• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 48
  • 38
  • 12
  • 8
  • 8
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 399
  • 399
  • 74
  • 74
  • 72
  • 57
  • 57
  • 48
  • 45
  • 45
  • 39
  • 37
  • 36
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Protein adsorption and denaturation in injectable devices for pharmaceutical applications / Adsorption et dénaturation des protéines dans des dispositifs injectables pour des applications pharmaceutiques

Huang, Tongtong 22 March 2016 (has links)
Protéines sont largement utilisés dans la formulation dans le domaine pharmaceutique et de jouer un rôle important dans les fonctions biologiques. Il est bien connu que l'adsorption de protéines sur la surface solide est toujours observé pour un stockage à long terme, ce qui entraînera une réduction de la dose de substance active ou une perte de l'activité biologique. Dans certains cas, une courte période de contact avec la surface est suffisante pour modifier fortement la conformation des protéines : par exemple, l'insuline pertes 52% de son activité biologique après 5 minutes de contact avec la surface de verre, ainsi qu'une perte de 30% d’activité biologique du cétrorélix est observé après 2 heures de contact. Parmi tous les paramètres, la dénaturation des protéines est fortement liée à sa stabilité des propriétés de surface. La compréhension de l'adsorption de protéines est devenue une question cruciale dans l'industrie pharmaceutique.Pour mieux comprendre le comportement des protéines à la surface, la quantification des protéines adsorbées et sa conformation devrait être étudiée. L'objectif de notre recherche sera de comprendre les comportements des protéines sur différents surfaces de seringue pré - remplie classique.Le principal objectif de ce projet est de comprendre le comportement de plusieurs modèles de protéines comme la sérum d’albumine bovine (BSA), le lysozyme (LSZ) et la myoglobine (MGB) en contact avec des surfaces de seringues pré-remplie comme le verre et l’élastomère. Nous proposons d'utiliser la chromatographie liquide à haute performance (HPLC) pour la quantification de protéine adsorbée sur une surface plane en déterminant la déplétion des protéines en solution. La réflexion totale atténuée infrarouge à transformée de fourier (FTIR-ATR) spectroscopie est utilisée de suivre les changements structurels des protéines adsorbées sur des surfaces solides. [...] / Proteins are widely used in formulation in the pharmaceutical field and play a major role in biological functions. It is well known that protein adsorption on solid surface is always observed for a long-term storage, which will result in a reduced dose of active compound or a loss of biological activity. In some cases, only short time of contact are sufficient to drastically modify the protein conformation: for instance, insulin losses 52% of its biological activity after 5 minutes contacting with glass surface, as well as a loss of 30% of cetrorelix is observed after 2 hours. Among all parameters, the time frame of the denaturation process is strongly related to the protein stability and surface properties. The understanding of protein adsorption has therefore become a crucial issue in the pharmaceutical industry.To gain a better understanding of proteins’ behavior on the surface, adsorbed protein quantification and its conformation should be studied. The objective of our research in a first will be to understand proteins’ behaviors on various surfaces which composed a classical prefilled syringe.The main goal of this PhD project is to understand the behaviors of several model proteins like bovine serum albumin (BSA), lysozyme (LSZ) and myoglobin (MGB) in contact with the surfaces of prefilled syringes such as glass and elastomer. We propose to use the high performance liquid chromatography (HPLC) to quantify the amount of protein adsorbed on a flat surface by determining the depletion of the proteins in solution. Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy was as well as employed to follow the structural changes of adsorbed BSA on solid surface. [...]
382

Identification and Characterization of Peptides and Proteins using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

Palmblad, Magnus January 2002 (has links)
Mass spectrometry has in recent years been established as the standard method for protein identification and characterization in proteomics with excellent intrinsic sensitivity and specificity. Fourier transform ion cyclotron resonance is the mass spectrometric technique that provides the highest resolving power and mass accuracy, increasing the amount of information that can be obtained from complex samples. This thesis concerns how useful information on proteins of interest can be extracted from mass spectrometric data on different levels of protein structure and how to obtain this data experimentally. It was shown that it is possible to analyze complex mixtures of protein tryptic digests by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and identify abundant proteins by peptide mass fingerprinting. Coupling on-line methods such as liquid chromatography and capillary electrophoresis increased the number of proteins that could be identified in human body fluids. Protein identification was also improved by novel statistical methods utilizing prediction of chromatographic behavior and the non-randomness of enzymatic digestion. To identify proteins by short sequence tags, electron capture dissociation was implemented, improved and finally coupled on-line to liquid chromatography for the first time. The combined techniques can be used to sequence large proteins de novo or to localize and characterize any labile post-translational modification. New computer algorithms for the automated analysis of isotope exchange mass spectra were developed to facilitate the study of protein structural dynamics. The non-covalent interaction between HIV-inhibitory peptides and the oligomerization of amyloid β-peptides were investigated, reporting several new findings with possible relevance for development of anti-HIV drug therapies and understanding of fundamental mechanisms in Alzheimer’s disease.
383

Estudio de las Proteinas Quinasas C clasicas y su interaccion con ligandos y membranas

Torrecillas Sánchez, Alejandro 12 September 2003 (has links)
La Proteína Quinasa C (PKC) participa en numerosas funciones fisiológicas a través de distintas rutas de señalización celular. Las isoenzimas clásicas están reguladas por diacilglicerol, ésteres de forbol, calcio y fosfolípidos aniónicos. La presencia de insaturaciones en los diacilgliceroles de la membrana modifica la activación de la PKC alfa.Los dominios C2 de PKC clásicas presentan dos tipos de sitios de unión de calcio y enlazan tres cationes de manera similar. La desnaturalización térmica de estos dominios se desplazó hacia mayores temperaturas con concentraciones crecientes de calcio, siendo mayor el efecto en presencia de fosfolípidos aniónicos. La estructura secundaria de los dominios C2 de PKC clásicas así como de la PKC alfa completa mostró una elevada proporción de hoja beta. La adición de fosfolípidos aniónicos y PMA respectivamente provocó un mayor efecto protector frente a la desnaturalización térmica que sólo con calcio. / Protein Kinase C (PKC) plays a key role in several physiological functions through different celullar signalling pathways. The classical isoenzymes are regulated by diacylglycerol, phorbol esters, calcium, and anionic phospholipids.The presence of insaturations in the membrane diacylglycerols modifies the PKC alpha activation.C2 domains of classical PKC have two different binding sites for calcium, and bind three molecules in a similar way. The thermal denaturation of these domains moved to higher temperatures with increasing calcium concentrations, being this effect hingher in the presence of anionic phospholipids. The secondary structure of both C2 domains from classical PKC and PKC alpha showed a high contribution of beta-sheet component. The addition of anionic phospholipids and PMA produced the main protection against thermal denaturation, respectively
384

Crystalline, membrane-embedded, and fibrillar proteins investigated by solid-state NMR spectroscopy / Untersuchung kristalliner, membranständiger und fibrillärer Proteine mittels Festkörper-NMR-Spektroskopie

Schneider, Robert 30 January 2009 (has links)
No description available.
385

Structural characterization of membrane proteins by solid-state NMR spectroscopy / Strukturelle Charakterisierung von Membranproteinen mittels Festkörper-NMR-Spektroskopie

Seidel, Karsten 19 February 2008 (has links)
No description available.
386

Solid-state NMR of (membrane) protein complexes: Novel methods and applications / Festkörper-NMR von (Membran-) Proteinkomplexen: Neue Methoden und Anwendungen

Andronesi, Ovidiu-Cristian 18 April 2006 (has links)
No description available.
387

Structure, Stability and Evolution of Multi-Domain Proteins

Bhaskara, Ramachandra M January 2013 (has links) (PDF)
Analyses of protein sequences from diverse genomes have revealed the ubiquitous nature of multi-domain proteins. They form up to 70% of proteomes of most eukaryotic organisms. Yet, our understanding of protein structure, folding and evolution has been dominated by extensive studies on single-domain proteins. We provide quantitative treatment and proof for prevailing intuitive ideas on the strategies employed by nature to stabilize otherwise unstable domains. We find that domains incapable of independent stability are stabilized by favourable interactions with tethered domains in the multi-domain context. Natural variations (nsSNPs) at these sites alter communication between domains and affect stability leading to disease manifestation. We emphasize this by using explicit all-atom molecular dynamics simulations to study the interface nsSNPs of human Glutathione S-transferase omega 1. We show that domain-domain interface interactions constrain inter-domain geometry (IDG) which is evolutionarily well conserved. The inter-domain linkers modulate the interactions by varying their lengths, conformations and local structure, thereby affecting the overall IDG. These findings led to the development of a method to predict interfacial residues in multi-domain proteins based on difference evolutionary information extracted from at least two diverse domain architectures (single and multi-domain). Our predictions are highly accurate (∼85%) and specific (∼95%). Using predicted residues to constrain domain–domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. Further, we developed and employed an alignment-free approach based on local amino-acid fragment matching to compare sequences of multi-domain proteins. This is especially effective in the absence of proper alignments, which is usually the case for multi-domain proteins. Using this, we were able to recreate the existing Hanks and Hunter classification scheme for protein kinases. We also showed functional relationships among Immunoglobulin sequences. The clusters obtained were functionally distinct and also showed unique domain-architectures. Our analysis provides guidelines toward rational protein and interaction design which have attractive applications in obtaining stable fragments and domain constructs essential for structural studies by crystallography and NMR. These studies enable a deeper understanding of rapport of protein domains in the multi-domain context.
388

Structural Studies on the Role of Hinge involved in Domain Swapping in Salmonella Typhimurium Stationary Phase Survival Protein (SurE) and Sesbania Mosaic Virus Coat Protein

Yamuna Kalyani, M January 2014 (has links) (PDF)
A unique mechanism of protein oligomerization is domain swapping. It is a feature found in some proteins wherein a dimer or a higher oligomer is formed by the exchange of identical structural segments between protomers. Domain swapping is thought to have played a key role in the evolution of stable oligomeric proteins and in oligomerization of amyloid proteins. This thesis deals with studies to understand the significance of hinges involved in domain swapping for protein oligomerization and function. The stationary phase survival protein SurE from Salmonella typhimurium (StSurE) and Sesbania mosaic virus (SeMV) coat protein have been used as models for studies on domain swapping. This thesis has been divided into eight chapters. Chapter 1 provides a brief introduction to domain swapping, while Chapters 2 to 6 describes the studies carried out on StSurE protein, Chapter 7 deals with studies on SeMV coat protein. The final Chapter 8 provides brief descriptions of various experimental techniques employed during these investigations. Chapter 1 deals with a brief introduction to domain swapping in proteins. Examples where different domains are exchanged are cited. Then it describes physiological relevance of domain swapping in proteins and probable factors which promote swapping. Finally it also discusses the uncertainties that are inevitable in protein structure prediction and design. Chapter 2 describes the structure of Salmonella typhimurium SurE (StSurE; Pappachan et al., 2008) determined at a higher resolution. The chapter also deals with the sequence and structure based comparison of StSurE with other known SurE homolog structures. A comparative analysis of the relative conservation of N- and C-terminal halves of SurE protomer and variations observed in the quaternary structures of SurE homologs are presented. Then a brief introduction is provided on function of StSurE. The conserved active site of StSurE that might be important for its phosphatase activity is described. A plausible mechanism for the phosphatase activity as proposed by Pappachan et al. (2008) is presented. Crystal structures of StSurE bound with AMP, pNPP and pNP that was determined with the view of better understanding the mechanism of enzyme function is presented. These structures provide structural evidence for the mechanism proposed by Pappachan et al. (2008). Finally a substrate entry channel inferred from these structures is discussed. SurE from Salmonella typhimurium (StSurE) was selected for studies on domain swapping as there is at least one homologous structure (Pyrobaculum aerophilum - PaSurE) in which swapping of the C-terminal helices appears to have been avoided without leading to the loss of oligomeric structure or function. It was of interest to examine if an unswapped dimer of StSurE resembling PaSurE dimer could be constructed by mutagenesis. To achieve this objective, a crucial hydrogen bond in the hinge involved in C-terminal helix swapping was abolished by mutagenesis. These mutants were constructed with the intention of increasing the flexibility of the hinge which might bring the C-terminal helices closer to the respective protomer as in PaSurE. Chapter 3 presents a comparative analysis of the hinges involved in C-terminal helix swapping in PaSurE and StSurE. Based on the comparison of structure and sequence, crucial residues important for C-terminal helix swapping in StSurE were identified as D230 and H234. The chapter describes the construction of mutants obtained by substituting D230 and H234 by alanine and their biophysical characterization. Finally it describes structural studies carried out on these mutants. The mutation H234A and D230A/H234A resulted in highly distorted dimers, although helix swapping was not avoided. Comparative analysis of the X-ray crystal structures of native StSurE and mutants H234A and D230A/H234A reveal large structural changes in the mutants relative to the native structure. However the crystal structures do not provide information on the changes in dynamics of the protein resulting from these mutations. To gain better insights into the dynamics involved in the native and mutants H234A and D230A/H234A, MD simulations were carried on using GROMACS 4.0.7. Chapter 4 deals with a brief description of the theory of molecular dynamics, followed by results of simulation studies carried out on monomeric and dimeric forms of StSurE and dimeric forms of its mutants H234A and D230A/H234A. The conformational changes and dynamics of different swapped segments are discussed. Crystal structures of H234A and D230A/H234A mutants reveal that they form highly distorted dimers with altered dimeric interfaces. Chapter 5 focuses on comparison of dimeric interfaces of the native StSurE and hinge mutants H234A and D230A/H234A. Based on the analysis, three sets of interactions were selected to investigate the importance of the interface formed by swapped segments in StSurE mutants H234A and D230A/H234A. One of the selected sites corresponds to a novel interaction involving tetramerization loop in the hinge mutants H234A and D230A/H234A resulting in a salt bridge between E112 – R179’ and E112’ – H180 (prime denotes residue from the other chain of the dimeric protein). This salt bridge seems to stabilize the distorted dimer. It is shown by structural studies that the loss of this salt bridge due to targeted mutation restores symmetry and dimeric organization of the mutants. Loss of a crucial hydrogen bond in the hinge region involved in C-terminal helix swapping in SurE not only leads to large structural changes but also alters the conformation of a loop near the active site. It is of interest to understand functional consequences of these structural changes. StSurE is a phosphatase, and its activity could be conveniently monitored using the synthetic substrate para nitrophenyl phosphate (pNPP) at pH 7 and 25 ºC. Chapter 6 deals with the functional studies carried out with various StSurE mutants. The studies suggest that there is a drastic loss in phosphatase activity in hinge mutants D230A, H234A and D230A/H234A, while in the salt bridge mutants the function seems to have been restored. Few of these mutants also exhibit positive cooperativity, which could probably be due to altered dynamics of domains. Sesbania mosaic virus (SeMV) is a plant virus, belonging to genus sobemovirus. SeMV is a T=3 icosahedral virus (532 symmetry) made up of 180 coat protein (CP) subunits enclosing a positive-sense RNA genome. The asymmetric unit of the icosahedral capsid is composed of chemically identical A, B and C subunits occupying quasi-equivalent environments. Residues 48 – 59 of the N-terminal arms of the C subunits interact at the nearby icosahedral three-fold axes through a network of hydrogen bonds to form a structure called the “β-annulus”. Residues 60 – 73 form the “βA-arm” that connects the N-terminal β-annulus to the rest of the protomer. Various studies on SeMV-CP suggest that different lengths of the N-terminal segments affect the assembly of virus. It might be possible to exploit this flexibility of the N-terminus in SeMV-CP to introduce swapping of this segment between two 2-fold related C subunits as is found in Rice yellow mottle virus (RYMV), another sobemovirus, with which SeMV shares significant sequence similarity. Chapter 7 focuses on attempts made to examine the mutational effects planned to introduce domain swapping. The strategy used for introducing swapping in SeMV-CP was based on the sequence of the βA-arm or the hinge involved in swapping of β-annulus in RYMV. TEM images of the mutant virus like particles obtained suggest that they are heterogeneous. These mutants could not be crystallized, probably due to the heterogeneity. However, the assembly of the expressed proteins to virus like particles was profoundly influenced by the mutations. Chapter 8 discusses various crystallographic, biophysical and biochemical techniques used during these investigations. Finally the thesis concludes with Conclusions and Future perspectives of the various studies reported in the thesis. In summary, I have addressed the importance of amino acid residues and interactions of hinges involved in domain swapping for the quaternary structure and function of proteins.
389

Développement de potentiels statistiques pour l'étude in silico de protéines et analyse de structurations alternatives / Development of statistical potentials for the [study] in silico study of proteins and analysis of alternative structuring.

Dehouck, Yves 20 May 2005 (has links)
Cette thèse se place dans le cadre de l'étude in silico, c'est-à-dire assistée par ordinateur, des liens qui unissent la séquence d'une protéine à la (ou aux) structure(s) tri-dimensionnelle(s) qu'elle adopte. Le décryptage de ces liens présente de nombreuses applications dans divers domaines et constitue sans doute l'une des problématiques les plus fascinantes de la recherche en biologie moléculaire.<p><p>Le premier aspect de notre travail concerne le développement de potentiels statistiques dérivés de bases de données de protéines dont les structures sont connues. Ces potentiels présentent plusieurs avantages: ils peuvent être aisément adaptés à des représentations structurales simplifiées, et permettent de définir un nombre limité de fonctions énergétiques qui incarnent l'ensemble complexe d'interactions gouvernant la structure et la stabilité des protéines, et qui incluent également certaines contributions entropiques. Cependant, leur signification physique reste assez nébuleuse, car l'impact des diverses hypothèses nécessaires à leur dérivation est loin d'être clairement établi. Nous nous sommes attachés à l'étude de certaines limitations des ces potentiels: leur dépendance en la taille des protéines incluses dans la base de données, la non-additivité des termes de potentiels, et l'importance souvent négligée de l'environnement protéique spécifique ressenti par chaque résidu. Nous avons ainsi mis en évidence que l'influence de la taille des protéines de la base de données sur les potentiels de distance entre résidus est spécifique à chaque paire d'acides aminés, peut être relativement importante, et résulte essentiellement de la répartition inhomogène des résidus hydrophobes et hydrophiles entre le coeur et la surface des protéines. Ces résultats ont guidé la mise au point de fonctions correctives qui permettent de tenir compte de cette influence lors de la dérivation des potentiels. Par ailleurs, la définition d'une procédure générale de dérivation de potentiels et de termes de couplage a rendu possible la création d'une fonction énergétique qui tient compte simultanément de plusieurs descripteurs de séquence et de structure (la nature des résidus, leurs conformations, leurs accessibilités au solvant, ainsi que les distances qui les séparent dans l'espace et le long de la séquence). Cette fonction énergétique présente des performances nettement améliorées par rapport aux potentiels originaux, et par rapport à d'autres potentiels décrits dans la littérature.<p><p>Le deuxième aspect de notre travail concerne l'application de programmes basés sur des potentiels statistiques à l'étude de protéines qui adoptent des structures alternatives. La permutation de domaines est un phénomène qui affecte diverses protéines et qui implique la génération d'un oligomère suite à l'échange de fragments structuraux entre monomères identiques. Nos résultats suggèrent que la présence de "faiblesses structurales", c'est-à-dire de régions qui ne sont pas optimales vis-à-vis de la stabilité de la structure native ou qui présentent une préférence marquée pour une conformation non-native en absence d'interactions tertiaires, est intimement liée aux mécanismes de permutation. Nous avons également mis en évidence l'importance des interactions de type cation-{pi}, qui sont fréquemment observées dans certaines zones clés de la permutation. Finalement, nous avons sélectionné un ensemble de mutations susceptibles de modifier sensiblement la propension de diverses protéines à permuter. L'étude expérimentale de ces mutations devrait permettre de valider, ou de raffiner, les hypothèses que nous avons proposées quant au rôle joué par les faiblesses structurales et les interactions de type cation-{pi}. Nous avons également analysé une autre protéine soumise à d'importants réarrangements conformationnels: l'{alpha}1-antitrypsine. Dans le cas de cette protéine, les modifications structurales sont indispensables à l'exécution de l'activité biologique normale, mais peuvent sous certaines conditions mener à la formation de polymères insolubles et au développement de maladies. Afin de contribuer à une meilleure compréhension des mécanismes responsables de la polymérisation, nous avons cherché à concevoir rationnellement des protéines mutantes qui présentent une propension à polymériser contrôlée. Des tests expérimentaux ont été réalisés par le groupe australien du Professeur S.P. Bottomley, et ont permis de valider nos prédictions de manière assez remarquable.<p><p><p><p>The work presented in this thesis concerns the computational study of the relationships between the sequence of a protein and its three-dimensional structure(s). The unravelling of these relationships has many applications in different domains and is probably one of the most fascinating issues in molecular biology.<p><p>The first part of our work is devoted to the development of statistical potentials derived from databases of known protein structures. These potentials allow to define a limited number of energetic functions embodying the complex ensemble of interactions that rule protein folding and stability (including some entropic contributions), and can be easily adapted to simplified representations of protein structures. However, their physical meaning remains unclear since several hypotheses and approximations are necessary, whose impact is far from clearly understood. We studied some of the limitations of these potentials: their dependence on the size of the proteins included in the database, the non-additivity of the different potential terms, and the importance of the specific environment of each residue. Our results show that residue-based distance potentials are affected by the size of the database proteins, and that this effect can be quite strong, is residue-specific, and seems to result mostly from the inhomogeneous partition of hydrophobic and hydrophilic residues between the surface and the core of proteins. On the basis of these observations, we defined a set of corrective functions in order to take protein size into account while deriving the potentials. On the other hand, we developed a general procedure of derivation of potentials and coupling terms and consequently created an energetic function describing the correlations between several sequence and structure descriptors (the nature of each residue, the conformation of its main chain, its solvent accessibility, and the distances that separate it from other residues, in space and along the sequence). This energetic function presents a strongly improved predictive power, in comparison with the original potentials and with other potentials described in the literature.<p><p>The second part describes the application of different programs, based on statistical potentials, to the study of proteins that adopt alternative structures. Domain swapping involves the exchange of a structural element between identical proteins, and leads to the generation of an oligomeric unit. We showed that the presence of “structural weaknesses”, regions that are not optimal with respect to the folding mechanisms or to the stability of the native structure, seems to be intimately linked with the swapping mechanisms. In addition, cation-{pi} interactions were frequently detected in some key locations and might also play an important role. Finally, we designed a set of mutations that are likely to affect the swapping propensities of different proteins. The experimental study of these mutations should allow to validate, or refine, our hypotheses concerning the importance of structural weaknesses and cation-{pi} interactions. We also analysed another protein that undergoes large conformational changes: {alpha}1-antitrypsin. In this case, the structural modifications are necessary to the proper execution of the biological activity. However, under certain circumstances, they lead to the formation of insoluble polymers and the development of diseases. With the aim of reaching a better understanding of the mechanisms that are responsible for this polymerisation, we tried to design mutant proteins that display a controlled polymerisation propensity. An experimental study of these mutants was conducted by the group of Prof. S.P. Bottomley, and remarkably confirmed our predictions.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
390

Ultrafast Structural and Electron Dynamics in Soft Matter Exposed to Intense X-ray Pulses

Jönsson, Olof January 2017 (has links)
Investigations of soft matter using ultrashort high intensity pulses have been made possible through the advent of X-ray free-electrons lasers. The last decade has seen the development of a new type of protein crystallography where femtosecond dynamics can be studied, and single particle imaging with atomic resolution is on the horizon. The pulses are so intense that any sample quickly turns into a plasma. This thesis studies the ultrafast transition from soft matter to warm dense matter, and the implications for structural determination of proteins.                    We use non-thermal plasma simulations to predict ultrafast structural and electron dynamics. Changes in atomic form factors due to the electronic state, and displacement as a function of temperature, are used to predict Bragg signal intensity in protein nanocrystals. The damage processes started by the pulse will gate the diffracted signal within the pulse duration, suggesting that long pulses are useful to study protein structure. This illustrates diffraction-before-destruction in crystallography. The effect from a varying temporal photon distribution within a pulse is also investigated. A well-defined initial front determines the quality of the diffracted signal. At lower intensities, the temporal shape of the X-ray pulse will affect the overall signal strength; at high intensities the signal level will be strongly dependent on the resolution. Water is routinely used to deliver biological samples into the X-ray beam. Structural dynamics in water exposed to intense X-rays were investigated with simulations and experiments. Using pulses of different duration, we found that non-thermal heating will affect the water structure on a time scale longer than 25 fs but shorter than 75 fs. Modeling suggests that a loss of long-range coordination of the solvation shells accounts for the observed decrease in scattering signal. The feasibility of using X-ray emission from plasma as an indicator for hits in serial diffraction experiments is studied. Specific line emission from sulfur at high X-ray energies is suitable for distinguishing spectral features from proteins, compared to emission from delivery liquids. We find that plasma emission continues long after the femtosecond pulse has ended, suggesting that spectrum-during-destruction could reveal information complementary to diffraction.

Page generated in 0.0793 seconds