• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 4
  • 2
  • Tagged with
  • 39
  • 39
  • 13
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

CFTR Potentiator PG-01 and Corrector KM-11060 can rescue hERG mutations trafficking

Zhang, J., Shang, Lijun, Ma, A. January 2016 (has links)
yes / Type II congenitalLong QT syndrome (LQT2) is due to genetic mutations in hERG channel. Genetic or pharmacological factors could potentially affect hERG channel biogenesis and contributes to LQTS, for example, disease mutations G601S and T473P result in hERG trafficking deficiency [1,2]. Various rescue strategies for hERG dysfuction are being developed. Some correctors for CFTR channel have been reported to act indirectly on proteostasis pathways to promote folding and correction on hERG trafficking deficiency [3]. In this study, we tested the hypothesis that the CFTR corrector KM-11060 and the potentiator PG-01 may correct hERG mutation trafficking diseases. We use HEK293 cell line expressing a well-studied trafficking disease mutation G601S-hERG channel [4]. We treated cells with CFTR potentiator PG-01and corrector KM-11060, which function through different cellular mechanisms, and assessed whether correction occurred via immunoblotting. Whole cell proteins from HEK 293 cells expressing hERG channels were used for analysis [5]. Proteins were separated on 8% SDS-polyacrylamide electrophoresis gels for 1 hour, transferred onto PVDF membrane, and blocked for 1 h with 5% nonfat milk. The blots were incubated with the primary antibody (Santa Cruz Biotechnology) for 12-16 h at 4C temperature and then incubated with a donkey antigoat horseradish peroxidase-conjugated secondary antibody( Santa Cruz Biotechnology). Actin expression was used for loading controls. The blots were visualized using the ECL detection kit (Genshare).Results were deemed significantly different from controls by a one-way ANOVA (p < 0.05). Our results show that both KM-11060 (5, 10, 20uM) and PG-01(5, 15 uM) can correct G601S mutant alleles of hERG protein trafficking (Fig 1, 2). KM-11060 (20uM) but not PG-01(15 uM) enhance protein expression of wild type hERG channel (Fig 2). Further treatment on cells at low temperature with different drug concentration will be tested. Functional studies are also needed to test whether the drugs can correct the function of hERG mutation channel. These results could potentially provide novel insight into the correction mechanism of CFTR potentiator and also help to develop new treatment for LQT2.
32

Quantitative analysis of protein-protein interactions governing TASK-1/TASK-3 intracellular transport

Kilisch, Markus 01 June 2016 (has links)
No description available.
33

Determining features sufficient for protein trafficking to the plant inner nuclear membrane and identification of putative nuclear envelope-associated proteins in <i>Arabidopsis thaliana</i>.

Groves, Norman R. 25 October 2019 (has links)
No description available.
34

<b>Evaluating the role of the Ebola virus (EBOV) matrix protein (VP40) surface charge and host cell calcium levels on EBOV plasma membrane assembly and budding.</b>

Balindile Bhekiwe Motsa (18426324) 24 April 2024 (has links)
<p dir="ltr">The Ebola virus (EBOV) is a filamentous RNA virus which causes severe hemorrhagic fever. It is one of the most dangerous known pathogens with a high fatality rate. Multiple outbreaks of EBOV have occurred since the 1970s with the most widespread outbreak starting in December 2013. This outbreak continued through May of 2016 and had a fatality rate of approximately 50%. EBOV outbreaks are recurrent because the virus is still present in animal reservoirs. Despite multiple EBOV outbreaks we still lack a clear understanding of how new viral particles are formed and spread through virus assembly and release. Given the widespread global travel, EBOV now poses a threat to the entire world. EBOV encodes for the matrix protein, VP40, which is one of the most conserved viral proteins. VP40 can form different structures leading to different functions of the protein in different stages of the EBOV life cycle. The VP40 dimer traffics to the inner leaflet of the plasma membrane to facilitate assembly and budding. The VP40 octameric ring has been implicated in transcriptional regulation. This thesis focuses on understanding in further detail the determinates of VP40 plasma membrane assembly and exit from an infected cell.</p><p dir="ltr">The assembly and trafficking of VP40 to the plasma membrane requires a network of protein-protein and lipid-protein interactions (PPIs and LPIs). Studying these interfaces is important for understanding how VP40 structure and function regulates trafficking and assembly and can shed light on therapeutic strategies to target EBOV. The alteration of host cell Ca<sup>2+</sup> levels is one of the strategies that viruses use to perturb the host cell signaling transduction mechanism in their favor. Evidence has emerged demonstrating that Ca<sup>2+</sup> is important for the assembly and budding of EBOV in a VP40-dependent manner. The relationship between intracellular Ca<sup>2+</sup> levels and EBOV matrix protein VP40 function is still unknown. In this work we utilize biophysical techniques to study the role of LPIs and intracellular Ca<sup>2+</sup> on VP40 dynamics at the plasma membrane and key residues for assembly and budding. This work highlights the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding and a critical interaction between Ca<sup>2+</sup> and the VP40 dimer that are important for lipid binding at the plasma membrane.</p>
35

Effets des acides gras saturés sur la voie de sécrétion. Relation avec la mucoviscidose / Effects of saturated fatty acids on the secretory pathway. Relationship with cystic fibrosis

Payet, Laurie-Anne 29 November 2013 (has links)
Les acides gras saturés (AGS) altèrent la fonctionnalité des organites dans de nombreux types cellulaires. Il a été proposé que ce processus, également nommé lipointoxication, puisse être responsable de plusieurs pathologies humaines telles que le diabète de Type 2.Au niveau cellulaire, l'accumulation d'AGS est associée à une augmentation du taux de saturation des phospholipides (PL) membranaires, les composants majoritaires des membranes des organites, mais également du taux de céramides, impliqués dans l'induction de l'apoptose.Dans une première partie de ce travail, nous avons étudié, chez le modèle cellulaire simple Saccharomyces cerevisiae, la contribution relative des PL saturés et des céramides à la cytotoxicité des AGS. Nous avons pu démontrer que les céramides agissaient à des étapes précoces de la voie de sécrétion, alors que les PL saturés impactaient des étapes plus tardives en altérant en particulier la formation de vésicules de sécrétion.Parallèlement, nous avons également constaté que le taux d'AGS était significativement augmenté dans les PL membranaires des patients atteints d'une maladie génétique, la mucoviscidose. La mutation la plus fréquente responsable de cette maladie, résulte en la rétention de la protéine correspondante dans le réticulum endoplasmique. Des molécules pharmacologiques, capables de corriger le trafic de la protéine à sa destination finale ont été isolées in vitro, mais des limitations importantes ont pu être observées lors des tests cliniques. Nous proposons dans le présent manuscrit que la lipointoxication liée aux AGS pourrait être un écueil important à l'utilisation des correcteurs actuels pour le traitement de la mucoviscidose. / Saturated fatty acids (SFA) have been reported to alter organelle integrity in many cell types. This process, also known as lipotoxicity, has been proposed to be responsible for several human pathologies such as type 2 diabetes.At the cellular level, SFA accumulation is associated with an increase of the saturation rate of membrane phospholipids (PL), the major components of organelle membranes, and an increase of ceramides levels, implicated in apoptosis induction.In the first part of this work, we took advantage of a simple yeast-based model to study the relative contributions of saturated PL and ceramides to SFA cytotoxicity. We demonstrated that ceramides act early in the secretory pathway, while saturated PL impact the later steps, and particularly the formation of secretory vesicles.In parallel, we observed that SFA amounts were significantly increased in the membrane PL of cystic fibrosis (CF) patient cells. The most common mutation responsible for this genetic disease results in the retention of the corresponding protein in the endoplasmic reticulum. Pharmacological agents, which correct the mistrafficking of the protein, have been isolated in vitro, but they did not show significant improvements in clinical trials. We propose in the present manuscript, that SFA-related lipointoxication could be an important bottleneck for the use of these pharmacological agents in clinical trials.
36

Characterization of two sorting nexins : sorting nexin-11 and sorting nexin-30

Cameron, Michel 04 1900 (has links)
No description available.
37

Advanced Fluorescence Microscopy to Study Plasma Membrane Protein Dynamics

Piguet, Joachim January 2010 (has links)
Membrane protein dynamics is of great importance for living organisms. The precise localization of proteins composing a synapse on the membrane facing a nerve terminus is essential for proper functioning of the nervous system. In muscle fibers, the nicotinic acetylcholine is densely packed under the motor nerve termini. A receptor associated protein, rapsyn, acts as a linker between the receptor and the other components of the synaptic suramolecular assembly. Advances in fluorescence microscopy have allowed to measure the behavior of a single receptor in the cell membrane. In this work single-molecule microscopy was used to track the motion of ionotropic acetylcholine (nAChR) and serotonin (5HT3R) receptors in the plasma membrane of cells. We present methods for measuring single-molecule diffusion and their analysis. Single molecule tracking has shown a high dependence of acetylcholine receptors diffusion on its associated protein rapsyn. Comparing muscle cells that either express rapsyn or are devoid of it, we found that rapsyn plays an important role on receptor immobilization. A three-fold increase of receptor mobility was observed in muscle cells devoid of rapsyn. However, in these cells, a certain fraction of immobilized receptors was also found immobile. Furthermore, nAChR were strongly confined in membrane domains of few tens of nanometers. This showed that membrane composition and membrane associated proteins influence on receptor localization. During muscle cell differentiation, the fraction of immobile nAChR diminished along with the decreasing nAChR and stable rapsyn expression levels. The importance of rapsyn in nAChR immobilization has been further confirmed by measurements in HEK 293 cells, where co-expression of rapsyn increased immobilization of the receptor. nAChR is a ligand-gated ion-channel of the Cys-loop family. In mammals, members of this receptor family share general structural and functional features. They are homo- or hetero-pentamers and form a membrane-spanning ion channel. Subunits have three major regions, an extracellular ligand binding domain, a transmembrane channel and a large intracellular loop. 5HT3R was used as a model to study the effect of this loop on receptor mobility. Single-molecule tracking experiments on receptors with progressively larger deletions in the intracellular loop did not show a dependence of the size of the loop on the diffusion coefficient of mobile receptors. However, two regions were identified to play a role in receptor mobility by changing the fractions of immobile and directed receptors. Interestingly, a prokaryotic homologue of cys-loop receptors, ELIC, devoid of a large cytoplasmic loop was found to be immobile or to show directed diffusion similar as the wild-type 5HT3R. The scaffolding protein rapsyn stabilizes nAChR clusters in a concentration dependent manner. We have measured the density and self-interactions of rapsyn using FRET microscopy. Point-mutations of rapsyn, known to provoke myopathies, destabilized rapsyn self-interactions. Rapsyn-N88K, and R91L were found at high concentration in the cytoplasm suggesting that this modification disturbs membrane association of rapsyn. A25V was found to accumulate in the endoplasmic reticulum. Fluorescent tools to measure intracellular concentration of calcium ions are of great value to study the function of neurons. Rapsyn is highly abundant at the neuromuscular junction and thus is a genuine synaptic marker. A fusion protein of rapsyn with a genetically encoded ratiometric calcium sensor has been made to probe synapse activity. This thesis has shown that the combined use of biologically relevant system and modern fluorescence microscopy techniques deliver important information on pLGIC behaviour in the cell membrane. / <p>QC 20151217</p>
38

Régulation du contrôle de qualité de NKCC2 par les interactions protéine-protéine / Regulation of NKCC2 quality control by protein-protein interactions

Seaayfan, Elie 27 September 2017 (has links)
Le co-transporteur Na+-K+-2Cl- spécifique du rein et sensible au bumétanide, NKCC2, joue un rôle essentiel dans l’homéostasie hydro-électrolytique et acido-basique de l’organisme. Les mutations inactivatrices de NKCC2 induisent le syndrome de Bartter anténatal de type 1, une grave maladie rénale caractérisée par une hypotension artérielle associée à des anomalies électrolytiques. À l’opposé, une activité accrue de NKCC2 est associée à une hypertension artérielle sensible au sel. Pourtant, peu est connu sur la régulation moléculaire de NKCC2. Le but de ces travaux de thèse a donc été l’identification des déterminants moléculaires impliqués dans la régulation de l’expression et du trafic intracellulaire de NKCC2, plus spécifiquement dans le contrôle de qualité de ce co-transporteur. Suite au criblage par la technique de double hybride chez la levure d’une banque d’ADNc de rein humain, nous avons identifié OS-9 en tant que partenaire de NKCC2. La léctine OS-9 est un facteur clé de régulation du contrôle de qualité des protéines au niveau du RE. Les analyses de co-immunoprécipitation dans les cellules rénales ont montré qu’OS-9 interagit principalement avec la forme immature de NKCC2. De plus, les expériences d’immunofluorescence ont révélé que cette interaction aurait lieu au niveau du RE. La surexpression d’OS-9 diminue l’abondance totale de NKCC2. Cet effet est aboli suite à l’inhibition de la voie de dégradation protéique par le protéasome par le MG132. De plus, les expériences pulse-chase et cycloheximide-chase ont montré que cette diminution est secondaire à l’augmentation de la dégradation de la forme immature de NKCC2. A l’inverse, le knock-down d’OS-9 endogène augmente l’expression du co-transporteur en augmentant la stabilité de sa forme immature. Enfin, la mutation du domaine MRH (Mannose 6-phosphate Receptor Homology) d’OS-9 n’altère pas son effet sur NKCC2, alors que la mutation des deux sites de N-glycosylation de NKCC2 abolie l’effet d’OS-9. L’ensemble de nos résultats démontre l’implication de la lectine OS-9 dans le système ERAD de NKCC2. Le deuxième volet de ce travail a porté sur l’identification de nouveaux mécanismes Moléculaires impliqués dans le Syndrome de Bartter. Nous avons découvert des mutations dans le gène MAGE-D2, situé sur la chromosome X, responsables d’une nouvelle et très sévère forme du syndrome de Bartter anténatal, caractérisé par un polyhydramnios très précoce avec un risque élevé d’accouchement prématuré et de mortalité. Nous avons montré que les anomalies de MAGE-D2 entraînent un défaut de maturation et d’expression membranaire de NKCC2 ainsi que celle du co-transporteur Na-Cl, NCC, du tubule distal. La comparaison in vitro de l’interactome de MAGED2 sauvage et mutée a révélé que la protéine MAGE-D2 sauvage interagit spécifiquement avec DNAJB1 (HSP40) et/ou GNAS, suggérant l’implication de ces deux partenaires protéiques dans la régulation de NKCC2 et NCC par MAGE-D2 pendant la grossesse. Le troisième volet de ce travail a porté sur l’étude de l’effet de DNAJB1/HSP40, partenaire de MAGE-D2, sur l’expression de NKCC2. HSP40 a été identifiée aussi comme partenaire de NKCC2 par la technique de double hybride réalisée par notre équipe. Nous avons montré que HSP40 et son co-chaperon HSPA1A (HSP70) interagissent avec la forme immature de NKCC2 au niveau du RE. La co-expression de HSP40 et HSP70 augmente l’expression de NKCC2 en augmentant sa stabilité et sa maturation. De plus, ces deux co-chaperons régulent l’expression de NCC de la même manière. Ces observations suggèrent que MAGE-D2 coopère avec DNAJB1/HSP40 et HSPA1A/HSP70 pour protéger NKCC2 et NCC contre la rétention et la dégradation de NKCC2 au niveau du RE durant la grossesse, révélant ainsi une nouvelle voie de régulation du trafic intracellulaire de NKCC2 et NCC. (...) / The kidney-specific Na + -K + -2C1 co-transporter, sensitive to bumetanide, NKCC2, plays an essential role in the body's fluid, electrolyte and acid-base homeostasis. Mutations of NKCC2 cause antenatal type 1 Bartter syndrome, a life-threatening kidney disease characterized by arterial hypotension associated with electrolyte abnormalities. In contrast, an increase in NKCC2 activity is associated with salt-sensitive hypertension. Yet the mechanisms underlying the regulation of NKCC2 trafficking in renal cells are scarcely known. The aim of this work was to identify the protein partners involved in the regulation of the expression and the intracellular trafficking of NKCC2, specifically in the quality control of this co-transporter. Using the yeast tow-hybrid system, we identified OS-9 as a specific binding partner of NKCC2. Lectin OS-9 is a key factor in the regulation of protein quality control at ER. Co-immunoprecipitation assay in renal cells showed that OS-9 interacts mainly with NKCC2 immature forms. Accordingly, immunocytochemistry analysis showed co-localization of the proteins mainly in the ER. Overexpression of OS-9 decreased the total abundance of NKCC2. This effect is abolished following the inhibition of the proteasome protein degradation pathway by MG132. In addition, the pulse-chase and cycloheximide-chase assays demonstrated that the marked reduction in the co-transporter protein levels was essentially due to increased protein degradation of NKCC2 immature forms. Conversely, knock-down endogenous of OS-9 increased the expression of the co-transporter by increasing the stability of its immature form. Finally, inactivation of the Mannose 6-phosphate Receptor Homology domain had no effect on its action on NKCC2, while mutation of the two NKCC2 N-glycosylation sites abolished the effect of OS- 9. In summary, our results demonstrate the involvement of lectin OS-9 in the ERAD of NKCC2. The second part of this work focused on the identification of new molecular mechanisms involved in Bartter Syndrome. We found that MAGE-D2 mutations caused X-linked new and severe form of antenatal Bartter's syndrome, characterized by a very early polyhydramnios with a high risk of premature delivery and mortality. We have shown that MAGE-D2 abnormalities lead to a lack of maturation and membrane expression of NKCC2 as well as that of the Na-Cl co-transporter, NCC, of the distal tubule. In vitro comparison of the wild-type and mutated MAGED2 interactome revealed that wild-type MAGE-D2 interacts specifically with DNAJB1 (HSP40) and / or GNAS, suggesting involvement of these two protein partners in NKCC2 and NCC regulation by MAGE-D2 during pregnancy. The third part of this work focused on the study of the effect of DNAJB1 / HSP40, partner of MAGE-D2, on the expression of NKCC2. HSP40 was also identified as a specific binding partner of NKCC2 by the yeast two-hybrid system realized by our team. We have shown that HSP40 and its co-chaperone HSPA1A (HSP70) interact with the immature form of NKCC2 at the ER. The co-expression of HSP40 and HSP70 increased the expression of NKCC2 by increasing its stability and maturation. In addition, these two co-chaperones regulate the expression of NCC in the same way. These findings suggest that MAGE-D2 cooperates with DNAJB1 / HSP40 and HSPA1A / HSP70 to protect NKCC2 and NCC against retention and degradation of NKCC2 at ER during pregnancy, revealing a new pathway for regulating NKCC2 and NCC intracellular trafficking. A better understanding of NKCC2 and NCC regulatory pathways would help to better understand the pathophysiology of sodium retention and ultimately would provide a new target for a pharmaceutical approach to preventing and / or treating kidney disease related to sodium balance.
39

HOW TO BE A BAD HOST FOR VIRUSES BY UNDERSTANDING THE COMPLEXITIES OF HOST LIPID-VIRAL PROTEIN INTERACTIONS

Emily A David (17583603) 10 December 2023 (has links)
<p dir="ltr">The recent global pandemic, COVID-19, has revealed to all the importance of understanding the complex relationship between viruses and hosts. Before COVID-19, I started my study of viral protein-host lipid interactions in the hemorrhagic fevers Ebola and Marburg viruses. These viruses contain a matrix protein that interacts with the plasma membrane to facilitate the formation of both authentic viruses and virus-like particles. My goal was to understand the limitations of their specific host lipid interactions. However, when the COVID-19 pandemic began, so to be our swift response in the development of a biosafety level 2 compatible model. This model can be used for studying severe acute respiratory distress syndrome 2 (SARS-CoV-2) assembly, egress, and entry. This model enabled exponentially greater access to more facilities to study the intricacies of SARS-CoV-2 assembly. With more access to studying the virus in a safe model, our goal is to push the understanding of viral assembly faster. I then began to take apart the individual pieces of the model and started to look at understanding the roles that they play independently. The membrane protein is the most abundant structural protein and I studied the specific lipid interactions of the soluble fraction of the protein. Physicians observed nucleocapsid protein mutations in the clinic with the increasing number of SARS-CoV-2 variants that are on the rise. The microscopy data collected can give us more insight into perhaps how the nucleocapsid protein induces the formation of filopodia structures at the plasma membrane. The envelope protein proved to be a challenge, but I determined a specific envelope and ceramide interaction in cells. The envelope protein was also causing the formation of microvesicles for an undefined function. I was able to determine the subcellular localization of the protein to the mitochondria. The localization to the mitochondria appears to induce depolarization of the mitochondria membrane action potential and induces the increase in mitochondria dysfunction signal, cytochrome c. Although the mitochondria were dysfunctional, there was no increase in apoptosis signal in the presence of the protein alone.</p>

Page generated in 0.1008 seconds