• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 571
  • 322
  • 110
  • 82
  • 78
  • 50
  • 37
  • 22
  • 18
  • 18
  • 15
  • 8
  • 7
  • 6
  • 5
  • Tagged with
  • 1559
  • 506
  • 309
  • 278
  • 276
  • 173
  • 170
  • 161
  • 156
  • 152
  • 114
  • 110
  • 101
  • 94
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Design of Gerotor Gear Geometry By Multi-Objective Optimization

Andrew J Robison (7866554) 03 August 2021 (has links)
<div>Gerotor pumps are positive displacement pumps that are frequently used in low-pressure applications such as lubrication and charge pumps. They are characterized by their unique gearset that is an internal gearset with one tooth difference that has continuous contact throughout the entire rotation. Recent trends especially in the automotive industry suggest an increased demand for greater performance from these pumps, e.g. operating with higher pressure, higher speed, lower viscosity fluid, less noise emission, and greater energy efficiency. The shape of the gears is one of the most important aspects of a gerotor pump, as it determines the pump's size and flow, affects its internal leakages, and influences its amount of wear. Although gerotors have been in operation for nearly 100 years, no design methodology has emerged in scientific literature that fully considers all the main performance aspects simultaneously and identifies the best designs. This problem is made more difficult, as gerotors can have an infinite number of different types of profiles. The main goals of this work are therefore to define a method to design gerotor gear geometry for several performance goals, identify the best designs for a given gear profile type, compare the best designs among the various profile types, and invent a new profile type that can offer improved performance over conventional designs.</div><div><br></div><div>Gerotor profile generation is described in the beginning, first for the conventional epitrochoidal, hypotrochoidal, and standard cycloidal profile types. Then a description of how to generate gerotors from an arbitrary curve is given and applied to elliptical, generalized cycloidal, cosine, and asymmetric elliptical gerotors. The generalized cycloidal profile type is new to this work.</div><div><br></div><div>Multi-objective optimization is used as the method to identify the best gear profiles for a given application considering seven performance metrics and ensuring a feasible gear profile. The seven performance goals to minimize are the radius of a pump for a given geometric displacement and face width, the kinematic flow ripple, the adhesive wear, the contact stress, the tooth tip leakage, the lateral gap leakage, and the mean displacement chamber inlet velocity. The conditions to generate feasible gerotor profiles without cusps or self-intersections are also given as constraints for the optimizations.</div><div> </div><div> Seven gerotor profiles were then optimized using a genetic algorithm to consider all the performance aspects. The design space for each profile type was thoroughly explored, and clear Pareto fronts were identified. The Pareto fronts from each profile type were then combined, and a new Pareto front was identified from the best designs of each profile type. No single profile type proves to be objectively better than the others, but the epitrochoidal, hypotrochoidal, elliptical, and generalized cycloidal profile types tend to produce the best designs. Two methods to select a design from the Pareto front that consider the relative importance of each performance goal were presented.</div><div> </div><div> The optimization strategy was then further validated by demonstrating significant possible performance improvement over state-of-the-art designs in industry and suggesting alternative designs to a specific gearset used in industry that were tested in simulation and experiment. Two generalized cycloidal profiles were selected as alternative designs: the first design matched the fluid dynamic performance of the reference design with significantly reduced contact stress, and the second is a profile that could reduce the outlet flow ripple while fitting within the same pump housing. The contact stress of the reference and alternative designs when including clearance between the gears was compared in finite element analysis. Prototypes of the alternative designs were then manufactured and tested in experiment. The experimental pressure ripples of the alternative designs were compared, and the second design showed a reduction in outlet pressure ripple that validates the proposed design methodology.</div><div> </div><div> This work has thoroughly explored the performance possibilities of the gerotor mechanism and presented a method to select an optimal profile geometry depending on the desired performance characteristics. It has therefore accomplished its goals in making a contribution toward improving the performance gerotor gear geometry.</div>
142

Vířivé čerpadlo, jako náhrada umělého srdce / Swirl pump as an artificial heart replacement

Čápová, Ludmila January 2018 (has links)
The purpose of the diploma thesis is to establish on survey of swirl pump from previous years and his optimization via which is suggested the second degree of synchronous pump whereas they should work together like a total artificial heart. Hydraulic and constructional proposal is solved. Conception is realized experimentally also with help of CFD calculation, results are compared with each other.
143

Photobioreactor Design for Improved Energy Efficiency of Microalgae Production

Burns, Alexander 01 December 2014 (has links)
ABSTRACT Photobioreactor Design for Improved Energy Efficiency of Microalgae Production Alexander Burns The objective of this research was to investigate a new photobioreactor (PBR) design for microalgae production that retains the typical advantages of existing tubular PBRs while reducing power consumption by providing simultaneous culture circulation and gas exchange with airlift alone and no centrifugal recirculating pump. Traditional tubular PBR designs feature a compressed air supply and a centrifugal pump for culture circulation and gas exchange. Circulation and gas exchange in a closed-system PBR is necessary to keep the algae suspended and to provide sufficient mass transfer (mainly for the exchange of oxygen and carbon dioxide). In a traditional tubular PBR sparged air keeps the culture well mixed and strips out excess dissolved oxygen in an airlift-column unit, while the centrifugal pump circulates the culture in the tubular stage and decreases the amount of air bubbles traveling into this stage; where most of the photosynthesis occurs. The PBR design proposed herein does away with the usual centrifugal pump. The air blower performs both gas exchange in the airlift columns and system-wide circulation. This builds on a previous tubular PBR design that provides circulation and gas exchange by airlift alone, which was patented by Cathcart in 2011. However, the Cathcart patent does not provide data on mixing, gas exchange, energy consumption, flow regime or biomass productivity. The new design described here builds on the Cathcart design, but includes several unique design features, such as larger diffuser columns which provide airlift-induced flow for a series of vertical PBR tubes. To perform a power consumption v analysis, a pilot-scale prototype of the new PBR design was built and operated. The prototype PBR consisted of two airlift columns attached to 9 m of vertical serpentine tubing connected to the top and bottom by standard 90-degree PVC elbows in a U-bend fashion to each column to make a total working volume of 235 L. The airlift columns were about 1.5 m tall and 30.5 cm ID, while the serpentine tubes were about 0.9 m tall and 7.6 cm ID to make a total of five vertical tubes for every airlift column. Data collected for this prototype design suggest an average overall areal productivity (OAP) of 111 g m-2 d-1 (g biomass m-2 total land area with empty space day-1), an average illuminated surface productivity (ISP) of 14.3 g m-2 d-1 (g biomass m-2 reactor photo-stage day-1), an average volumetric productivity (VP) of 0.55 g L-1 d-1 (g biomass L-1 reactor working volume day-1), a specific power input in the range of 330 to 360 W m-3 (W power needed for culture circulation and gas exchange m-3 reactor working volume) and a specific biomass productivity (SBP) in the range of 17.6 to 19.1 mg kJ-1 (mg biomass kJ-1 energy needed for culture circulation and gas exchange) with Chlorella vulgaris as the model algae. The biomass productivity per energy input (SBP) of the new PBR design appears to be higher than that of similar designs currently described in the literature. Elimination of the centrifugal pump in a tubular PBR design is a concept worth further study for potential energy savings.
144

Stabilita charakteristiky odstředivého čerpadla / Stability of centrifugal pump characteristic curve

Chmatil, Ľuboš January 2010 (has links)
This thesis includes the theoretical part explaining problematic of centrifugal pumps, Y(Q) characteristics of these centrifugal pumps and stability of these characteristics, ways and conditions for stabilisation and adaptations heading to stabilisation.
145

A Lumped Parameter Approach for GEROTOR Pumps: Model Formulation and Experimental Validation

Pellegri, Matteo, Vacca, Andrea, Devendran, Ram S., Dautry, Etienne, Ginsberg, Benjamin January 2016 (has links)
This paper describes a high fidelity simulation model for GEROTOR pumps. The simulation approach is based on the coupling of different models: a geometric model used to evaluate the instantaneous volumes and flow areas inside the unit, a lumped parameter fluid dynamic model for the evaluation of the displacing action inside the unit and mechanical models for the evaluation of the internal micro-motions of the rotors axes. This paper particularly details the geometrical approach, which takes into account the actual geometry of the rotors, given as input as CAD files. This model can take into account the actual location of the points of contact between the rotors as well for the actual clearances between the rotors. The potentials of the model are shown by considering a particular GEROTOR design. A specific test set-up was developed within this research for the model validation, and comparisons in terms of steady-state pressure versus flow curves and instantaneous pressure ripples are shown for the reference pump.
146

Trimming of a ground source heat pump system in Saltsjöbaden

Garnier, Michel January 2014 (has links)
The real performance of ground source heat pumps systems are not precisely highlighted in most cases, especially when it comes to installations older than the contractors guarantee period of 5 years. This project analyses measured data, constructs durability diagrams and establishes an energy balance of a whole heating system located in Saltsjöbaden. The system, composed of 3 heat pumps with a total heating power of 270kW and an oil burner, is used to deliver comfort heat through radiators and ventilation as well as tap warm water production. The installation was originally designed with two oil burners now used as an auxiliary heat supplier. Two heat pumps were installed in 1999 and a third unit was added in 2009. However, the oil consumption has been higher than expected. An experiment with controlled oil burner operation confirmed the need of implementing a control strategy. Some weaknesses in the system are pointed out.
147

BYU Diesel Engine Lab Setup and Parasitic Losses of the Water Pump and Vacuum Pump on a Cummins 2.8L Engine

Jessup, Eric Ashton 05 June 2020 (has links)
The need to minimize carbon dioxide (CO2) emissions is becoming increasingly important with the total number of vehicles throughout the world exceeding one billion. Carbon dioxide emissions can be reduced by improving vehicle fuel efficiency. While electric transportation is gaining popularity, most passenger vehicles are still powered by gasoline or diesel engines. The main objective of this work was to provide opportunities for studying and improving the fuel efficiency of internal combustion engines (ICE). This was achieved by 1) Designing, building and testing auxiliary systems necessary to run a Cummins 2.8 L engine in a an engine test cell; 2) Creating educational labs for the ICE class; and 3) Measuring the parasitic losses of the vacuum pump and water pump on the installed Cummins 2.8 L diesel engine. All auxiliary systems were completed at a hardware cost of $8100 and are rated to support an engine with the power output capacity of 233 kW (312 hp). The educational laboratories enable future engineers to measure and assess the efficiency of internal combustions engines. The parasitic losses of the vacuum pump and water pump were found to impact the relative brake fuel conversion efficiency by 1.3% and 1.5% respectively over the Federal Test Procedure (FTP) cycle.
148

CFD Analysis of Cold Stage Centrifugal Pump for Cooling of Hot IsostaticPress with Validation Case Study

Hereford, Shane January 2017 (has links)
Hot isostatic pressing (HIPing) has been a growing material treatment process for performance part manufacturingfor over 50 years. This process of using an inert gas at high temperature and pressure to densifymaterials leads to vastly improved material properties by removing pores and other micro- aws. Interest forHIP treatment has greatly increased in recent years due to the development of metal 3D printing technology.HIP treatment is very well suited for treating 3D printed and cast parts due to their relatively poor materialproperties.An important part of any HIP cycle is the cooling phase. New uniform and rapid cooling technology hasvastly reduced HIP cycle times, but room for further improvement exists. This study aims to accurately andtrustfully evaluate the performance of one of a pair of centrifugal pumps used in a Quintus Technologies ABHIP cooling system. Computational uid dynamics (CFD) software and techniques are used to achieve this.This paper is split into two main parts; the rst of which is a validation case study, and the second is theperformance analysis of a Quintus HIP cold gas pump. The validation case study is conducted to supportthe accuracy and reliability of results obtained in the Quintus cold gas pump performance analysis.The validation case study results show good agreement with experimental data and supports the accuracy ofCFD in the analysis of centrifugal pumps. Both detailed ow and macro ow characteristics are shown to beaccurately predicted. The pump curve generated for the Quintus Cold gas pump quanties its performanceover a range of rotational speeds and mass ow rates. The work done here lays the groundwork for furtheranalysis and improvement of Quintus HIP cooling systems.
149

Techno-Economic Analysis of Solar Photovoltaic and Heat Pump Systems for a North Macedonian Hospital

Beltran, Francisco, Fisher, Lesley January 2019 (has links)
The International Energy Agency’s Global Status Report 2017 estimates that existing buildings must undergo deep energy renovations, which reduce the energy intensity of buildings by 50% - 70% in order to achieve the “Beyond 2°C” scenario [1]. Many buildings in Bitola, The Republic of North Macedonia, will need considerable upgrades to meet these goals. Among them, health care facilities and education centers have the greatest potential, with energy savings that could reach 35 to 40% [2]. PHI Clinical Hospital Bitola is the largest health care facility in the southwestern region of North Macedonia with a capacity of 500 beds, providing care to almost 300.000 patients annually. It has a heating system based on heavy fuel oil, and an inefficient distribution system which has not been upgraded since the 1970s. There is no centralized ventilation or cooling systems, making it necessary to open and close windows in order to regulate the indoor temperature and generate natural ventilation. This study aims to replace the use of heavy fuel oil (HFO), reduce building related GHG emissions, and increase the primary renewable energy fraction of PHI Clinical Hospital Bitola, by investigating a replacement energy system using heat pumps and solar energy. Special consideration is given to increasing the level of comfort of patients and improving the safety of the indoor environment. Space conditioning, domestic hot water, and electricity demands for three critical buildings are considered in Polysun over a 1-year period. The costs and benefits of technologies including air and ground source heat pumps, solar photovoltaics, and ice thermal energy storage are analyzed. It is determined which of these technologies can be implemented in an energy and cost-efficient manner in the Republic of North Macedonia, thus contributing to the reduction of building related greenhouse gas emissions and other pollutants that contribute to poor air quality. Ground source heat pumps perform superior to air source heat pumps, however, the total life cycle costs of ground source heat pump systems are much higher than air source heat pump systems, making the marginal gains in the technical performance not worth the investment in a borehole field. When using ice thermal energy storage within the cooling and domestic hot water systems the benefits of improved heat pump performance and reduced electricity consumption are not observed. The configuration of thermal storage tested here uses the domestic hot water system to withdraw heat from the thermal storage tank, creating ice, which is then used to decrease the need for cooling using the chiller. However, the cooling load is much larger than the hot water demand, and so any ice generated in the tank is depleted within the first few days of cooling. Many other configurations and control strategies for thermal storage exist which could be the subject of further research. When selecting a renewable energy system that could replace the current HFO boiler in the hospital, the results of this study suggest that an air source heat pump system with solar PV is the recommended solution. For buildings 1 and 2, the final results achieved a primary renewable energy fraction of 62%, a GHG emissions savings of 840 tons of CO2eq equating to a 26% reduction, coming at a capital cost of nearly 2,7 million €, and reducing annual energy expenses by 47%. For building 4 the final system delivers a primary renewable energy fraction of 64%, GHG emissions savings of 109 tons CO2eq or 17%, while costing 0,67 million € in capital expenses and lowering annual energy expenses by 50%. / Den internationella energi byråns globala status rapport 2017 uppskattar att existerande byggnader måste undergå djupgående energi renovationer, som ska reducera byggnadernas energiintensitet med 50% - 70% för att uppnå i scenariot “Beyond 2°C” [1]. Många byggnader i Bitola (Republiken av nora Makedonien), kommer att behöva betydande uppgraderingar för att uppfylla dessa mål. Bland dem har hälsovårdsanläggningar och utbildningscenter den största potentialen, med energi besparingar där dessa kan uppnå 35% till 40% [2]. PHI Kliniskt Sjukhus Bitola är den största sjukvårdsanläggningen i den sydvästra regionen av Nora Makedonien med en kapacitet på 500 sängplatser, som ger vård till nästan 300.000 patienter årligen. Det nuvarande värmesystemet är baserat på tung eldningsolja och ett ineffektivt distributionssystem som inte har uppdaterats sedan 1970-talet. Det finns inga centraliserade ventilations- och kylsystem, vilket gör det nödvändigt att öppna och stänga fönster för att reglera inomhustemperaturen och generera naturlig ventilation. Denna studie syftar till att ersätta användningen av tung eldningsolja, minska byggnadsrelaterade växthusutsläpp och öka den primära förnyelsebara energifraktionen av Kliniskt Sjukhus Bitola. Genom att undersöksöka ett ersättande energisystem med värmepumpar och solenergi. Särskild hänsyn tas till öka patienternas komfort och förbättra säkerheten i inomhusmiljön. Värme och kyla, varmvatten och el-krav för tre kritiska byggnader betraktas i Polysun under en 1- års period. Kostnaderna och fördelarna med tekniken inklusive luft och markvärmepumpar, solceller och termisk energilagring analyseras. Det fastställs vilken av dessa tekniker som kan implementeras på ett energi- och kostnadseffektivt sätt i Republiken av nora Makedonien, vilket bidrar till att minska byggnadsrelaterade växthusgasutsläpp och andra föroreningar som kan bidra till dålig luftkvalitet. Markvärmepumpar har högre prestanda än luftvärmepumpar, men de totala livscykelkostnaderna för ett markvärmepumpsystem är mycket högre än för ett luftvärmepumpsystem. Vilket gör den marginella vinsterna för den tekniska prestandan inte värda investeringen av ett borrhåls fält. Vid användning av is som termisk energilagring och kylning och varmvattensanläggningar, tog ingen hänsyn till fördelarna med en förbättrad värmepumps prestanda och minskad elförbrukning. Konfigurationen av termisk lagring som testas här använder det inhemska varmvattensystemet för att ta bort värme från den termiska lagringstanken, vilket skapar is som sedan används för att minska behovet av nedkylning av byggnaden. Kylbelastningen är emellertid mycket större än varmvattenbehovet. Vilket betyder att all is som genereras i tanken används upp efter några dagar av kylning. Många andra konfigurationer och styrstrategier för termisk lagring finns och kan vara till ändamål för framtida forskning. När val av ett förnybart energisystem görs som ska kunna ersätta den nuvarande tung eldningsolja pannan på sjukhuset antyder resultatet av denna studie att ett värmepumpsystem med luftkälla och sol-PV är den rekommenderade lösningen. För byggnad 1 och 2 uppnådde det slutliga resultatet en primär förnyelsebar energifraktion på 62%, vilket skulle innebära en besparing av växthusgasutsläpp med 840 ton CO2 ekvivalenter. Vilket motsvarar en minskning med 26%, med en kapitalkostnad på nästan 2,7 miljoner €. Samt minskade årliga energikostnader med 47%. För byggnad 4 levererar det slutliga systemet en primär förnybar energifraktion på 64%, med en -5- besparing av växthusutsläpp på 109 ton CO2 ekvivalenter eller 17%. Medan det kostar 0,67 miljoner € i kapitalutgifter och sänker den årliga energikostnaden med 50%.
150

An Experimental and Numerical Investigation of Closed-loop Impedance Pumping in Compliant, Elastic Tube Millistructures

Rich, Bryan C. 10 June 2016 (has links)
No description available.

Page generated in 0.0452 seconds