1 |
Elaboration et caractérisation fonctionnelle de matériaux polymères intumescents : application aux textiles de recouvrement / Elaboration and functional characterization of intumescent polymeric materials : application to covering textilesDidane, Nizar 09 October 2012 (has links)
Ce travail se place dans le contexte de développement de nouveaux textiles ignifugés dédiés au recouvrement de sièges pour le secteur ferroviaire. Il porte plus particulièrement sur l’amélioration des propriétés au feu du poly (éthylène téréphtalate) (PET) par addition en voie fondue de retardateurs de flammes. Un mélange synergique d’additifs basé sur la littérature a été sélectionné (phosphinates de zinc et nanocharges OctaMethyl POSS) et a permis l’élaboration de multifilaments en PET ignifugé avec une teneur en additifs d’environ 10 % en masse. D’autres systèmes ignifugés à base de phosphinates de zinc ou d’aluminium et différents POSS ont été également étudiés. Les matériaux élaborés ont montré des comportements au feu distincts qui semblent liés d’une part à la dégradation thermique des nanocharges et les composés qu’ils libèrent et d’autre part aux réactions entre les POSS et le métal présent dans les additifs phosphorés. L’élaboration de multifilaments à taux de charges élevés (20 % en masse) a été étudiée avec des phosphinates de zinc ou d’aluminium qui sont respectivement fusibles et infusibles. Les modifications du comportement rhéologique du PET en présence des additifs ont étaient diminuées par l’incorporation du poly (butylène téréphtalate) (PBT). Des travaux sur l’ignifugation des textiles par mélange de fibres ou par enduction ont été menés et ont conduit à des résultats intéressants et complémentaires à l’étude par voie de filage. Les aspects de compatibilité et d’état de dispersion entre additifs et polymère et leur impact sur les propriétés physiques des matériaux fibreux ont été également étudiés. / This work is dealing with the development of fire resistant covering textiles for railway field. It particularly concerns the improvement of poly (ethylene terephthalate) (PET) fire properties by melt blending fire retardants. Based on literature, a synergistic blend of additives has been selected (zinc phosphinates and OctaMethyl POSS nanofillers) and processed into PET multifilaments with 10% of loading content. Other fire resistant systems combining zinc or aluminium phosphinates with different POSS has been also studied. The developed materials showed distinct fire behaviours which could be related in one hand, to the released species of POSS through thermal degradation and on the other hand, to reactions between POSS and the metal element on the phosphorus-containing agent. The elaboration of highly loaded multifilaments (20 wt.%) has been studied with zinc or aluminium phosphinates which are respectively fusible and infusible. Rheological modifications occurred when fillers are added to PET and incorporation of poly (butylene terephthalate) (PBT) diminished the observed phenomena. Works on textile fire retardancy by fibres blending or back coating has been led and gave interesting results. Compatibility and dispersion state of fillers on polymer and their impact on the fibrous materials physical properties has been also studied.
|
2 |
Measurements of thermal properties for composite materialsGnessougou, Serge-Olivier Adam 13 December 2023 (has links)
Thèse ou mémoire avec insertion d'articles. / Ce mémoire de maitrise présente les résultats de la diffusivité thermique de matériaux composites et le calcul de la température pyrométrique d'une plaque d'acier et d'un matériau composite. L'introduction donne les enjeux et objectifs du travail ainsi qu'un bref survol du corps du mémoire. Le chapitre 2 présente le premier article scientifique intitulé "Thermal Diffusivity Measurements With Flash Method at Different Depths In a Burned Composite Material". On mesure dans ce chapitre la diffusivité thermique à la température de la pièce de matériaux composites avant et après attaque d'une flamme d'un brûleur au propane. Les diffusivités thermiques obtenues varient entre 1.23e-07 m²/s à 3.14e-07 m²/s pour le premier échantillon de composite et entre 2.10e-07 m²/s et 3.14e-07 m²/s pour d'autres échantillons. On y présente également dans l'annexe A la diffusivité thermique en fonction de la profondeur d'un échantillon de composite brûlé pendant 15 secondes. Dans la partie brûlée de l'échantillon, on observe une convergence de la diffusivité thermique vers sa valeur initiale de 4.25 e-07 m²/s, lorsque non brûlée. Cette convergence en fonction de la profondeur suit une tendance polynomiale d'ordre 2. Le chapitre 3 présente le deuxième article scientifique intitulé "Temperature Calculation of a Steel Plate under Kerosene Flame Attack Using Two-Color Pyrometry". On mesure la température d'une plaque d'acier à l'aide d'une caméra infrarouge contenant deux filtres "transparents à la flamme" à 3 800 nm et 3 950 nm. Ces mesures avec la caméra infrarouge sont non-intrusives. Les températures pyrométriques calculées atteignent 600°C en régime permanent et sont en concordance avec des thermocouples préalablement incrustés dans la plaque. L'annexe B donne la température pyrométrique pour un échantillon de composite. La conclusion générale revient sur les points saillants des différents chapitres et donne une perspective pour de futurs travaux. / This master's thesis presents the results of the thermal diffusivity of composite materials and the calculation of the pyrometric temperature of a steel plate and a composite material. The introduction gives the challenges and objectives of the work as well as a brief overview of the body of the dissertation. Chapter 2 presents the first scientific article entitled "Thermal Diffusivity Measurements With Flash Method at Different Depths In a Burned Composite Material". In this chapter, we measure the thermal diffusivity at room temperature of composite materials before and after attack by a flame from a propane burner. The thermal diffusivities obtained vary between 1.23e-07 m²/s to 3.14e-07m²/s for the first sample of composite and between 2.10e-07 m²/s and 3.14e-07 m²/s for other samples. The Annex A also presents the thermal diffusivity as a function of the depth of a sample of composite burnt for 15 seconds. In the burnt part of the sample, we observe a convergence of thermal diffusivity towards its initial value of 4.25 e-07 m²/s when unburned. This convergence as a function of depth follows a polynomial trend of order 2. Chapter 3 presents the second scientific article entitled "Temperature Calculation of a Steel Plate under Kerosene Flame Attack Using Two-Color Pyrometry". The temperature of a steel plate is measured without touching the material using an infrared camera containing two "flame-transparent" filters at 3 800 nm and 3 950 nm. The calculated pyrometric temperatures reach 600°C in steady state and agree with thermocouples previously embedded in the plate. Annex B gives the pyrometric temperature for a composite sample. The conclusion returns to the salient points of the different chapters and gives a perspective for future work.
|
3 |
Résistance thermique des constructions industrialisées en boisDoinet, Bruno Charles 02 February 2024 (has links)
L'objectif principal de cet ouvrage fut d'établir et de comparer les possibilités d'isolation thermique des constructions industrialisées en bois, tout en satisfaisant aux exigences en vigueur. La conductivité thermique permet de quantifier la déperdition de chaleur à travers un matériau ou un élément, mais on préfère utiliser son inverse, la résistance thermique, pour caractériser le pouvoir isolant. Cette résistance thermique est très dépendante de la présence d'eau dans la paroi; il est nécessaire de pouvoir détecter et mesurer l'humidité afin de contrôler, d'autre part, la condensation. L'application de ces concepts aux bâtiments en bois constitue la phase pratique du présent travail. Il présente des solutions d'isolation thermique des différentes parties de la maison en fonction, entre autres, de la nature et de l'épaisseur de l'isolant. Ce présent travail peut constituer un guide pratique pour les professionnels du bâtiment, afin de choisir et de concevoir un modèle d'isolation conforme aux normes.
|
4 |
Contribution à l'Etude des Parois Complexes en Physique du Bâtiment : Modélisation, Expérimentation et Validation Expérimentale de Complexes de Toitures incluant des Produits Minces Réfléchissants en climat tropical humideMiranville, Frédéric 13 December 2002 (has links) (PDF)
La conception bioclimatique des enveloppes des bâtiments s'intègre dans une démarche de maîtrise de l'énergie et constitue de ce fait un enjeu primordial. Elle nécessite la connaissance des performances énergétiques des composants d'enveloppe et des systèmes associés et doit permettre d'éviter le recours à des dispositifs de chauffage ou de refroidissement, forts consommateurs d'énergie. Dans ce cadre, les technologies passives sont tout à fait indiquées, dans la mesure où elles permettent de réguler les conditions d'ambiance en utilisant des moyens naturels, sans apport énergétique supplémentaire. Les parois complexes en sont un exemple, et se présentent sous la forme d'une juxtaposition de matériaux,séparés par une ou des lames d'air. Nous nous intéressons dans ces travaux à un type particulier de paroi complexe,incluant un produit mince réfléchissant (PMR). Ces derniers sont utilisés en solation thermique des bâtiments et se présentent sous la forme de minces membranes dont les faces sont recouvertes d'aluminium. Compte-tenu de leurs propriétés thermophysiques et de leur épaisseur, ces produits n'entrent pas tous dans la définition des isolants thermiques, selon la norme NF-P-75-101. Le principale conséquence qui en découle est que leurs performances thermiques ne sont pas certifiées par les organismes de référence. En outre, leur mise en oeuvre dans une paroi nécessite la présence d'une ou plusieurs lames d'air, contiguës aux faces réfléchissantes. La paroi ainsi constituée est une paroi complexe, siège de transferts énergétiques couplés. Afin de cerner le comportement thermique d'une telle paroi, il est nécessaire de proposer une modélisation adaptée. Les remarques précédentes illustrent la double problématique des PMR, l'une à caractère réglementaire, l'autre à caractère scientifique. Afin d'apporter des éléments de réponse, une méthodologie en deux volets est proposée. Le premier est expérimental et consiste en la détermination des caractéristiques thermiques de toitures complexes intégrant des PMR, au départ d'une plate-forme expérimentale en environnement naturel ; le second traite de la modélisation d'une toiture complexe au départ d'un prototype de code de calcul dédié, s'apparentant à un code de simulation du comportement énergétique des bâtiments. Les deux volets sont conciliés dans une démarche de validation expérimentale, menant à l'évaluation des prédictions du code de calcul relativement à des données issues d'expérimentations.
|
5 |
Development of a new design method for the cross-section capacity of steel open sections at high temperaturesPaquet, Jeanne 02 February 2024 (has links)
À hautes températures, les propriétés de l'acier sont affectées et sa résistance est donc moindre que sa résistance à température ambiante. Des méthodes de calculs différentes doivent donc être utilisées pour prédire la résistance dans la situation exceptionnelle d'incendie. Les normes actuelles proposent des méthodes simplifiées pour prédire la résistance de l'acier à haute température. Toutefois, ces méthodes sont inspirées des méthodes de dimensionnement à froid et ne sont donc généralement pas adéquates pour prédire de façon précise la résistance des éléments en situations d'incendie. Ce mémoire présente les recherches effectuées pour la proposition d'une nouvelle méthode de calcul pour les sections d'acier ouvertes soumises à de hautes températures en utilisant l'Overall Interaction Concept (O.I.C). Cette méthode est basée sur l'interaction entre la résistance et la stabilité et permet de considérer les imperfections géométriques et matérielles. Entre autres choses, l'avantage de cette nouvelle méthode est qu'elle permet d'obtenir des résultats précis et de conserver une continuité entre les prédictions. Un modèle numérique a été utilisé pour prédire la résistance de l'acier à hautes températures. Ce modèle a été validé en comparant les résultats avec des résultats expérimentaux. À la suite de la validation, le modèle a été utilisé pour conduire des simulations dans lesquelles plusieurs géométries, températures, limites élastiques et cas de chargement ont été considérés. Les résultats ont ensuite été utilisés pour proposer de nouvelles équations dans le format O.I.C. La performance de la nouvelle proposition a été évaluée et comparée avec la performance de normes existantes. Cette évaluation a permis de conclure que la proposition donne des résultats beaucoup plus précis. Finalement, l'évolution du comportement de l'acier entre la température ambiante et les hautes températures a brièvement été analysé. Puisque ce point est abordé de façon sommaire, il ouvre la porte vers de futures études sur le sujet. / At high temperatures, steel suffers from great losses in strength and stiffness. Different design methods must therefore be considered to predict the resistance of steel in the exceptional situation of fire. Current standards propose simplified methods to predict the resistance of steel at high temperatures. However, these methods are inspired by steel design equations used at room temperature and are therefore generally not suitable to predict accurately the resistance of steel elements in fire situation. This thesis presents research investigations pursued to propose a new design method for open steel cross-sections subjected to high temperatures by means of the Overall Interaction Concept (O.I.C.). This calculation method is based on the interaction between resistance and stability and allows to consider geometrical and material imperfections. The advantage of this new calculation method is that it allows to obtain precise results and to keep continuity between predictions contrarily to standards that use the cross-section classification. A numerical model, initially developed for open steel cross-sections at ambient temperature, was improved to predict the resistance of steel at high temperatures. It was then verified against experimental test results to ensure its accuracy. After validation, the numerical model was used to conduct simulations using different geometries, temperatures, yield limits and load cases. Results were then used to formulate new design proposals for cross-sections at high temperatures in the O.I.C. format. The performance of the new proposal was then evaluated et compared with the performance of existing standards. This evaluation allowed to conclude that the proposition is much more accurate than existing standards. Finally, the evolution of the behaviour of steel between cold and high temperature was briefly analysed. As this point was only briefly discussed, it opens the door for future studies on the subject.
|
6 |
Développement et évaluation de stratégies de contrôle avancées des technologies de fenêtres intelligentesDussault, Jean-Michel 24 April 2018 (has links)
Les fenêtres intelligentes présentent un potentiel important quant à la réduction de la consommation d’énergie dans les bâtiments et permettent d’assurer le confort visuel des occupants. Depuis le début des années 90, la recherche sur les technologies de fenêtres intelligentes s’est accentuée tant au niveau des technologies elles-mêmes qu’au niveau des types de contrôle qu’on peut leur appliquer pour gérer le plus efficacement possible le rayonnement solaire qui les traverse. Plusieurs laboratoires de recherche tels que le Lawrence Berkeley National Laboratory (LBNL) se sont penché sur la question. L’évolution de la recherche dans ce domaine démontre toute la complexité associée à l’évaluation rigoureuse des performances des fenêtres intelligentes. De par sa capacité à gérer le rayonnement solaire, il va de soi que ce genre de technologies nécessite la connaissance du rayonnement solaire incident pour faciliter la prise de décision quant au contrôle à apporter. Étant donnés les coûts des technologies de capteurs de rayonnement solaire existantes et la limitation de certains quant à leur précision (lors de fluctuations du spectre électromagnétique et/ou des températures ambiantes), l’utilisation de capteurs de rayonnement solaire dédiés au contrôle de fenêtre intelligente est donc limitée. Par ailleurs, les connaissances sont encore limitées concernant les conditions permettant d’optimiser le contrôle de ce genre de technologies en termes d’énergie et de confort. L’objectif général de cette thèse est d’élargir les connaissances scientifiques sur le potentiel des technologies de fenêtres électrochromes quant à leur capacité à augmenter la performance énergétique et le confort des occupants dans les bâtiments. Dans un premier temps, un nouveau type de capteur de rayonnement solaire à faible coût est présenté. Ce capteur utilise la différence de température entre une surface blanche et une surface noire pour estimer le flux solaire radiatif traversant les ouvertures d’un bâtiment. Les mesures de rayonnement solaire sont corrélées aux températures de surfaces à l’aide un modèle thermique du capteur en 1D. Deux différents modèles de capteur sont présentés et les résultats obtenus sont comparés aux mesures solaires de référence obtenues par un pyranomètre. Il a été démontré que les modèles de capteurs présentent des précisions suffisantes pour un contrôle efficace. Finalement, il est observé que la période de calibration des capteurs requiert minimalement une demi-journée de mesures sous des conditions de ciel clair incluant le midi solaire. Dans un deuxième temps, l’impact des stratégies de contrôle de fenêtre intelligente sur la consommation énergétique globale est évalué. L’état des fenêtres intelligentes nécessaire à toute heure de la journée pour permettre une minimisation de la consommation d’énergie globale tout en respectant les contraintes reliées au confort thermique et visuel est déterminé à l’aide d’une stratégie d’optimisation basée sur des algorithmes génétiques. Ce contrôle quasi-optimal est alors comparé à d’autres approches qui peuvent être adaptées à des applications en temps réel, soit des contrôles fondés sur des règles et un modèle de contrôle prédictif. Les impacts de la masse thermique et de la puissance du système d’éclairage installé sont également analysés. Les résultats montrent que les quatre stratégies de contrôle à l’étude présentent une consommation énergétique similaire avec des écarts de consommation globale variant de 4% à 10%. Cette étude illustre que des stratégies de contrôle plus simple permettent d’obtenir des résultats satisfaisants. Finalement, une analyse de sensibilité basée sur une grande variété de combinaison de paramètres de design est réalisée. Des résultats énergétiques et de confort pour un total de 7680 scénarios sont obtenus et utilisés dans cette analyse considérant l’effet principal des paramètres de design du bâtiment. L’influence relative des paramètres est présentée et les différents designs améliorant les résultats sont déterminés. Les résultats montrent que la meilleure économie d’énergie avec fenêtres intelligentes se trouve dans des climats chauds avec une exposition élevée aux rayons solaires. La présence de fenêtres intelligentes influence principalement la charge de refroidissement maximale et agit comme une solution alternative à la masse thermique en termes de réduction potentielle de cette charge maximale. Bien que le choix de la stratégie de contrôle ait un impact limité sur l’économie d’énergie réalisée et la réduction de la charge maximale, l’analyse permet de constater que ce paramètre a un impact encore plus important sur le confort visuel. L’utilisation de fenêtres intelligentes ne semble pas influencer grandement le confort thermique à l’intérieur de la zone. / Smart windows present a huge potential in terms of energy consumption reduction in buildings while also offering the possibility to assure occupants’ visual comfort. Since the early nineties, research in the field of smart windows gains a lot of interest on both the technologies and the controls that could be applied on such technologies to manage more efficiently solar gains passing through these windows. Many different well-known entities such as the Lawrence Berkeley National Laboratory invested efforts in this field and demonstrated the great complexity related to the thorough evaluation of smart window performances. Given its capacity to manage solar radiation, it makes sense to benefit from solar radiation measurements to control efficiently such technology. However, the costs and other technical related limitations reduce the potential to use readily available solar sensors for smart window control. Moreover, general knowledge is still limited regarding the conditions leading to optimal control decisions of smart windows. The main objective of this thesis was to gain a better understanding of how electrochromic windows could lead to improved performances in terms of energy consumption and thermal comfort. First, a new design of low cost solar sensor is proposed. The sensor uses the difference in temperature of white and black surfaces to estimate the solar heat flux through building openings. Results of solar radiation measurements are obtained through a correlation based on a 1D thermal model of the sensor. Two designs of the sensor are presented and obtained results compared with solar measurements of a high precision pyranometer. It was shown that the new sensors present sufficient accuracy for smart window control applications. Finally, it was observed that ideal sensors calibration period should consider at least half a day of measurements, including solar peak time, and should be done during clear sky conditions. Then, the impact of the applied control strategy on the overall energy consumption is investigated. The hour-by-hour state of the smart windows required to minimize overall energy consumption while respecting constraints related to comfort is determined through an optimization strategy based on genetic algorithms. This quasi-optimal control is compared to other approaches that could be applied in real-time applications, i.e. rule-based controls and a model predictive control. The impacts of thermal mass and installed light power density are also analyzed. Results show that the four control strategies under study presented similar energy consumption with differences in total energy consumption ranging from 4% to 10%. This study illustrates that simpler control strategies can also lead to satisfying results. Finally, a sensitivity analysis based on a large number of different combinations of design parameters is performed. Results related to energy and for a total of 7680 scenarios were obtained and used in this analysis considering the Main effect of the building parameters. The relative influence of the parameters is presented and the different designs improving the outputs are determined. Results have shown that the greatest total energy savings considering EC windows are for warmer climates with higher solar radiation exposures. The presence of an EC window mostly influences the cooling peak load and acts as an alternative solution to thermal mass from the perspective of peak reductions. While the choice of the specific window control strategy is having a limited impact on the energy savings and peak load reductions, the analysis revealed that this parameter has a larger impact on the visual comfort. The use of smart window does not appear to greatly influence the thermal comfort within the zone.
|
7 |
Natural rubber nanocomposites reinforced with nanostructured carbon-based materials : investigation of their mechanical and thermal propertiesShahamati Fard, Farnaz 13 December 2023 (has links)
Le développement de nanocomposites thermoconducteurs à base de caoutchouc est une tâche difficile pour diverses technologies modernes, allant des appareils électroniques à l'industrie du pneu. La présente étude est concentrée sur les propriétés thermiques et mécaniques de composites de caoutchouc naturel chargés avec des additifs à base de carbone, notamment du noir de carbone, des nanotubes de carbone, de l'oxyde de graphène réduit et des nanoplaquettes de graphène. En raison de la faible conductivité thermique du caoutchouc, des concentrations élevées de divers additifs thermoconducteurs sont nécessaires. Cependant, cela a un impact significatif sur le comportement mécanique des matériaux finaux, ce qui limite leur application. Dans ce scénario difficile, nous avons cherché à améliorer la conductivité thermique et les propriétés mécaniques (y compris les propriétés en traction, la dureté, les propriétés dynamiques, etc.) de nanocomposites à base de caoutchouc en exploitant des systèmes de charges hybrides à base de carbone. Nous avons aussi modifié la surface de ces charges pour améliorer leur interaction avec la matrice en caoutchouc dans le but de créer un réseau continu de charges à travers la matrice. La première partie de la thèse (chapitre 2) décrit l'effet de l'ajout de l'oxyde de graphène réduit (RGO) sur la conductivité thermique et les propriétés mécaniques de caoutchouc. Le RGO a d'abord été synthétisé en utilisant la méthode Hummer améliorée. Ensuite, il a été pré-dispersé dans du latex naturel en utilisant la technique de co-coagulation puis mélangé à la formulation de référence à différentes teneurs (0-2 parties pour cent en caoutchouc (phr))à l'aide d'un mélangeur interne. Pour une concentration de RGO de 2 phr, les résultats ont montré que la densité de réticulation des nanocomposites caoutchouc/RGO développés avait augmenté de 65% par rapport à la formulation de base. Une augmentation significative de la résistance à la traction (53%) et du module de Young (31%) a été observée pour la même concentration en RGO. Enfin, il a été observé que l'ajout de seulement 0.5 phr de RGO avait entraîné une amélioration considérable (26%) de la conductivité thermique. Dans la deuxième partie de la thèse (chapitre 3), l'effet d'un système de charges hybride (noir de carbone/nanotubes de carbone multi-parois, MWCNT) sur les propriétés mécaniques et la conductivité thermique des nanocomposites développés a été étudié. En raison de la différence de forme entre le noir de carbone et les MWCNT, ainsi que de l'adsorption des agents de réticulation à la surface des MWCNT, il a été observé que le temps de cuisson (vulcanisation) (t₁₀) et celui de cuisson optimal (t₉₀) de la matrice en caoutchouc augmentaient progressivement avec l'augmentation de la teneur en MWCNT. Enfin, en remplaçant 5 phr de noir de carbone par la même concentration en MWCNT, des améliorations significatives de la conductivité thermique et des propriétés mécaniques ont été obtenues grâce aux propriétés intrinsèques des MWCNT et à leur synergie avec le noir de carbone. En outre, les modules à 100% et 300% de déformation (M@100 et M@300) des nanocomposites développés ont respectivement augmenté de 72% et 54%. Dans la troisième partie de la thèse (chapitre 4), la modification de surface des MWCNT a été réalisée pour améliorer le comportement mécanique dynamique des nanocomposites correspondants et trouver un ratio optimal de charges menant à des propriétés mécaniques et thermiques améliorées. Les résultats ont montré l'effet positif de l'oxydation de la surface des MWCNT sur la dispersion des charges et les propriétés thermiques et mécaniques des nanocomposites. La dernière partie de la thèse (chapitre 5) a été consacrée à l'étude de l'effet synergique des systèmes hybrides de charges (noir de carbone/nanoplaquettes de graphène, GNPs) dans lequel les GNPs (GNP-M25, GNP-C300 et GNP-C750) présentaient différentes surfaces spécifiques et différents rapports d'aspect. Les résultats ont montré que la surface spécifique de la charge et son rapport d'aspect jouent un rôle vital dans la production d'un réseau de charges conducteur. L'incorporation du GNP-M25 ayant une dimension latérale la plus élevée parmi les trois GNPs étudiés permettait de développer un nanocomposite ayant une conductivité thermique plus élevée. D'autre part, à une concentration élevée (5 phr), la synergie entre GNPs-M25 et le noir de carbone était élevée, entraînant une meilleure dispersion des charges et une plus faible dissipation d'énergie. / Creating effective thermally conductive rubber nanocomposites for heat management is a challenging task for various modern technologies, from electronic devices to the tire industry. This study focused on the thermal and mechanical properties of natural rubber nanocomposites filled with carbon-based fillers, including carbon black, carbon nanotubes, reduced graphene oxide (RGO), and graphene nanoplatelets. Due to the poor thermal conductivity of rubber materials, high loadings of various thermally conductive fillers are required. However, this significantly impacts the final materials' mechanical behavior, limiting their application. In this challenging scenario, we aimed to enhance the thermal conductivity and mechanical properties (including tensile properties, hardness, dynamic mechanical properties, etc.) of rubber-based nanocomposites by exploiting hybrid carbon-based filler systems and suitable filler surface modification to improve the formation of continuous filler's network through the natural rubber (NR) matrix. The first part of the thesis (chapter 2) describes the effect of adding RGO to the natural rubber's thermal conductivity and mechanical properties. RGO was first synthesized using an improved Hummer method. Then, RGO pre-dispersed in natural rubber latex using the co-coagulation technique was added to a reference formulation in various contents (0-2 parts per hundred rubber (phr)), and compounded using an internal mixer. It was observed that the crosslink density of the developed natural rubber/RGO nanocomposites increased by 65% for RGO concentration of 2 phr. A significant increase in tensile strength (53%) and Young's modulus (31%) was observed for the same RGO concentration. Ultimately, the addition of only 0.5 phr of RGO resulted in a considerable improvement (26%) in thermal conductivity. In the second part of the thesis (chapter 3), the effect of the carbon black/multiwall carbon nanotubes (MWCNT) hybrid filler system on the mechanical properties and thermal conductivity of the nanocomposites was studied. Because of the shape difference between carbon black and MWCNT and the adsorption of curing agents onto the MWCNT, the scorch time (t₁₀) and optimum curing time (t₉₀) gradually increased with increasing MWCNT content. Finally, by substituting 5 phr of carbon black with MWCNT, significant improvements in thermal conductivity and mechanical properties were achieved due to the intrinsic properties of MWCNT and its synergy with carbon black. Moreover, the modulus at 100% and 300% strain (M@100 and M@300) increased by 72% and 54%, respectively. In the third part of the thesis (chapter 4), the surface modification of MWCNT was carried out to improve the dynamic mechanical behavior of the natural rubber/MWCNT nanocomposites to find an optimum fillers ratio having suitable mechanical and thermal properties. The results showed the positive effect of MWCNT surface oxidation on the fillers' dispersion and nanocomposites' properties. The last part (chapter 5) focused on the synergistic effect between carbon black and GNPs hybrid fillers with different surface areas and aspect ratios (GNPs-M25, GNPs-C300, and GNPs-C750). The results showed that the specific surface area of filler and its aspect ratio play a vital role in producing a conductive filler network. GNPs-M25 with a higher lateral dimension led to the highest consistency and denser conductive network inside the NR nanocomposite compared to GNPs-C300 and GNPs-C750. On the other hand, higher substitution increased the synergy of hybrid fillers, resulting in better filler dispersion and less energy dissipation.
|
8 |
Analyse numérique de résultats expérimentaux dans le but d'établir la perméabilité intrinsèque de matériaux d'enrochementDhyser, Yann 19 April 2018 (has links)
Le transfert de chaleur dans les sols est généralement gouverné par la conduction. Cependant, dans les matériaux d’enrochement, la taille des pores est suffisamment grande pour permettre le mouvement de l’air soit par un gradient de pression (convection forcée) ou par un gradient de température (convection naturelle). Il a été montré dans de précédentes études que la convection influence grandement le transfert thermique dans les enrochements d’ouvrages de génie civil tels que les routes, les voies ferrées ainsi que les remblais de barrages construits dans les régions froides (Goering et Kumar, 1996 ; Saboundjian et Goering, 2003 ; Konrad et al., 2006). Le paramètre qui influence le plus la convection est la perméabilité intrinsèque du matériau. Au cours de recherches précédentes, Côté et Fillion (Fillion, 2008 ; Côté et al., 2011b) ont mis au point une cellule de test où les conditions permettant la convection naturelle ont été appliquées à un échantillon de matériau de 1 m3, dans le but de mesurer sa perméabilité intrinsèque. L’analyse des résultats expérimentaux a été faite en utilisant une relation analytique entre les nombres de Nusselt (Nu) et de Rayleigh (Ra), relation basée sur les résultats de Schubert et Strauss (1979) et valide pour une cellule imperméable et aux parois adiabatiques. En comparant les résultats avec les valeurs issues de modèles théoriques, un biais a été mis en évidence. Biais qui aurait pu être causé par la relation analytique utilisée et qui ne serait pas adaptée au montage expérimental dont le comportement n’est pas adiabatique. Dans ce mémoire, les transferts de chaleur à l’intérieur de la cellule expérimentale sont recréés en utilisant une modélisation numérique par éléments finis de la cellule expérimentale. Une nouvelle relation entre les nombres de Nusselt et de Rayleigh adaptée à la cellule est établie et les résultats expérimentaux de Fillion (2008) sont ensuite ré-analysés avec cette nouvelle relation. Les nouvelles mesures de la perméabilité intrinsèque sont ensuite comparées en fonction du modèle utilisé avec les résultats obtenus expérimentalement par Fillion (2008) et par les relations théoriques.
|
9 |
Évaluation de la biréfringence en ligne et modélisation du procédé de soufflage de gaine multicoucheGamache, Eric 04 November 2004 (has links) (PDF)
Notre objectif est de développer des outils permettant une meilleure compréhension du procédé de soufflage de gaines multicouches. Afin de mieux comprendre le procédé, une campagne expérimentale a été réalisée afin d¤identifier l¤effet des conditions opératoires sur l¤évolution du rayon, de la biréfringence et de la température de gaines monocouches et multicouches. Il a été possible de constater que l¤agencement des différentes couches affectait peu le gonflement et les contraintes à l¤intérieur du film. Un modèle thermomécanique permettant de décrire le soufflage de gaine multicouche a été développé. Par la suite une étude de sensibilité a été réalisée. Nous avons constaté que, dans certaines conditions, il était possible que les films multicouches gonflent plus rapidement que les films monocouches. Les résultats de calcul permettent de reproduire adéquatement l¤évolution du rayon, de la température et des contraintes survenant lors de la production de gaines monocouches et multicouches.
|
10 |
Modélisation et élaboration des métrologies de microscopie thermique à sonde locale résistiveLefèvre, Stéphane 15 June 2004 (has links) (PDF)
Les nouvelles avancées dans le domaine des microsystèmes et des nanostructures amènent en particulier à repenser les métrologies thermiques. Le but de cette thèse est de maîtriser, par la modélisation, une microscopie à force atomique instrumentée d'une sonde thermique pour estimer la conductivité thermique d'un échantillon à l'échelle submicrométrique. Nous avons d'abord établi un modèle analytique compact et complet permettant de comprendre les phénomènes impliqués dans cette métrologie lorsque la pointe est chauffée en régime continu. Nous avons ainsi caractérisé le domaine d'utilisation et les limitations de ce microscope. Nous avons ensuite conçu et modélisé un nouveau procédé opérant en régime périodique pour mesurer de manière plus précise les propriétés thermiques locales. L'analyse rétrospective de nos résultats a conduit enfin à une identification des contributions de chaque mode de transfert entre la pointe et l'échantillon ainsi que leur surface d'échange respective.
|
Page generated in 0.069 seconds