• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 18
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Films orodispersibles de tétrabénazine pour l’administration pédiatrique / Pediatric administration of tetrabenazine as orodispersibles films form

Senta-Loys, Zoé 20 December 2016 (has links)
Lors de cette dernière décennie, le développement de formes pharmaceutiques innovantes permettant d'améliorer l'efficacité, la sécurité et l'acceptabilité des médicaments pédiatriques est en pleine croissance. Les films orodispersibles (ODF) appartiennent à ces nouvelles formes galéniques améliorant la compliance des patients. Ils sont constitués d'une matrice de polymère hydrophile dans laquelle un ou des principe(s) actif(s) (PA) sont dissous ou dispersés. Après dépôt de l'ODF sur la langue ou dans la cavité buccale, la matrice se désagrège libérant le PA pour une action locale ou systémique. Dans cette étude, la mise au point d'ODF, par la méthode de coulée/évaporation de solvant a été explorée afin d'administrer un PA d'intérêt en pédiatrie, la tétrabénazine (TBZ). Les caractérisations physicochimiques et biopharmaceutiques des ODF ont mis en évidence une augmentation de la vitesse et du taux de dissolution de la TBZ induit par son état amorphe. Le système constitué d'un support polymère et d'un PA sous forme amorphe peut être assimilé aux dispersions solides amorphes (SD). Les études réalisées démontrent l'importance de la nature du polymère utilisé pour maintenir les propriétés initiales du système dans le temps. La formation de liaisons hydrogène entre la PA étudié et le polymère est un facteur essentiel pour assurer la stabilité des SD. De plus, l'incorporation de cyclodextrines (CD) prolonge l'état amorphe du PA en générant des liaisons hydrogène avec la TBZ et en l'entourant d'une barrière chimique. Cette association favorise la libération du PA par effet synergique améliorant la biodisponibilité. Cette forme innovante représente un intérêt majeur dans l'amélioration de l'observance dans le cadre d'un traitement pédiatrique / During the last decade, various strategies to develop innovating oral dosage forms for pediatric population were investigated in order to improve treatment efficiency, safety and acceptability. Among these new delivery systems, orodispersible films (ODF) present a great potential to enhance patient compliance. In ODF, drug is dissolved or dispersed in a hydrophilic film-forming polymer. Once the ODF is in the mouth, polymeric matrix disintegrates releasing the drug for local or systemic action. In this study, ODF, produced with the solvent casting/evaporation method, were developed to administer a drug of interest for pediatric population, the tetrabetazine (TBZ). Physicochemical and biopharmaceutic characterizations showed that ODF allowed a major improvement of TBZ dissolution profile in simulated saliva, mainly due to the amorphous state of the drug in ODF. ODF were identified as amorphous solid dispersion (SD) composed of both amorphous TBZ and polymer matrix. We demonstrated that the choice of the polymer plays an important role to maintain initial properties of the system and amorphous state stability over the time. H-bonding formation between TBZ and polymer is essential to assure the preservation of TBZ amorphous state. Moreover, the incorporation of cyclodextrins (CD), by generating H-bonding with TBZ, has extended its stability. By synergic effect, this association produces an improvement of drug release leading to promote bioavailability. As they are easy to swallow and allow enhancing treatment efficiency, ODF appear as suitable delivery forms for pediatric patients
12

Studium produkce extracelulárních polymerů pomocí mikroorganismu Aureobasidium pullulans / Production of extracellular polymeric substances by Aureobasidium pullulans

Horáček, Pavel January 2013 (has links)
The diploma thesis is focused on the study of the influence of cultivation conditions and arrangement for the production of extracellular polymeric substances by using yeast-like microorganism Aureobasidium pullulans. In the theoretical part a brief description of A. pullulans, its use in biotechnology and produced exobiopolymers, especially pullulan and poly-L-malic acid are presented. The first aim of the experimental part was to set the most appropriate cultivation conditions for A. pullulans CCM 8182. Growth and production properties in optimum conditions were compared with cultivation on waste substrates - oat bran, buckwheat husks, apple fiber and others. Waste substrates can be used as cheap nutrient sources which enable reducing cost of potential biotechnological production. As a further part of this work, optimization of HPLC/RI method for analysis of exobiopolymers has been done. Optimal mobile phase composition and chromatography conditions were proposed. Column Roa organic acid H+ was the most suitable for simultaneous separartion of glucose and malic acid. Before HPLC analysis hydrolysis of polymers was done. Sulphuric acid (5 mmol/L) was used as a mobile phase at flow rate 0.5 mL/min and temperature 60 °C. The highest production of pullulan occurred using oat bran as a substarate (13.03 g/L) at an initial pH 7.5. Maximum production of poly-L-malic acid was observed during the cultivation on apple peels (2.89 g/L) at pH 6. It was found that the higher production of poly-L-malic acid occurred at pH 6, while higher production of pullulan was at pH 7.5.
13

Bioprodukce, charakterizace a aplikace vybraných biopolymerů / Bioproduction, Characterization and Application of Selected Biopolymers

Benešová, Pavla January 2017 (has links)
Proposed doctoral thesis deals with microbial production of biopolymers (polysaccharides and polyesters) using renewableble inexpensive resources as carbon and nitrogen source. At first, production of extracellular metabolites, mainly pullulan and poly-L-malic acid, by polymorphic microorganism Aureobasisium pullulans was studied. Further part of thesis was focused on production of bacterial biopolyesters polyhydroxyalkanoates (PHA). PHA are produced in the form of intracellular granules by various bacteria species. During the study of PHA production, sythesis of poly(3-hydroxybutyrate) and technologically significant copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was investigated as well with regard to waste substrate utilization in biorafinery concept. Spent coffee ground seemed to be applicable waste in biorefinery proces. One of the coffee wastes used for PHA production was spent coffee ground hydrolysate which was converted to PHA by Burkholderia cepacia. Moreover, copolymer of 3HB and 3HV was accumulated when SCGH was used as a sole carbon source, no precursor had to be added. Another coffee waste, which was utillized by Cupriavidus necator H16, is represented by oil extracted from spent coffee grounds. Hydrolysis proces of waste substrates had to be optimized, to reach the highest possible saccharide concentration. Due to the hydrolysis process several toxic compounds can be formed, hence, influence of hydrolysis procesings on polyphenols content in hydrolysates was monitored. Waste substrates were also tested as potentional complex nitrogen source for PHA production. Hydrolysates of cheese whey and chicken feather were used as inexpensive complex nitrogen source for PHA production by C. necator, when waste frying oil was used as a carbon substrate. The finnal part of the thesis is dealing with possibilities how the PHA can be processed into atractive aplication forms. Liposomes with partial content of PHB had been prepared, moreover, for improving of antioxidant activity and antimicrobial effect the waste coffee oil was added. Micro-fibrous PHB materials were prepared for the purposes of water filtration. Higher filtration effectivity was observed when composite PHB fibrous material containing active charcoal or metal oxides was used. Important part of thesis is represented by study of degradation processes of prepared PHA-based aplication forms. Various microorganisms were tested on PHA depolymerases production. Biodegradability of PHA materials was tested in of composting conditions by standard composting test IS/ISO 20200. Changes in mechanical properties of polyurethan, where polyol was partialy replaced by PHB, were tested depending on the exposure of composting condition.
14

The air-drying of Escherichia coli reporters in natural polymers and incorporation into simple bioassays

Salvo, Elizabeth January 2018 (has links)
Microbial biosensor systems (MBS) are useful for analyte detection owing to their low cost, sensitivity, and selectivity for bioavailable analytes. Due to typically poor shelf-life and sensitivity to external conditions, there are few reports of MBS technology applied to simple analytical devices. The effectiveness of air-drying MBS in natural polymers was investigated as a novel preservation technique. Two colorimetric Escherichia coli MBS, a tetracycline-inducible reporter and an arsenate-inducible reporter, were dried on various substrates yielding novel MBS platforms. In proof-of-concept experiments performed in 96-well microplates, both systems demonstrated responsivity after air-drying in low concentrations of pullulan. However, the MBS were unresponsive following brief storage of 1 week. To improve the preservation of MBS, sensing strips were created by air-drying concentrated acacia gum-based MBS suspensions onto paper. Cells dried on these strips demonstrated responsivity upon solubilization in various tube-based assays. MBS sensing strip responsivity was demonstrated following storage for 6 weeks at 4 °C. Tetracycline-responsive sensing strips also performed well in assays using spiked lake water samples. Air-drying in natural polymers was an effective MBS preservation technique, and allowed for the creation of “mix and read” style assays which were simple, equipment-free and ready-to-use. / Thesis / Master of Science (MSc)
15

Microencapsulation of an omega-3 polyunsaturated fatty acid source with polysaccharides for food applications

Hannah, Sabrina 30 November 2009 (has links)
Omega-3 polyunsaturated fatty acids (ω3 PUFAs) provide important health benefits, but dietary consumption is low. Supplementing foods with ω3 PUFAs is of interest, but intervention strategies are necessary to preserve the integrity of these unstable compounds. Microencapsulation of ω3 PUFA sources is one means of improving their stability. In this work, ω3 PUFA microcapsules were prepared by spray drying with chitosan and blends of chitosan, high-amylose starch, and pullulan as wall materials. The primary objectives of this research were (1) to evaluate the effect of chitosan type and oil:wall ratio on ω3 PUFA microcapsule properties, (2) to evaluate the effect of blending chitosan with high-amylose starch and pullulan on ω3 PUFA microcapsule properties, and (3) to evaluate the oxidative stability of ω3 PUFA microcapsules by monitoring primary and secondary oxidation products during storage. Microcapsule encapsulation efficiencies (EE) ranged from 63% to 79% with the highest EEs observed for microcapsules prepared from chitosan with higher degree of deacetylation (DD) and lower molecular weight (MW). Median microcapsule size ranged from 3 μm to 11 μm. Moisture contents were all below 7% and water activities (a<sub>w</sub>) were below 0.27. Microcapsules prepared from blends of chitosan with starch and/or pullulan had lower aw values than those prepared from chitosan alone. Oxidative stability was evaluated by measuring oxidation induction time (OIT) using pressure differential scanning calorimetry. OIT values ranged from 14 to 20 minutes. Microcapsules prepared from chitosan with lower DD and higher MW had longer OITs than those prepared from chitosan with higher DD and lower MW. Microcapsules prepared from blends of chitosan, starch, and pullulan had longer OITs than those prepared from chitosan alone. Oxidative stability of microcapsules during long term storage was evaluated on one microcapsule formulation by monitoring peroxide value (PV) and secondary oxidation products by HS-SPMEGC/ MS. Volatiles including propanal, 1-penten-3-ol, pentanal, hexanal, and 2,4-heptadienal were detected in the headspace of the microcapsules; however, PVs did not indicate substantial oxidation of the ω3-PUFA source during 5 weeks of storage. Chitosan, high-amylose starch, and pullulan are effective materials for microencapsulation of ω3 PUFA sources. / Ph. D.
16

Self-Assembly of Pullulan Abietate on Cellulose Surfaces

Gradwell, Sheila Elizabeth 02 September 2004 (has links)
Wood is a complex biocomposite that exhibits a high work of fracture, making it an ideal model for multiphase man-made materials. Typically, man-made composites demonstrate interfacial fracture at failure due to abrupt transitions between neighboring phases. This phenomenon does not occur in wood because gradual phase transitions exist between regions of cellulose, hemicellulose, and lignin and therefore adhesion between adjacent phases is increased. The formation of interphases occurs as a consequence of the self-assembly process which governs the formation of wood. If this process was understood more thoroughly, perhaps tougher man-made, biobased composites could be prepared. To study self-assembly phenomena in wood, a system composed of a model copolymer (pullulan abietate, DS=0.027) representing the lignin-carbohydrate complex (LCC) and a model surface for cellulose fibers was used. The self-assembly of the polysaccharide pullulan abietate (DS=0.027) onto a regenerated cellulose surface prepared using the Langmuir-Blodgett (LB) technique was studied via surface plasmon resonance (SPR). Rapid, spontaneous, and desorption-resistant cellulose surface modification resulted when exposed to the model LCC. Adsorption was quantified using the de Feijter equation revealing that between 9-10 anhydroglucose units (AGUs) adsorb per nm&178; of cellulose surface area when cellulose is exposed to pullulan abietate (DS=0.027) compared to the adsorption of 6.6 AGUs per nm&178; of cellulose surface area when cellulose is exposed to unsubstituted pullulan. / Master of Science
17

Phase change materials encapsulation in crosslinked polymer-based monoliths : syntheses, characterization and evaluation of pullulan and black liquor based-monoliths for the encapsulation of phase change materials / Encapsulation de matériaux à changement de phase dans des monolithes réticulés à base de polymères

Moreno Balderrama, Juan Ángel 14 December 2018 (has links)
Le stéarate de butyle, un matériau de changement de phase biosourcé (MCP), a été encapsulés dans des matrices polymères (pullulane, lignine, hémicelluloses) par la technique des émulsions concentrées. Les matrices polymères ont été réticulées avec du trimetaphosphate de sodium (STMP) dans des conditions alcalines afin d’obtenir un réseau poreux interconnecté rigide. L’influence du processus de séchage sur les matériaux composites obtenus a été étudiée, indiquant la lyophilisation comme la technique la plus efficace. Des études de calorimétrie à balayage différentiel (DSC) ont permis de déterminer que l’encapsulation de stéarate de butyle dans des matrices polymères ne modifiait pas ses propriétés thermiques de changement de phase. Des essais de compression mécanique et de résistance à la déformation ont permis d'évaluer le potentiel des monolithes en tant que panneaux de stockage de chaleur installés directement dans des bâtiments et des serres.Les produits de réticulation par le STMP ont été identifiés et caractérisés par RMN solide du31P. Il a ainsi été possible de synthétiser des monolithes ayant différents taux de réticulation afin d’optimiser la formulation d'encapsulation de MCP. Les matrices polymères vidée de tous leurs contenus liquides ont été étudiées par microscopie électronique à balayage afin d’étudier leur structure poreuse (distribution de taille des pores). Cette nouvelle approche d’encapsulation en une étape apparaît comme efficace et devrait permettre un développement important des applications énergétiques. / Emulsion-templated polymer based (pullulan, lining and hemicelluloses) monoliths encapsulating butyl stearate as bio-based phase change material (PCM) were synthesized. Polymer-bases were crosslinked with sodium trimetaphosphate (STMP) under alkaline aqueous conditions leading to an interconnected porous network. The influence of the drying process on the obtained composite materials morphology was studied indicating freeze-drying as the most effective technique. Differential Scanning Calorimetry (DSC) studies allow to assess that encapsulation of butyl stearate onto matrices do not alter its phase change thermal properties. Mechanical compression and strain resistance tests allowed to evaluate monoliths potential as heat storage panels installed directly in buildings and greenhouses, STMP crosslinking products were identified by solid-NMR characterization, this allowed to synthetize monoliths at different crosslinking yields to find a formulation that improves PCM encapsulation. Polymer matrices were studied by scanning electron microscopy to identify the pore size distribution obtained in STMP crosslinked materials. This new one-step encapsulating approach appears as efficient and cost-effective and is expected to find a broad development in energy storage applications
18

Elaboration de polymères naturels à base de Polysaccherides pour application à la libération controlée / Design of of polysaccharide-based biopolymers for the controlled release of their active principle

Sehil, Hafida 28 November 2017 (has links)
Ce travail a eu pour objectif la conception de nouveau matériaux à base de polysaccharide pour la libération contrôlée de principes actifs et pour d'éventuelles applications environnementales. Pour cela, des gels ont été préparés par réticulation du carboxymethylepullulane CMP et du pullulane interpénétré par l’alginate avec le sodium trimétaphosphate STMP. Les hydrogels obtenus ont été caractérisés et leurs propriétés physico-chimiques et rhéologiques ont été investiguées. La séquestration de principes actifs modèles dans les hydrogels a été réalisée par regonflement des gels dans une solution de bleu de méthylène BM ou par dispersion de la 3- aminopyridine 3AP à l’intérieur des gels. L'’influence des différents paramètres comme la nature du gel, le taux d’agent réticulant et le pH sur la libération des principes actifs a permis de conclure sur la performance des gels comme matrice à libération contrôlée. D'autre part, ces hydrogels de morphologies différentes se sont révélés être des adsorbants prometteurs, les tests sur le BM servant dans ce cas comme polluant modèle ont montré des capacités d'adsorption plus de 1000 mg/g pour les gels à base de CMP et de 500 mg/g pour les gels Pullulane/alginate. Les capacités d'adsorption étaient sensibles à la quantité du STMP, au degré de substitution du CMP et aux variations du pH. Les résultats expérimentaux étaient bien modélisés par une équation cinétique de pseudo-second ordre et l'isotherme de Freundlich décrivait d'une manière satisfaisante le phénomène. / This work has aimed at the design of new polysaccharide-based materials for the controlled release of active ingredients and for possible environmental applications. For this, gels were prepared by crosslinking the carboxymethylpullulan CMP and the pullulan interpenetrated by the alginate with the sodium trimetaphosphate STMP. The hydrogels obtained were characterized and their physicochemical and rheological properties were investigated. The sequestration of model active ingredient in the hydrogels was carried out by re-inflation gels in a solution of BM or dispersion of 3AP within the gels. The influence of the various parameters such as the nature of the gel, the level of crosslinking agent and the pH on the release of the active ingredients made it possible to conclude on the performance of the gels as a controlled-release matrix. On the other hand, these hydrogels of different morphologies have proved to be promising adsorbents, the tests on the BM used in this case as a model pollutant showed an adsorption capacity of more than 1000 mg / g for CMP-based gels and 500 mg / g for Pullulane / alginate gels. Absorption capacities were sensitive to the amount of SMTP, the degree of CMP substitution, and pH changes. The experimental results were well modeled by a pseudo-second order kinetic equation and the Freundlich isotherm satisfactorily described the phenomenon.

Page generated in 0.0681 seconds