• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse fonctionnelle de la protéine Enhancer of zeste, SlEZ2, chez la tomate Solanum lycopersicum

Boureau, Lisa 13 December 2011 (has links)
Analyse fonctionnelle de la protéine Enhancer of Zeste, SlEZ2, chez la tomate, Solanum lycopersicumLes protéines Polycomb, initialement découvertes chez la drosophile, ont récemment caractérisées chez les plantes où elles remplissent des fonctions essentielles au cours du développement de la plante. Chez la drosophile, les protéines polycomb (PcG) agissent sous forme de trois complexes multi-protéiques : PRC1, PRC2 et PhoRC. Seulement, deux de ces complexes ont été identifiés chez les plantes : un orthologue fonctionnel du complexe PRC1 (PRC1-like) et PRC2. Le complexe PRC2 maintien la chromatine dans un état condensé et intervient dans le contrôle du développement des fleurs, des graines, des fruits et des feuilles. Chez la tomate Solanum lycopersicum, le complexe PRC2 est composé de trois protéines polycomb : SlEMF2 (EMbryotic Flower), SlFIE (Fertilization Independent Endosperm) and SlE(Z) (Enhancer of Zeste). Les protéines SlE(Z) portent l’activité histone méthyl transférase qui permet la mise en place de la marque répressive H3K27me3. Chez la plante modèle, Arabidopsis thaliana, cette marque joue un rôle essentiel au cours du développement de la plante Afin d’étudier le rôle du complexe PRC2 dans le développement du fruit et de la plante de tomate, et plus particulièrement de la protéine SlE(Z), nous avons identifié trois gènes codant les protéines SlE(Z) : SlEZ1, SlEZ2 et SlEZ3. Au laboratoire, il a récemment été montré que la protéine SlEZ1 intervient au cours du développement floral (How Kit et al., 2010). L’objectif de ce travail est de déterminer la fonction de la protéine SlEZ2 au cours du développement du fruit et de la plante de tomate. Pour cela, nous avons analysé des plantes transgéniques sous exprimant le gène SlEZ2, orthologue au gène CURLY LEAF d’A. thaliana, par stratégie RNAi. Ce travail indique que la protéine SlEZ2 est impliquée dans la croissance de la plante de tomate, ainsi que dans le développement des feuilles, des fleurs et des fruits. Les plantes transgéniques présentent des phénotypes pléiotropes tels que des fleurs et des feuilles modifiées, un fort taux d’avortement des fruits, des fruits de texture et de couleur altérées ainsi qu’une réduction de la taille des plantes. De plus, nous avons identifiés quatre gènes ciblés par la protéine SlEZ2 dont l’expression est dérégulée dans les feuilles. Il s’agit de deux gènes à MADS box, TAG1 et TAGL1, ainsi que de deux gènes KNOX, LeT6 et TKN4. / Functional analysis SlEZ2, a tomato Enhancer of zeste proteinPolycomb proteins, first discovered in Drosophila, have been identified in plants and play essential functions in plant development. In Drosophila, polycomb proteins (PcG) acts as a complex and three have been identified: PRC1, PRC2 and PhoRC. However, only two polycomb complexes have been identified in plants: like-PCR1 and PRC2. The PCR2 complex maintain chromatin in a closed state and control flower, seed, fruit and leaf development.In tomato Solanum lycopersicum, PRC2 is composed by three polycomb proteins SlEMF2 (EMbryotic Flower), SlFIE (Fertilization Independent Endosperm) and SlE(Z) (Enhancer of Zeste)(Enhancer of Zeste). SlE(Z) proteins have a methyltransferase activity that puts in place an repressive epigenetic mark a trimethylation of lysine 27 histone 3. In plant model, Arabidopsis thaliana, this mark plays an essential role in plant development but little is known about PRC2 role in plant and fruit development of tomato. In order to unravel the function of the E(z) protein in the control of tomato fruit and plant development, we have characterized three E(z) encoding genes, namely SlEz1, SlEz2 and SlEZ3. In a recent work, we reported that SlEZ1 protein plays a role in flower development (How Kit at al., 2010). The aim of this present study was to determine the function of the SlEZ2 protein in plant and fruit development. We present our results focusing on RNAi transgenic plants which underexpressed SlEZ2 gene, homologue of Curly Leaf Arabidopsis gene. This analysis indicates that SlEZ2 protein is implicated in tomato plant growth and affects also leaf, flower and fruit development. Phenotypes include abnormal flowers and leafs, fruit development abortion, altered fruit colour and texture and plant of reduced size. Moreover, we characterize four target genes of SlEZ2 genes in leaves which present a deregulated expression : TAG1, TAGL1, LeT6 and TKN4.
2

An RNAi screen to identify factors that control the binding of polycomb group proteins to the chromatin across the cell cycle

Huang Sung, Aurélie 03 1900 (has links)
L’établissement et le maintien du patron d’expression génique sont d’une importance critique pour l’identité cellulaire. Les protéines du groupe Polycomb (PcG) agissent sur la chromatine afin de maintenir la répression génique de ses gènes cibles à travers les cycles cellulaires de façon épigénétique. Toutefois, durant la mitose, la structure de la chromatine est grandement altérée par la répression de la transcription, la condensation de la chromatine et le relâchement de nombreux facteurs de transcription. Une question se pose alors : comment les protéines PcG peuvent-elles maintenir leur fonction à travers la mitose ? En interphase, les protéines PcG sont liées à leurs cibles sur la chromatine. Durant la mitose, la majorité des protéines PcG se libèrent de la chromatine mais une petite fraction persiste. Selon l’hypothèse du mitotic bookmarking, cette fraction agirait comme un ensemble de marqueurs guidant le recrutement des protéines PcG en fin de mitose pour maintenir le profil d’expression génique de la cellule. Cependant, nous ne savons pas comment ce recrutement à lieu, ni comment une fraction de protéines PcG est retenue à la chromatine. Afin de répondre à ces questions, un crible à ARN interférent a été établi pour identifier des facteurs contrôlant la liaison des protéines PcG à la chromatine à travers le cycle cellulaire. Quoiqu’une confirmation soit nécessaire, les facteurs spécifiques à l’interphase sont enrichis en protéines co-purifiant avec la protéine PcG testée et en hélicases alors que ceux spécifiques à la mitose sont enrichis en candidats liés aux protéines du groupe Trithorax (TrxG). / A critical part of cell identity is the establishment and maintenance of gene expression patterns. Polycomb group proteins (PcG) act on chromatin to maintain gene repression through cell cycles (epigenetically). However, during mitosis, chromatin structure is greatly altered by transcription repression, chromatin condensation, and the release of many transcription factors. A question then arises: how can PcG proteins maintain their function through mitosis? During interphase, PcG proteins are bound to their chromatin targets. During mitosis, most PcG proteins are released from chromatin, but a small fraction remains bound to chromatin. According to the mitotic bookmarking hypothesis, this fraction acts as a set of markers to guide the recruitment of PcG proteins at the end of mitosis to maintain the gene expression profile. However, we do not know how this recruitment takes place, nor do we know how a fraction of PcG proteins is retained on chromatin. To address these questions, an RNAi screen was established to identify factors that control the binding of PcG proteins to chromatin across the cell cycle. Although a confirmation is necessary, factors identified from interphase cells were enriched in proteins co-purifying with the tested PcG protein and in helicases while mitosis specific factors were enriched in Trithorax group (TrxG) protein related candidates.
3

Un nouveau mécanisme de régulation des complexes épigénétiques BAP1/ASXLs par ubiquitination

Barbour, Haithem 05 1900 (has links)
L’ubiquitination est une modification post-traductionnelle des protéines qui consiste à attacher, d’une manière covalente, le groupement ubiquitine sur un résidu lysine de la protéine cible. Cette modification peut avoir un impact considérable sur la fonction, la localisation et la stabilité de ces cibles. Une fois établie par des enzymes appelées E3 ligases, l’ubiquitination peut être enlevée par des enzymes spécifiques appelées déubiquitinases, modulant ainsi les effets causés par cette modification. BAP1 (BRCA1-Associated Protein 1) est une déubiquitinase de la famille des UCH (Ubiquitin C-terminal Hydrolases) qui a été initialement identifiée comme partenaire du suppresseur de tumeurs BRCA1 (BReast Cancer Associated gene 1). De nombreux groupes de recherche, incluant le nôtre, ont montré que BAP1 est associée avec d’autres cofacteurs formant un large complexe multiprotéique. Ce dernier est impliqué dans plusieurs processus cellulaires comme la transcription des gènes, la régulation de la chromatine, la coordination du cycle cellulaire et la réponse aux dommages à l’ADN. La cible majeure de BAP1 est l’histone H2A ubiquitinée sur la lysine 119, une marque d’histone qui a été souvent associée avec une conformation répressive de la chromatine. Quels sont les mécanismes régulant le complexe BAP1 lui permettant d’exécuter ces fonctions biologiques? Cela implique-t-il des modifications post-traductionnelles touchant les partenaires de BAP1 ? Ces questions restent encore sans réponse définitive. Ainsi, les objectifs de cette thèse sont de caractériser le mécanisme et la fonction du complexe BAP1 en étudiant les modifications post-traductionnelles de ses partenaires. Pour répondre à ces questions nous avons étudié les modifications post-traductionnelles touchant BAP1 et ses cofacteurs mutuellement exclusifs ASXL1 et ASXL2 (Additional Sex Comb-like 1,2). Nous avons démontré qu’ASXL1 et ASXL2 sont monoubiquitinés uniquement lorsqu’ils sont associés à BAP1. Sachant que les complexes BAP1/ASXLs sont conservés au cours de l’évolution, nous avons aussi démontré que la monoubiquitination des ASXLs est conservée chez la Drosophile. En utilisant des méthodes de déplétion de protéines par siARN et CRISPR/Cas9 ainsi que des mutants de perte de fonction de BAP1 et ASXL2, nous avons identifié les enzymes responsables de la monoubiquitination des ASXLs ainsi que leur effet sur l’activité catalytique de BAP1. D’autre part, nous avons étudié le développement chez la Drosophile ainsi que le cycle cellulaire des cellules humaines pour identifier la fonction biologique de la monoubiquitination de ASXL2. Nos résultats démontrent que la monoubiquitination d’ASXL2 sur la lysine 370 en présence de BAP1 est une modification post-traductionnelle conservée et catalysée directement par la famille UBE2Es des enzymes de conjugaison de l’ubiquitine (UBE2E1,2,3 chez les mammifères et UbcD2 chez la Drosophile). Cette monoubiquitination stimule l’activité catalytique de BAP1 chez les mammifères et de son orthologue Calypso chez la Drosophile envers H2Aub. Le blocage de la monoubiquitination des ASXLs par des mutations ciblant la lysine K370 induit une inhibition de l’activité de BAP1, ce qui cause une dérégulation du cycle cellulaire chez les cellules mammifères et une transformation homéotique haltère-aile chez la Drosophile. De plus, il nous a été possible de constater l’importance de cette monoubiquitination dans le cancer en démontrant la forte corrélation d’expression de BAP1/ASXL2 et les UBE2Es au niveau du mésotheliome, un cancer connu pour la dérégulation de BAP1. Nos résultats indiquent l’importance des modifications post-traductionnelles, dont la monoubiquitination, dans la régulation de la fonction et la stabilité du complexe BAP1. De plus, nous décrivons un nouveau mécanisme d’activation d’une deubiquitinase par la monoubiquitination de son cofacteur. D’autres études seront nécessaires afin de comprendre le lien entre l’activation de BAP1/ASXL2 par monoubiquitination et la fonction suppresseur de tumeurs de BAP1 via la deubiquitination d’H2Aub. D’autre part, nous avons fait l’observation que la déplétion de la deubiquitinase associée à la particule régulatrice du protéasome, PSMD14, induit non seulement une réduction drastique d’H2Aub dans la cellule, mais aussi une mort cellulaire rapide. Ceci nous a poussé initialement à investiguer l’implication de l’activité catalytique du protéasome dans la régulation d’H2Aub en lien avec la mort cellulaire. Malgré le fait que nous n’ayons pas trouvé un lien direct entre PSMD14 et la deubiquitination d’H2Aub, nous avons identifié plusieurs candidats (DUBs et E2s) impliqués dans l’induction de la mort cellulaire tout en surmontant une résistance acquise contre des inhibiteurs ciblant l’activité catalytique du protéasome. Ces candidats pourraient représenter des cibles intéressantes pour développer des inhibiteurs spécifiques afin de contrecarrer la résistance aux inhibiteurs du protéasome. / Ubiquitination is a post-translational modification of proteins that involves covalently attaching the ubiquitin moiety to the lysine residues of the target protein. This modification has been reported to have a significant impact on the function, localization and stability of these targets. Once established by enzymes called E3 ligases, ubiquitination can be removed by specific enzymes called deubiquitinases, thus modulating the effects caused by this modification. BAP1 (or BRCA1-Associated Protein1) is a deubiquitinase, from the UCH (Ubiquitin C-terminal Hydrolases) family, that was originally identified as a partner of the BRCA1 (BReast Cancer Associated gene 1) tumor suppressor. We and other research groups have shown that BAP1 is associated with other co-factors forming a multi-protein complex involved in several cellular processes such as gene transcription, chromatin regulation, cell cycle regulation and DNA damage response. The major target of BAP1 is ubiquitinated histone H2A, a histone mark that has been frequently associated with a repressive chromatin conformation. What are the mechanisms regulating the BAP1 complex allowing it to perform its biological functions? Does this involve post-translational modifications affecting BAP1 partners? These questions are still incompletely answered. Thus, the objectives of our studies are to characterize the mechanism and the function of the BAP1 complex by studying the post-translational modifications that could affect its obligate partners including ASXLs. To address these questions, we studied the post-translational modifications affecting BAP1 and its two mutually exclusive co-factors ASXL1 and ASXL2 (Additional Sex Comb-like 1,2). We demonstrated that ASXL1 and ASXL2 are mono-ubiquitinated only when associated with BAP1. Taking into account that the BAP1/ASXLs complexes are highly conserved during evolution, we also demonstrated that the mono-ubiquitination of ASXLs is important for Drosophila development. Using RNAi and CRISPR/Cas9 gene depletion methods and loss-of-function mutants of BAP1 and ASXL2, we identified the precise site of ASXLs ubiquitination, the enzymes responsible for establishing this mono-ubiquitination as well as its effect on catalytic activity of BAP1. On the other hand, we investigated Drosophila development as well as human cell cycle progression to identify the biological function of ASXLs mono-ubiquitination. Our results indicate that the mono-ubiquitination of ASXL2 on lysine 370 in the presence of BAP1 is a conserved post-translational modification catalyzed directly by the UBE2E family of ubiquitin-conjugating enzymes (UBE2E1, 2, 3 in mammals and UbcD2 in Drosophila). This mono-ubiquitination event stimulates the catalytic activity of BAP1 in mammals and its Drosophila ortholog Calypso towards H2Aub in vivo and in vitro. Blocking the mono-ubiquitination of ASXLs, by mutations targeting lysine K370, induces an inhibition of BAP1 catalytic activity causing a deregulation of human cell cycle progression and a haltere-to-wing homeotic transformation in Drosophila. In addition, we were able to assess the importance of ASXLs mono-ubiquitination in cancer using the mesothelioma tumor model, demonstrating a strong correlation between the expression of BAP1/ASXL2 and UBE2Es. Our results indicate the importance of post-translational modifications, including mono-ubiquitination, in the regulation of the function and stability of the BAP1 complex. Moreover, we describe a novel mechanism of activation of a deubiquitinase by the mono-ubiquitination of its co-factor. Further studies will be needed to shed more light on the link between BAP1/ASXLs activation by mono-ubiquitination and the tumor suppressor function of BAP1 via H2Aub deubiquitination. On the other hand, we have noticed that the depletion of PSMD14, a deubiquitinase associated with the proteasome regulatory particle, induces not only a drastic reduction of H2Aub in the cell, but also rapid cell death. This prompted us initially to investigate the involvement of the catalytic activity of the proteasome in the regulation of H2Aub in connection with cell death. Although we did not find a direct link between PSMD14 and H2Aub deubiquitination, we identified several candidates (DUBs and E2s) involved in the induction of cell death while overcoming acquired resistance against proteasome catalytic inhibitors. These candidates may represent attractive targets for developing specific inhibitors to counteract resistance to proteasome inhibitors.

Page generated in 0.066 seconds