• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation moléculaire des leucémies aigües myéloïdes avec dysmyélopoïèse / Molecular characterization of acute myeloid leukemia with myelodysplasia related changes

Devillier, Raynier 31 October 2014 (has links)
Les leucémies aiguës myéloïdes (LAM) avec dysplasie, identifiées par la classification OMS 2008 sous le nom de LAM-MRC (« AML with myelodysplasia-related changes »), sont actuellement définies par la présence de critères cliniques, cytologiques et cytogénétiques. Elles forment un groupe hétérogène tant sur le plan biologique que pronostique. Nous avons fait l'hypothèse que la caractérisation moléculaire des LAM-MRC pourrait permettre d'identifier des marqueurs spécifiques associés à ces pathologies et d'en distinguer différents sous-groupes. Nous avons mis en évidence que les LAM-MRC de risque cytogénétique intermédiaire présentent un profil mutationnel spécifique caractérisé par un taux élevé de mutation d'ASXL1 et une faible proportion de mutations de DNMT3A, NPM1 et FLT3. Les LAM-MRC de risque cytogénétique défavorable, essentiellement complexes et/ou monosomales, sont quant à elle associées aux mutations de TP53. Alors que les critères actuels des LAM-MRC ne permettent pas d'en stratifier le pronostic, nous avons montré que les mutations d'ASXL1 ou de TP53 sont des facteurs pronostics péjoratifs majeurs. Ainsi, une reclassification basée sur la présence de ces altérations moléculaires exclusives entre elles permettrait d'affiner le diagnostic et la stratification pronostique de ces maladies. Enfin, dans une stratégie de médecine personnalisée combinant le séquençage à haut débit à des tests de sensibilité thérapeutique in vitro, l'identification de tels marqueurs moléculaires permettraient de prédire la réponse aux traitements, de guider les choix thérapeutiques et d'orienter le développement de nouvelles drogues. / Acute myeloid leukemia (AML) with myelodysplasia-related changes (AML-MRC) as reported in the WHO 2008 classification are defined by the presence of clinical, morphological and cytogenetic criteria. AML-MRCs are heterogeneous diseases with prognostic heterogeneity. We hypothesized that molecular characterization of AML-MRC could identify specific molecular markers and disease subgroups. We showed that AML-MRCs with intermediate cytogenetic risk harbor a specific mutational profile characterized by a high frequency of ASXL1 mutations and a low incidence of DNMT3A, NPM1 and FLT3 mutations. Unfavorable cytogenetic risk AML-MRCs, especially due to complex and/or monosomal karyotypes, are associated with TP53 mutations. While WHO criteria do not stratify the prognosis of AML-MRC patients, we showed that the mutations of ASXL1 or TP53 are major poor prognostic factors. The criteria defining AML-MRC do not identify distinct clinical and biological subgroups and do not predict outcome of patients with AML-MRC. In contrast, ASXL1 and TP53-mutated AML identify two distinct biological subgroups of AML-MRC with very poor outcome. This molecular characterization could be useful to redefine AML-MRC in a future classification aiming at merging biological characterization and specific prognostic value. Finally, we showed that a personalized treatment approach combining next generation sequencing and in vitro drug screening could be useful to predict therapeutic response and to guide both treatment choices and new targeted drug developments.
2

Etude du rôle d’ASXL2 dans l'hématopoïèse normale et pathologique / Role of ASXL2 in Normal and Malignant Hematopoiesis

Micol, Jean-Baptiste 23 March 2016 (has links)
Les gènes ASXL (ASXL1, ASXL2 et ASXL3) sont les homologues mammifères du gène Additional sex combs (Asx) présent chez la Drosophile. En 2009, des mutations somatiques impliquant ASXL1 ont été identifiées chez ~ 10-20% des patients atteints d’hémopathies myéloïdes. Le rôle et l’implication des autres membres de la famille dans l’hématopoïèse normale et pathologique sont encore inconnus.Dans ce travail, nous avons identifié pour la 1ère fois, par séquençage haut débit, des mutations somatiques récurrentes d’ASXL2 (22,7%) chez des adultes et enfants atteints de leucémies aiguës myéloïdes (LAM) avec translocation t(8 ;21) (c.-à-d AML1-ETO (AE) ou RUNX1/RUNX1T1). Ces mutations n’ont pas été retrouvées dans d’autres sous types de LAM et sont mutuellement exclusives des mutations d’ASXL1. Le séquençage de l'ARN (RNAseq) d'échantillons de patients a révélé un profil transcriptionnel spécifique chez les patients mutés pour ASXL2. Bien que la survie globale soit similaire, les patients porteurs de mutations d’ASXL1 ou ASXL2 ont une incidence cumulative de rechute de 54,6% et 36,0% comparativement à 25% pour les patients non mutés (P = 0,226). Ces résultats, évoquant une coopération entre ASXL1/2 et AE lors de la leucémogenèse, sont importants car les t(8 ;21) sont parmi les anomalies cytogénétiques les plus fréquentes en matière de LAM. D’autre part, il est bien établi que AE nécessite la coopération d’altérations géniques supplémentaires pour induire la leucémie.Nous avons ensuite exploré le rôle d’ASXL2 dans l’hématopoïèse normale. Nous avons d’abord démontré in vitro que les mutations d’ASXL2 entrainent une diminution de son expression. Nous avons ensuite généré un modèle de souris invalidées pour Asxl2 (KO conditionnel). Par transplantations compétitive et non compétitive, nous avons montré que le KO pour Asxl2 ou Asxl1 et Asxl2 (double KO) induit une diminution et un défaut d’auto renouvellement des cellules souches hématopoïétiques (CSH) ainsi que des cytopénies, avec un phénotype plus sévère que le KO d’Asxl1 seul. L’analyse du transcriptome (par RNAseq) des CSH a révélé un nombre de gènes dérégulés par la perte d’Asxl2 25 fois plus important qu’avec Asxl1. De plus les gènes dérégulés par la perte d’Asxl2 recoupent les cibles transcriptionnelles d’AML1-ETO. Ces données suggérant qu’Asxl2 pourrait être un médiateur important de la leucémogenèse, nous avons ensuite étudié le rôle d’ASXL2 dans les LAM avec t(8 ;21). In vitro, par CHIP Seq, nous avons mis en évidence, dans des lignées t(8;21), un enrichissement des sites de liaisons à l’ADN d’ASXL2 au niveau de ceux d’AML1-ETO. De plus, en infectant ces lignées avec un shRNA dirigé contre ASXL2, nous avons étudié la marque H3K4me1 qui est augmentée de façon majeure dans le contexte leucémique. Afin de comprendre les effets in vivo d’ASXL2 dans la leucémogenèse, nous avons réalisé des greffes de cellules de moelle osseuse de souris KO infectées avec un rétrovirus pour AE9a. Ces souris développent une LAM plus rapidement que les souris contrôles AE9a lors de greffes secondaires, suggérant à nouveau un rôle spécifique d’Asxl2. Afin d’élucider le mécanisme impliqué, nous avons réalisé de l’ATAC seq sur ces souris et mis en évidence des différences importantes dans l’accessibilité de la chromatine, notamment au niveau des gènes Hoxa et Meis1.Pour la première fois, nous décrivons l’incidence des mutations d’ASXL2 dans les LAM et le rôle d’ASXL2 dans l’hématopoïèse. Nous suggèrerons un rôle spécifique dans les LAM avec t(8;21), qui pourrait être associé à des modifications de la marque d’histone H3K4me1. Ces spécificités pourraient résulter en de nouvelles options thérapeutiques chez les patients. / The ASXL family of genes (ASXL1, ASXL2, and ASXL3) are mammalian homologs of the Drosophilia Additional sex combs (Asx) gene. In 2009 somatic mutations involving ASXL1 were originally identified in ~10-20% of patients with myeloid malignancies. Despite this association, alterations in other ASXL family members and their potential function in normal or malignant hematopoiesis were unknown.We identified, by next generation sequencing, the surprising finding of highly recurrent somatic ASXL2 mutations (22.7%) in adult and pediatric acute myeloid leukemia (AML) patients bearing the AML1-ETO (AE) translocation (i.e. RUNX1/RUNX1T1, t(8;21)). Interestingly these mutations were only found in patients with t(8 ;21) and mutually exclusive with ASXL1 mutations. RNA sequencing (RNAseq) of primary AE AML patient samples revealed that ASXL2-mutants form a distinct transcriptional subset of AE AML. Although overall survival was similar between ASXL1 and ASXL2 mutant t(8;21) AML patients and their wild-type counterparts, patients with ASXL1 or ASXL2 mutations had a cumulative incidence of relapse of 54.6% and 36.0%, respectively, compared with 25% in ASXL1/2 wild-type counterparts (P=0.226). These findings are of immediate biological importance as AE translocations are amongst the most common cytogenetic alterations in AML and it is well established that AE requires additional genetic alterations to induce leukemogenesis.Given the above human genetic data, we set out to perform a functional comparison of ASXL1 and ASXL2 on hematopoiesis and determine the functional basis for frequent mutations in AE AML. In vitro analyses of ASXL2 mutations revealed that these mutations resulted in substantial reduction of ASXL2 protein expression. We therefore generated Asxl2 conditional knockout (cKO) mice to delineate the effect of ASXL2 loss on hematopoiesis. Competitive and noncompetitive transplantation revealed that Asxl2 or compound Asxl1/2 loss resulted in cell-autonomous, rapid defects of hematopoietic stem cell (HSC) function, self-renewal, and number with peripheral blood leukopenia and thrombocytopenia. RNA-seq of HSCs revealed twenty-fold greater differentially expressed genes in Asxl2 cKO mice relative to Asxl1 cKO mice. Interestingly, genes differentially expressed with Asxl2 loss significantly overlapped with direct transcriptional targets of AE, findings not seen in Asxl1 cKO mice.Overall, the above data suggest that Asxl2 may be a critical mediator of AE leukemogenesis. To functionally interrogate the role of ASXL2 loss in leukemogenesis we first utilized an in vitro model with RNAi-mediated depletion of ASXL2 in the SKNO1 cell line. Anti-ASXL2 and AE ChIPSeq revealed significant co-occupancy of ASXL2 with AE binding sites. Moreover, analysis of histone modification ChIP-Seq revealed an enrichment in intergenic and enhancer H3K4me1 abundance following ASXL2 loss. Next, to understand the in vivo effects of Asxl2 loss in the context of AE, we performed retroviral bone marrow (BM) transplantation assays using AE9a in Asxl2 cKO mice. In contrast to the failure of HSC function with Asxl2 deletion alone, mice reconstituted with BM cells expressing AE9a in Asxl2-deficient background had a shortened leukemia-free survival compared to Asxl2-wildtype control. Moreover, ATAC Sequencing showed an increase of chromatin occupancy with Asxl2 loss at known leukemogenic loci, including the HoxA and Meis1 loci.Overall, these data reveal that ASXL2 is required for hematopoiesis and has differing biological and transcriptional functions from ASXL1. Moreover, this work identifies ASXL2 as a novel mediator of AE transcriptional function and provides a new model of penetrant AE AML based on genetic events found in a substantial proportion of t(8;21) AML patients. Further interrogation of the enhancer alterations generated by ASXL2 loss in AE AML may highlight new therapeutic approaches for this subset of AML
3

Biochemical and functional characterization of the tumor suppressors BRCA1 and BAP1

Hammond-Martel, Ian 04 1900 (has links)
L’ubiquitination est une modification post-traductionnelle qui joue un rôle majeur dans la régulation d’une multitude de processus cellulaires. Dans cette thèse, je discuterai de la caractérisation de deux protéines, BRCA1 et BAP1, soit deux suppresseurs de tumeurs fonctionnellement reliés. BRCA1, une ubiquitine ligase qui catalyse la liaison de l’ubiquitine à une protéine cible, est mutée dans les cancers du sein et de l'ovaire. Il est bien établi que cette protéine aide à maintenir la stabilité génomique suite à un bris double brin de l’ADN (BDB), et ce, à l’aide d’un mécanisme de réparation bien caractérisé appelé recombinaison homologue. Cependant, les mécanismes de régulation de BRCA1 suite à des stresses génotoxiques n’impliquant pas directement un BDB ne sont pas pleinement élucidés. Nous avons démontré que BRCA1 est régulée par dégradation protéasomale suite à une exposition des cellules à deux agents génotoxiques reconnus pour ne pas directement générer des BDBs, soit les rayons UV, qui provoquent la distorsion de l’hélice d’ADN, et le méthyle méthanesulfonate (MMS), qui entraîne l’alkylation de l’ADN. La dégradation de BRCA1 est réversible et indépendante des kinases associées à la voie des PI3 kinase, soit ATM, ATR et DNA-PK, protéines qui sont rapidement activées par les dommages à l’ADN. Nous proposons que la dégradation de BRCA1 prévienne son recrutement intempestif, ainsi que celui des facteurs qui lui sont associés, à des sites de dommages d’ADN qui ne sont pas des BDBs, et que cette régulation coordonne la réparation de l’ADN. L’enzyme de déubiquitination BAP1 a initialement été identifiée comme une protéine capable d’interagir avec BRCA1 et de réguler sa fonction. Elle est également connue pour sa capacité à se lier avec les protéines du groupe Polycomb, ASXL1 et ASXL2. Cependant, l’importance de ces interactions n’a toujours pas été établie. Nous avons démontré que BAP1 forme deux complexes protéiques mutuellement exclusifs avec ASXL1 et ASXL2. Ces interactions sont critiques pour la liaison de BAP1 à l’ubiquitine ainsi que pour la stimulation de son activité enzymatique envers l’histone H2A. Nous avons également identifié des mutations de BAP1 dérivées de cancers qui empêchent à la fois son interaction avec ASXL1 et AXSL2, et son activité de déubiquitinase, ce qui fournit un lien mécanistique direct entre la déubiquitination de H2A et la tumorigenèse. Élucider les mécanismes de régulation de BRCA1 et BAP1 menera à une meilleure compréhension de leurs rôles de suppresseurs de tumeurs, permettant ainsi d’établir de nouvelles stratégies de diagnostic et traitement du cancer. / Ubiquitination is a post-translational modification that plays major roles in regulating a plethora of cellular processes. In this thesis, I will discuss the biochemical and functional characterization of two functionally related proteins, BRCA1 and BAP1, both of which are important tumor suppressors. BRCA1, an ubiquitin ligase that catalyzes the attachment of ubiquitin to target proteins, is mutated in breast and ovarian cancers. BRCA1 roles in maintaining genomic stability following DNA double strand breaks (DSBs) by promoting the homologous recombination repair pathway is well established. However, how BRCA1 is regulated following genotoxic stress that does not directly involve DSBs is still not fully elucidated. We showed that BRCA1 is downregulated, through proteasomal degradation, following exposure of the cells to the DNA helix distorting agent UV or the DNA alkylating agent Methyl Methanesulfonate (MMS), two DNA damaging agents that do not directly generate DSBs. BRCA1 downregulation is reversible and is independent of the PI3 kinase related kinases, ATM, ATR or DNA-PK which constitute primary responders that are rapidly activated by DNA damage. We proposed that BRCA1 downregulation prevents the untimely recruitment of BRCA1 and associated factors to DNA damage sites that are not DSBs, thus coordinating the DNA damage/repair response. The deubiquitinating enzyme BAP1 was initially identified as an interacting protein that regulates the function of BRCA1. BAP1 is also known to interact with the Polycomb group proteins ASXL1 and ASXL2. However, the importance of this interaction was not fully understood. We showed that BAP1 forms two mutually exclusive complexes with ASXL1 and ASXL2. These interactions are critical for BAP1 binding to ubiquitin and stimulation of its deubiquitinase activity towards histone H2A. We also identified cancer-derived mutations of BAP1 that abrogate its interaction with ASXL1 and ASXL2 and deubiquitinase activity, which provide a direct mechanistic link between H2A deubiquitination and tumorigenesis. Elucidating how BRCA1 and BAP1 are regulated will lead to a better understanding of their roles as tumor suppressors and this will in turn help establishing improved diagnostic and therapeutic strategies to treat cancer.
4

Caractérisation moléculaire des syndromes myéloprolifératifs non leucémie myéloïde chronique / Molecular characterization of myeloproliferative neoplasms non-Chronic Myeloid Leukemia

Brecqueville, Mandy 27 September 2013 (has links)
Les syndromes myéloprolifératifs (SMP) non leucémie myéloïde chronique (LMC) sont des hémopathies myéloïdes chroniques affectant la cellule souche hématopoïétique, pouvant évoluer en leucémie aigüe myéloïde (LAM). Les SMP non LMC incluent la polyglobulie de Vaquez (PV), la thrombocytémie essentielle (TE) et la myélofibrose (MF). La mutation JAK2V617F est retrouvée dans 97% des cas de PV et dans 50% des cas de TE et MF ; elle n'est pas indispensable à la physiopathologie des SMP car JAK2 n'est pas muté à 100%. Afin de progresser dans la compréhension de la physiopathologie des SMP et afin d'identifier de nouveaux marqueurs moléculaires pour le diagnostic, le suivi et le pronostic; nous avons étudié des échantillons de PV, TE, MF ainsi que des LAM post-SMP. Nous avons utilisé des approches moléculaires complémentaires: séquençage, hybridation génomique comparative (CGH-array) et profils d'expression génique. Nous avons identifié des mutations de gènes régulateurs de l'épigénétique (ASXL1, TET2, DNMT3A, SUZ12) et des gènes de la machinerie de l'épissage de l'ARN (SF3B1, SRSF2). Nous avons également identifié que les co-mutations des gènes JAK2 et ASXL1 étaient associées à un mauvais pronostic. Au sein du sous-type MF, nous avons identifié par CGH-array des aberrations du nombre de copies des gènes. Celles-ci contiennent plusieurs gènes candidats susceptibles de participer à la physiopathologie des MF et à l'évolution en LAM (délétion 20q, NF1, ETV6). Nos travaux sur la caractérisation moléculaire des SMP contribuent à l'évolution vers une classification moléculaire avec l'objectif d'une médecine de précision où chaque SMP sera traité en fonction de ses altérations. / Myeloproliferative neoplasms (MPN) are chronic and clonal stem cell myeloid disorders, which can evolve to acute myeloid leukemia (AML). MPN non-chronic myeloid leukemia (CML) include Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Myelofibrosis (MF) (primary or secondary to PV/ET). JAK2V617F mutation is found in 97% of PV and in around half of patients with ET or MF. Nevertheless, this mutation is not essential for MPN physiopathology, because in half of ET/MF cases, JAK2 is not mutated. To progress in the knowledge of MPN physiopathology and in particular of MF; and to find new molecular markers for MPN diagnosis, disease course, and prognosis, we studied several samples of PV, ET, MF and post-AML. We used gene sequencing, array-Comparative Genomic Hybridization (aCGH) and gene expression analyses. We identified several mutations in genes implicated in Epigenetic regulation (ASXL1, TET2, DNMT3A, SUZ12) and in genes implicated in the RNA splicing machinery (SF3B1, SRSF2). We also found that JAK2 and ASXL1 co-mutation is associated with a poor prognosis. In MF, we found by aCGH several copy number aberrations that involve potential leukemogenic genes. Our gene expression data support the hypothesis that PV, ET and MF are a continuum of the same pathology. Our results on molecular characterization help establish a new molecular classification of MPNs with the objective personalized treatment where each MPN will be treated depending on the alterations present in the myeloid cell genome.
5

Étude fonctionnelle d’un nouveau complexe multi-enzymatique régulant l’épigénome

Daou, Salima 09 1900 (has links)
L’ubiquitination, une modification post-traductionnelle importante pour le contrôle de nombreux processus cellulaires, est une réaction réversible. La réaction inverse, nommée déubiquitination est catalysée par les déubiquitinases (DUB). Nous nous sommes intéressés dans nos travaux à étudier l’ubiquitination de l’histone H2A (H2Aub), au niveau des résidus lysines 118 et 119 (K118/K119), une marque épigénétique impliquée dans la régulation de la prolifération cellulaire et la réparation de l’ADN. Le régulateur transcriptionnel BAP1, une déubiquitinase nucléaire, a été initialement identifié pour sa capacité à promouvoir la fonction suppressive de tumeurs de BRCA1. BAP1 forme un complexe multi-protéique avec plusieurs facteurs transcriptionnels et sa fonction principale est la déubiquitination de H2Aub. Plusieurs études ont démontré que BAP1 est un gène suppresseur de tumeurs majeur et qu’il est largement muté et inactivé dans une multitude de cancers. En effet, BAP1 émerge comme étant la DUB la plus mutée au niveau des cancers. Cependant, le ou les mécanismes d’action et de régulation du complexe BAP1 restent très peu connus. Dans cette étude nous nous sommes intéressés à la caractérisation moléculaire et fonctionnelle des partenaires protéiques de BAP1. De manière significative nous avons caractérisé un mécanisme unique de régulation entre deux composants majeurs du complexe BAP1 à savoir, HCF-1 et OGT. En effet, nous avons démontré que HCF-1 est requis pour maintenir le niveau protéique de OGT et que cette dernière est indispensable pour la maturation protéolytique de HCF-1 en promouvant son clivage par O-GlcNAcylation, une signalisation cellulaire nécessaire au bon fonctionnement de HCF-1. Également, nous avons découvert un nouveau mécanisme de régulation de BAP1 par l’ubiquitine ligase atypique UBE2O. En effet, UBE2O agit comme un régulateur négatif de BAP1 puisque l’ubiquitination de ce dernier induit sa séquestration dans le cytoplasme et l’inhibition de sa fonction suppressive de tumeurs. D’autre part nous nous sommes penchés sur la caractérisation de l’association de BAP1 avec deux facteurs de la famille des protéines Polycombes nommés ASXL1 et ASXL2 (ASXL1/2). Nous avons investigué le rôle de BAP1/ASXL1/2, particulièrement dans les mécanismes de déubiquitination et suppression de tumeurs. Nous avons démontré que BAP1 interagit directement iii via son domaine C-terminale avec le même domaine ASXM de ASXL1/2 formant ainsi deux complexes mutuellement exclusifs indispensables pour induire l’activité déubiquitinase de BAP1. De manière significative, ASXM s’associe avec BAP1 pour créer un nouveau domaine composite de liaison à l’ubiquitine. Ces interactions BAP1/ASXL1/2 régulent la progression harmonieuse du cycle cellulaire. De plus, la surexpression de BAP1 et de ASXL2 au niveau des fibroblastes induit la sénescence de manière dépendante de leurs interactions. D’autre part, nous avons identifié des mutations de cancers au niveau de BAP1 le rendant incapable de lier ASXL1/2, d’exercer sa fonction d’autodéubiquitination et de ce fait d’agir comme suppresseur de tumeurs. Ainsi nous avons révélé un lien étroit entre le gène suppresseur de tumeurs BAP1, son activité déubiquitinase et le contrôle de la prolifération cellulaire. / The reverse reaction of ubiquitination, a crucial post-translational modification, is catalyzed by deubiquitinases (DUBs). BAP1 is an ubiquitously expressed nuclear DUB that recently emerged as an important tumor suppressor highly mutated and inactivated in an increasing number of cancers of diverse origins. Both somatic and germline mutations with loss of heterozygosity were observed in tumors, making BAP1 the most mutated DUB in human malignancies. We previously reported that BAP1 is a component of a large multi-protein complex that includes several transcription regulators. The Drosophila homologue of BAP1, Calypso, forms the Polycomb-repressive DUB (PR-DUB) complex with Additional Sex Comb, ASX. This complex catalyzes the deubiquitination of histone H2A, an essential chromatin modification that regulates gene expression. Despite the ever increasing number of findings describing the occurrence of BAP1 mutations in cancers, few studies investigated the mechanisms of action of this DUB as a tumor suppressor. Therefore, the biological function and the mechanism of action and regulation of BAP1 remains largely uncharacterized. In the work described in this thesis, we investigated the roles of BAP1 partners in modulating its catalytic activity and tumor suppressor function. More specifically we discovered a unique mechanism of regulation between two major components of BAP1 complexes, namely HCF-1 and OGT. Indeed, HCF-1 is important for the maintenance of the cellular levels of OGT. OGT, in turn, is required for the proper proteolytic maturation of HCF-1 by promoting its O-GlcNAcylation. This signaling event is required for HCF-1 function as a cell cycle regulator. On the other hand, we deciphered an intricate mechanism of regulation of BAP1 by the atypical E2/E3 ligase, UBE2O. UBE2O, promote the multi-monoubiquitination of BAP1 on its NLS mediating its cytoplasmic sequestration and thus inhibition of its tumor suppressor function. Another aspect of modulation of BAP1 H2Aub catalysis is provided by the association of BAP1 with ASXL1 and ASXL2 (ASXL1/ASXL2), two orthologs of ASX. We investigated the role of BAP1/ASXL1/2, particularly in the mechanisms of deubiquitination and tumor suppression. We have demonstrated that BAP1 interacts directly via its C-terminal domain with the ASXM domain of ASXL1/2, thus forming two mutually exclusive complexes. Significantly, ASXM promote, through assembly with BAP1, the generation of a composite ubiquitin binding domain (CUBI), indispensable for inducing the deubiquitinase activity of BAP1 towards H2Aub. The interactions between BAP1 and ASXL1/2 regulate cell cycle progression. In addition, overexpression of BAP1 or ASXL2 in fibroblasts induces senescence in CTD- and ASXM-dependent manner. We also identified cancer-derived mutation of BAP1 that selectively abolish its interaction with ASXL1 and ASXL2 as well as its H2A deubiquitinase activity. Significantly, this mutant suppressed senescence induced by BAP1 overexpression. Thus we provided a link between the tumor suppressor BAP1, its deubiquitinase activity and the control of cell proliferation.
6

Un nouveau mécanisme de régulation des complexes épigénétiques BAP1/ASXLs par ubiquitination

Barbour, Haithem 05 1900 (has links)
L’ubiquitination est une modification post-traductionnelle des protéines qui consiste à attacher, d’une manière covalente, le groupement ubiquitine sur un résidu lysine de la protéine cible. Cette modification peut avoir un impact considérable sur la fonction, la localisation et la stabilité de ces cibles. Une fois établie par des enzymes appelées E3 ligases, l’ubiquitination peut être enlevée par des enzymes spécifiques appelées déubiquitinases, modulant ainsi les effets causés par cette modification. BAP1 (BRCA1-Associated Protein 1) est une déubiquitinase de la famille des UCH (Ubiquitin C-terminal Hydrolases) qui a été initialement identifiée comme partenaire du suppresseur de tumeurs BRCA1 (BReast Cancer Associated gene 1). De nombreux groupes de recherche, incluant le nôtre, ont montré que BAP1 est associée avec d’autres cofacteurs formant un large complexe multiprotéique. Ce dernier est impliqué dans plusieurs processus cellulaires comme la transcription des gènes, la régulation de la chromatine, la coordination du cycle cellulaire et la réponse aux dommages à l’ADN. La cible majeure de BAP1 est l’histone H2A ubiquitinée sur la lysine 119, une marque d’histone qui a été souvent associée avec une conformation répressive de la chromatine. Quels sont les mécanismes régulant le complexe BAP1 lui permettant d’exécuter ces fonctions biologiques? Cela implique-t-il des modifications post-traductionnelles touchant les partenaires de BAP1 ? Ces questions restent encore sans réponse définitive. Ainsi, les objectifs de cette thèse sont de caractériser le mécanisme et la fonction du complexe BAP1 en étudiant les modifications post-traductionnelles de ses partenaires. Pour répondre à ces questions nous avons étudié les modifications post-traductionnelles touchant BAP1 et ses cofacteurs mutuellement exclusifs ASXL1 et ASXL2 (Additional Sex Comb-like 1,2). Nous avons démontré qu’ASXL1 et ASXL2 sont monoubiquitinés uniquement lorsqu’ils sont associés à BAP1. Sachant que les complexes BAP1/ASXLs sont conservés au cours de l’évolution, nous avons aussi démontré que la monoubiquitination des ASXLs est conservée chez la Drosophile. En utilisant des méthodes de déplétion de protéines par siARN et CRISPR/Cas9 ainsi que des mutants de perte de fonction de BAP1 et ASXL2, nous avons identifié les enzymes responsables de la monoubiquitination des ASXLs ainsi que leur effet sur l’activité catalytique de BAP1. D’autre part, nous avons étudié le développement chez la Drosophile ainsi que le cycle cellulaire des cellules humaines pour identifier la fonction biologique de la monoubiquitination de ASXL2. Nos résultats démontrent que la monoubiquitination d’ASXL2 sur la lysine 370 en présence de BAP1 est une modification post-traductionnelle conservée et catalysée directement par la famille UBE2Es des enzymes de conjugaison de l’ubiquitine (UBE2E1,2,3 chez les mammifères et UbcD2 chez la Drosophile). Cette monoubiquitination stimule l’activité catalytique de BAP1 chez les mammifères et de son orthologue Calypso chez la Drosophile envers H2Aub. Le blocage de la monoubiquitination des ASXLs par des mutations ciblant la lysine K370 induit une inhibition de l’activité de BAP1, ce qui cause une dérégulation du cycle cellulaire chez les cellules mammifères et une transformation homéotique haltère-aile chez la Drosophile. De plus, il nous a été possible de constater l’importance de cette monoubiquitination dans le cancer en démontrant la forte corrélation d’expression de BAP1/ASXL2 et les UBE2Es au niveau du mésotheliome, un cancer connu pour la dérégulation de BAP1. Nos résultats indiquent l’importance des modifications post-traductionnelles, dont la monoubiquitination, dans la régulation de la fonction et la stabilité du complexe BAP1. De plus, nous décrivons un nouveau mécanisme d’activation d’une deubiquitinase par la monoubiquitination de son cofacteur. D’autres études seront nécessaires afin de comprendre le lien entre l’activation de BAP1/ASXL2 par monoubiquitination et la fonction suppresseur de tumeurs de BAP1 via la deubiquitination d’H2Aub. D’autre part, nous avons fait l’observation que la déplétion de la deubiquitinase associée à la particule régulatrice du protéasome, PSMD14, induit non seulement une réduction drastique d’H2Aub dans la cellule, mais aussi une mort cellulaire rapide. Ceci nous a poussé initialement à investiguer l’implication de l’activité catalytique du protéasome dans la régulation d’H2Aub en lien avec la mort cellulaire. Malgré le fait que nous n’ayons pas trouvé un lien direct entre PSMD14 et la deubiquitination d’H2Aub, nous avons identifié plusieurs candidats (DUBs et E2s) impliqués dans l’induction de la mort cellulaire tout en surmontant une résistance acquise contre des inhibiteurs ciblant l’activité catalytique du protéasome. Ces candidats pourraient représenter des cibles intéressantes pour développer des inhibiteurs spécifiques afin de contrecarrer la résistance aux inhibiteurs du protéasome. / Ubiquitination is a post-translational modification of proteins that involves covalently attaching the ubiquitin moiety to the lysine residues of the target protein. This modification has been reported to have a significant impact on the function, localization and stability of these targets. Once established by enzymes called E3 ligases, ubiquitination can be removed by specific enzymes called deubiquitinases, thus modulating the effects caused by this modification. BAP1 (or BRCA1-Associated Protein1) is a deubiquitinase, from the UCH (Ubiquitin C-terminal Hydrolases) family, that was originally identified as a partner of the BRCA1 (BReast Cancer Associated gene 1) tumor suppressor. We and other research groups have shown that BAP1 is associated with other co-factors forming a multi-protein complex involved in several cellular processes such as gene transcription, chromatin regulation, cell cycle regulation and DNA damage response. The major target of BAP1 is ubiquitinated histone H2A, a histone mark that has been frequently associated with a repressive chromatin conformation. What are the mechanisms regulating the BAP1 complex allowing it to perform its biological functions? Does this involve post-translational modifications affecting BAP1 partners? These questions are still incompletely answered. Thus, the objectives of our studies are to characterize the mechanism and the function of the BAP1 complex by studying the post-translational modifications that could affect its obligate partners including ASXLs. To address these questions, we studied the post-translational modifications affecting BAP1 and its two mutually exclusive co-factors ASXL1 and ASXL2 (Additional Sex Comb-like 1,2). We demonstrated that ASXL1 and ASXL2 are mono-ubiquitinated only when associated with BAP1. Taking into account that the BAP1/ASXLs complexes are highly conserved during evolution, we also demonstrated that the mono-ubiquitination of ASXLs is important for Drosophila development. Using RNAi and CRISPR/Cas9 gene depletion methods and loss-of-function mutants of BAP1 and ASXL2, we identified the precise site of ASXLs ubiquitination, the enzymes responsible for establishing this mono-ubiquitination as well as its effect on catalytic activity of BAP1. On the other hand, we investigated Drosophila development as well as human cell cycle progression to identify the biological function of ASXLs mono-ubiquitination. Our results indicate that the mono-ubiquitination of ASXL2 on lysine 370 in the presence of BAP1 is a conserved post-translational modification catalyzed directly by the UBE2E family of ubiquitin-conjugating enzymes (UBE2E1, 2, 3 in mammals and UbcD2 in Drosophila). This mono-ubiquitination event stimulates the catalytic activity of BAP1 in mammals and its Drosophila ortholog Calypso towards H2Aub in vivo and in vitro. Blocking the mono-ubiquitination of ASXLs, by mutations targeting lysine K370, induces an inhibition of BAP1 catalytic activity causing a deregulation of human cell cycle progression and a haltere-to-wing homeotic transformation in Drosophila. In addition, we were able to assess the importance of ASXLs mono-ubiquitination in cancer using the mesothelioma tumor model, demonstrating a strong correlation between the expression of BAP1/ASXL2 and UBE2Es. Our results indicate the importance of post-translational modifications, including mono-ubiquitination, in the regulation of the function and stability of the BAP1 complex. Moreover, we describe a novel mechanism of activation of a deubiquitinase by the mono-ubiquitination of its co-factor. Further studies will be needed to shed more light on the link between BAP1/ASXLs activation by mono-ubiquitination and the tumor suppressor function of BAP1 via H2Aub deubiquitination. On the other hand, we have noticed that the depletion of PSMD14, a deubiquitinase associated with the proteasome regulatory particle, induces not only a drastic reduction of H2Aub in the cell, but also rapid cell death. This prompted us initially to investigate the involvement of the catalytic activity of the proteasome in the regulation of H2Aub in connection with cell death. Although we did not find a direct link between PSMD14 and H2Aub deubiquitination, we identified several candidates (DUBs and E2s) involved in the induction of cell death while overcoming acquired resistance against proteasome catalytic inhibitors. These candidates may represent attractive targets for developing specific inhibitors to counteract resistance to proteasome inhibitors.

Page generated in 0.0222 seconds