentation des outils techniques et modèles nécessaires à l'étude de l'optimisation des lois de gestion d'énergie au sein des véhicules hybrides. En deuxième lieu, nous regardons la synthèse des lois de gestion d'énergie en prenant compte des incertitudes dans le profil de vitesse du véhicule. Dans un premier moment, cette étude porte sur l'utilisation de la programmation dynamique stochastique. Dans un second moment, la programmation dynamique stochastique duale est analysée. Ensuite, nous introduisons une formulation du problème de contrôle optimal avec des contraintes en probabilités, visant la synthèse de lois plus flexibles. En troisième lieu, des résultats théoriques sur l'étude de l'atteignabilité des systèmes hybrides sont démontrés. L'ensemble des états atteignables est caractérisé par une fonction valeur. Nous démontrons ensuite que cette fonction valeur est l'unique solution d'un système d'inégalités quasi-variationnelles dans le sens de la viscosité. Aussi, nous montrons la convergence d'une classe de schémas numériques permettant le calcul de cette fonction valeur. Visant à approfondir l'étude sur l'atteignabilité, nous nous intéressons à une formulation de la dynamique hybride en temps discret, ce qui amène à l'utilisation d'un algorithme directement basé sur la programmation dynamique pour caractériser la fonction valeur. Finalement, nous
|
3 |
Résilience et vulnérabilité dans le cadre de la théorie de la viabilité et des systèmes dynamiques stochastiques contrôlés / Resilience and vulnerability in the framework of viability theory and stochastic controlled dynamical systemsRougé, Charles Jacques Jean 17 December 2013 (has links)
Cette thèse propose des définitions mathématiques des concepts de résilience et de vulnérabilité dans le cadre des systèmes dynamiques stochastiques contrôlés, et en particulier celui de la viabilité stochastique en temps discret. Elle s’appuie sur les travaux antérieurs définissant la résilience dans le cadre de la viabilité pour des dynamiques déterministes. Les définitions proposées font l’hypothèse qu’il est possible de distinguer des aléas usuels, inclus dans la dynamique, et des événements extrêmes ou surprenants dont on étudie spécifiquement l’impact. La viabilité stochastique et la fiabilité ne mettent en jeu que le premier type d’aléa, et s’intéressent à l’évaluation de la probabilité de sortir d’un sous-ensemble de l’espace d’état dans lequel les propriétés d’intérêt du système sont satisfaites. La viabilité stochastique apparaît ainsi comme une branche de la fiabilité. Un objet central en est le noyau de viabilité stochastique, qui regroupe les états contrôlables pour que leur probabilité de garder les propriétés sur un horizon temporel défini soit supérieure à un seuil donné. Nous proposons de définir la résilience comme la probabilité de revenir dans le noyau de viabilité stochastique après un événement extrême ou surprenant. Nous utilisons la programmation dynamique stochastique pour maximiser la probabilité d’être viable ainsi que pour optimiser la probabilité de résilience à un horizon temporel donné. Nous proposons de définir ensuite la vulnérabilité à partir d’une fonction de dommage définie sur toutes les trajectoires possibles du système. La distribution des trajectoires définit donc une distribution de probabilité des dommages et nous définissons la vulnérabilité comme une statistique sur cette distribution. Cette définition s’applique aux deux types d’aléas définis précédemment. D’une part, en considérant les aléas du premier type, nous définissons des ensembles tels que la vulnérabilité soit inférieure à un seuil, ce qui généralise la notion de noyau de viabilité stochastique. D’autre part, après un aléa du deuxième type, la vulnérabilité fournit des indicateurs qui aident à décrire les trajectoires de retour (en considérant que seul l’aléa de premier type intervient). Des indicateurs de vulnérabilité lié à un coût ou au franchissement d’un seuil peuvent être minimisés par la programmation dynamique stochastique. Nous illustrons les concepts et outils développés dans la thèse en les appliquant aux indicateurs pré-existants de fiabilité et de vulnérabilité, utilisés pour évaluer la performance d’un système d’approvisionnement en eau. En particulier, nous proposons un algorithme de programmation dynamique stochastique pour minimiser un critère qui combine des critères de coût et de sortie de l’ensemble de contraintes. Les concepts sont ensuite articulés pour décrire la performance d’un réservoir. / This thesis proposes mathematical definitions of the resilience and vulnerability concepts, in the framework of stochastic controlled dynamical system, and particularly that of discrete time stochastic viability theory. It relies on previous works defining resilience in the framework of deterministic viability theory. The proposed definitions stem from the hypothesis that it is possible to distinguish usual uncertainty, included in the dynamics, from extreme or surprising events. Stochastic viability and reliability only deal with the first kind of uncertainty, and both evaluate the probability of exiting a subset of the state space in which the system’s properties are verified. Stochastic viability thus appears to be a branch of reliability theory. One of its central objects is the stochastic viability kernel, which contains all the states that are controllable so their probability of keeping the properties over a given time horizon is greater than a threshold value. We propose to define resilience as the probability of getting back to the stochastic viability kernel after an extreme or surprising event. We use stochastic dynamic programming to maximize both the probability of being viable and the probability of resilience at a given time horizon. We propose to then define vulnerability from a harm function defined on every possible trajectory of the system. The trajectories’ probability distribution implies that of the harm values and we define vulnerability as a statistic over this latter distribution. This definition is applicable with both the aforementioned uncertainty sources. On one hand, considering usual uncertainty, we define sets such that vulnerability is below a threshold, which generalizes the notion of stochastic viability kernel. On the other hand, after an extreme or surprising event, vulnerability proposes indicators to describe recovery trajectories (assuming that only usual uncertainty comes into play then). Vulnerability indicators related to a cost or to the crossing of a threshold can be minimized thanks to stochastic dynamic programming. We illustrate the concepts and tools developed in the thesis through an application to preexisting indicators of reliability and vulnerability that are used to evaluate the performance of a water supply system. We focus on proposing a stochastic dynamic programming algorithm to minimize a criterion that combines criteria of cost and of exit from the constraint set. The concepts are then articulated to describe the performance of a reservoir.
|
4 |
Modèles Stochastiques pour La Planification de Production et la Gestion de Stocks : Application aux Produits à Court Cycle de VieCheaitou, Ali 21 January 2008 (has links) (PDF)
Le phénomène d'incertitude, dont les sources sont variées, est rencontré dans plusieurs domaines et on devrait y faire face. Cette incertitude est due essentiellement à notre incapacité à prédire avec exactitude le comportement futur d'une partie ou de la totalité d'un système. Dans les dernières décades, plusieurs techniques mathématiques ont été développées pour maitriser cette incertitude, afin de réduire son impact négatif, et par conséquent, l'impact négatif de notre méconnaissance. <br />Dans le domaine du « Supply Chain Management » la source principale d'incertitude est la demande future. Cette demande est, en général, modélisé par des lois de probabilité paramétrées en utilisant des techniques de prévision. L'impact de l'incertitude de la demande sur les performances de la « Supply Chain » est important: par exemple, le taux mondial de rupture de stock, dans l'industrie de distribution était en 2007 de 8.3%. De l'autre côté, le taux mondial de produits invendus, dans la grande distribution, était en 2003 de 1%. Ces deux types de coûts, qui sont dus essentiellement à l'incertitude de la demande, représentent des pertes significatives pour les différents acteurs de la « Supply Chain ».<br />Dans cette thèse, on s'intéresse au développement de modèles mathématiques de planification de production et de gestion de stock, qui prennent en compte ce phénomène d'incertitude sur la demande, essentiellement pour de produits à courte durée de vie. On propose plusieurs modèles de planification de production, à petit horizon de planification, qui prennent en compte les différents aspects de notre problématique, tels que les capacités de production, la remise à jour des prévisions de la demande, les options de réservation de capacité, et les options de retour « Payback » des produits. On souligne, dans ces modèles, un aspect important qui prend de l'ampleur à cause de la mondialisation, et qui est lié à la différence entre les coûts de production des différents fournisseurs. On propose à la fin de la thèse, un modèle généralisé qui pourrait être appliqué à des produits à longue durée de vie, et qui exploite quelques résultats obtenus pour les produits à courte durée de vie. Tous ces modèles sont résolus analytiquement ou bien numériquement en utilisant la programmation dynamique stochastique.
|
5 |
Résilience et vulnérabilité dans le cadre de la théorie de la viabilité et des systèmes dynamiques stochastiques contrôlésRougé, Charles 17 December 2013 (has links) (PDF)
Cette thèse propose des définitions mathématiques des concepts de résilience et de vulnérabilité dans le cadre des systèmes dynamiques stochastiques contrôlés, et en particulier celui de la viabilité stochastique en temps discret. Elle s'appuie sur les travaux antérieurs définissant la résilience dans le cadre de la viabilité pour des dynamiques déterministes. Les définitions proposées font l'hypothèse qu'il est possible de distinguer des aléas usuels, inclus dans la dynamique, et des événements extrêmes ou surprenants dont on étudie spécifiquement l'impact. La viabilité stochastique et la fiabilité ne mettent en jeu que le premier type d'aléa, et s'intéressent à l'évaluation de la probabilité de sortir d'un sous-ensemble de l'espace d'état dans lequel les propriétés d'intérêt du système sont satisfaites. La viabilité stochastique apparaît ainsi comme une branche de la fiabilité. Un objet central en est le noyau de viabilité stochastique, qui regroupe les états contrôlables pour que leur probabilité de garder les propriétés sur un horizon temporel défini soit supérieure à un seuil donné. Nous proposons de définir la résilience comme la probabilité de revenir dans le noyau de viabilité stochastique après un événement extrême ou surprenant. Nous utilisons la programmation dynamique stochastique pour maximiser la probabilité d'être viable ainsi que pour optimiser la probabilité de résilience à un horizon temporel donné. Nous proposons de définir ensuite la vulnérabilité à partir d'une fonction de dommage définie sur toutes les trajectoires possibles du système. La distribution des trajectoires définit donc une distribution de probabilité des dommages et nous définissons la vulnérabilité comme une statistique sur cette distribution. Cette définition s'applique aux deux types d'aléas définis précédemment. D'une part, en considérant les aléas du premier type, nous définissons des ensembles tels que la vulnérabilité soit inférieure à un seuil, ce qui généralise la notion de noyau de viabilité stochastique. D'autre part, après un aléa du deuxième type, la vulnérabilité fournit des indicateurs qui aident à décrire les trajectoires de retour (en considérant que seul l'aléa de premier type intervient). Des indicateurs de vulnérabilité lié à un coût ou au franchissement d'un seuil peuvent être minimisés par la programmation dynamique stochastique. Nous illustrons les concepts et outils développés dans la thèse en les appliquant aux indicateurs pré-existants de fiabilité et de vulnérabilité, utilisés pour évaluer la performance d'un système d'approvisionnement en eau. En particulier, nous proposons un algorithme de programmation dynamique stochastique pour minimiser un critère qui combine des critères de coût et de sortie de l'ensemble de contraintes. Les concepts sont ensuite articulés pour décrire la performance d'un réservoir.
|
6 |
Gestion énergétique de véhicules hybrides par commande optimale stochastique / Real-time energy management strategies for hybrid electric vehiclesJiang, Qi 30 January 2017 (has links)
Ce mémoire présente une étude comparative de quatre stratégies de gestion énergétique temps réel, appliquées d'une part à un véhicule hybride thermique-électrique, et d'autre part à un véhicule électrique à pile à combustible : contrôle basé sur des règles empirique (RBS), minimisation de la consommation équivalente (A-ECMS), loi de commande optimale (OCL) établie à partir d'une modélisation analytique du système et programmation dynamique stochastique (SDP) associée à une modélisation des cycles de conduite par chaîne de Markov. Le principe du minimum de Pontryaguin et la programmation dynamique, applicables hors ligne, sont mis en œuvre pour fournir des résultats de référence. Les problèmes d’implémentation numérique et de paramétrage des stratégies sont discutés. Une analyse statistique effectuée sur la base de cycles aléatoires générés par chaînes de Markov permet d’évaluer la robustesse des stratégies étudiées. Les résultats obtenus en simulation, puis sur un dispositif expérimental montrent que les méthodes les plus simples (RBS ou OCL) conduisent à des consommations élevées. SDP aboutit aux meilleures performances avec en moyenne la plus faible consommation de carburant dans les conditions réelles de conduite et un état énergétique final du système de stockage parfaitement maîtrisé. Les résultats d’A-ECMS sont comparables à ceux de SDP en moyenne, mais avec une plus grande dispersion, en particulier pour l'état de charge final. Afin d'améliorer les performances des méthode, des jeux de paramètres dédiés aux différents contextes de conduite sont considérés. / This thesis presents a comparative study between four recent real-time energy management strategies (EMS) applied to a hybrid electric vehicle and to a fuel cell vehicle applications: rule-based strategy (RBS), adaptive equivalent consumption minimization strategy (A-ECMS), optimal control law (OCL) and stochastic dynamic programming (SDP) associated to driving cycle modeling by Markov chains. Pontryagin’s minimum principle and dynamic programming are applied to off-line optimization to provide reference results. Implementation and parameters setting issues are discussed for each strategy and a genetic algorithm is employed for A-ECMS calibration.The EMS robustness is evaluated using different types of driving cycles and a statistical analysis is conducted using random cycles generated by Markov process. Simulation and experimental results lead to the following conclusions. The easiest methods to implement (RBS and OCL) give rather high fuel consumption. SDP has the best overall performance in real-world driving conditions. It achieves the minimum average fuel consumption while perfectly respecting the state-sustaining constraint. A-ECMS results are comparable to SDP’s when using parameters well-adjusted to the upcoming driving cycle, but lacks robustness. Using parameter sets adjusted to the type of driving conditions (urban, road and highway) did help to improve A-ECMS performances.
|
7 |
Élaboration des consignes de gestion des barrages - réservoirsParent, Eric 13 December 1991 (has links) (PDF)
L'objet de ce mémoire de recherche est de proposer un modèle théorique permettant de modéliser le fonctionnement d'un système de gestion des ressources en eau, d'étudier les méthodes de calcul que l'on peut utiliser pour l'élaboration rationnelle des consignes de gestion des barrages-réservoirs. L'application opérationnelle a été réalisée pour deux situations particulières très différentes. Sur le cas du système Neste, l'étude proposée s'inscrit dans le cadre des problèmes d'optimisation hebdomadaire bidimensionnelle (irrigation et salubrité) des ressources en eau durant la période d'étiage. La résolution est effectuée selon deux approches : -un modèle de programmation dynamique avec état de dimension deux (niveau des réserves, niveau dans la rivière) où dans la solution numérique les variables sont discrétisées ; -un modèle "synthétique" où l'on calcule une probabilité de non dépassement caractérisant l'état hydrique des ressources du système. Une règle empirique permet d'associer à cette grandeur une décision de consigne à effectuer. L'étude de la gestion journalière du barrage Seine quant à elle, combine divers modèles de prévision des apports et d'optimisation des consignes. Elle permet de mettre en évidence que la performance globale de la gestion dépend fortement du couplage entre la réponse du système dynamique et le processus décisionnel. Nous développons là aussi deux techniques. La première est une extension au cas stochastique de la technique du fil tendu au moyen de simulations des apports à venir. Cette méthode très simple mais qui s'appuie sur un modèle conceptuel pluies-débit est comparée à une programmation dynamique stochastique associée à un modèle hydrologique de type "boîte noire". La comparaison porte sur la réduction de variabilité interannuelle des débits de la rivière à l'aval du réservoir. Le calcul numérique sur ordinateur est facilité par une approche de la programmation dynamique fondée sur le contrôle stochastique d'un processus de diffusion. Sur ce cas aussi, les résultats numériques sont comparés sur une série de chroniques historiques. A partir de ces deux exemples, nos conclusions portent sur les limites et les avantages des outils de modélisation et d'aide à la décision pour une meilleure gestion des systèmes de ressources en eau.
|
8 |
Sub-optimal Energy Management Architecture for Intelligent Hybrid Electric Bus : Deterministic vs. Stochastic DP strategy in Urban Conditions / Architecture de gestion de l'énergie sous-optimale pour les bus électriques hybrides intelligents : stratégie basée DP déterministe versus stratégie basée DP stochastique en milieu urbainAbdrakhmanov, Rustem 27 June 2019 (has links)
Cette thèse propose des stratégies de gestion de l'énergie conçues pour un bus urbain électrique hybride. Le système de commande hybride devrait créer une stratégie efficace de coordination du flux d’énergie entre le moteur thermique, la batterie, les moteurs électriques et hydrauliques. Tout d'abord, une approche basée sur la programmation dynamique déterministe (DDP) a été proposée : algorithme d'optimisation simultanée de la vitesse et de la puissance pour un trajet donné (limité par la distance parcourue et le temps de parcours). Cet algorithme s’avère être gourmand en temps de calcul, il n’a pas été donc possible de l’utiliser en temps réel. Pour remédier à cet inconvénient, une base de données de profils optimaux basée sur DP (OPD-DP) a été construite pour une application en temps réel. Ensuite, une technique de programmation dynamique stochastique (SDP) a été utilisée pour générer simultanément et d’une manière optimale un profil approprié de la vitesse du Bus ainsi que sa stratégie de partage de puissance correspondante. Cette approche prend en compte à la fois la nature stochastique du comportement de conduite et les conditions de circulations urbaines (soumises à de multiples aléas). Le problème d’optimisation énergétique formulé, en tant que problème intrinsèquement multi-objectif, a été transformé en plusieurs problèmes à objectif unique avec contraintes utilisant une méthode ε-constraint afin de déterminer un ensemble de solutions optimales (le front de Pareto).En milieu urbain, en raison des conditions de circulation, des feux de circulation, un bus rencontre fréquemment des situations Stop&Go. Cela se traduit par une consommation d'énergie accrue lors notamment des démarrages. En ce sens, une stratégie de régulation de vitesse adaptative adaptée avec Stop&Go (eACCwSG) apporte un avantage indéniable. L'algorithme lisse le profil de vitesse pendant les phases d'accélération et de freinage du Bus. Une autre caractéristique importante de cet algorithme est l’aspect sécurité, étant donné que l’ACCwSG permet de maintenir une distance de sécurité afin d’éviter les collisions et d’appliquer un freinage en douceur. Comme il a été mentionné précédemment, un freinage en douceur assure le confort des passagers. / This PhD thesis proposes Energy Management Strategies conceived for a hybrid electrical urban bus. The hybrid control system should create an efficient strategy of coordinating the flow of energy between the heat engine, battery, electrical and hydraulic motors. Firstly, a Deterministic Dynamic Programming (DDP) based approach has been proposed: simultaneous speed and powersplit optimization algorithm for a given trip (constrained by the traveled distance and time limit). This algorithm turned out to be highly time consuming so it cannot be used in real-time. To overcome this drawback, an Optimal Profiles Database based on DP (OPD-DP) has been constructed for real-time application. Afterwards, a Stochastic Dynamic Programming (SDP) technique is used to simultaneously generate an optimal speed profile and related powersplit strategy. This approach takes into account a stochastic nature of the driving behavior and urban conditions. The formulated energy optimization problem, being intrinsically multi-objective problem, has been transformed into several single-objective ones with constraints using an ε-constraint method to determine a set of optimal solutions (the Pareto Front).In urban environment, due to traffic conditions, traffic lights, a bus encounters frequent Stop&Go situations. This results in increased energy consumption during the starts. In this sense, a relevant Eco Adaptive Cruise Control with Stop&Go (eACCwSG) strategy brings the undeniable benefit. The algorithm smooths speed profile during acceleration and braking phases. One more important feature of this algorithm is the safety aspect, as eACCwSG permits to maintain a safety distance in order to avoid collision and apply a smooth braking. As it was mentioned before, smooth braking ensures passengers comfort.
|
Page generated in 0.1778 seconds