51 |
Aproximantes de Padé e a série perturbativa da QCD nos decaimentos τ → (hádrons) + ντ / Padé Approximants and perturbative series of QCD in τ decaysOliani, Fabio Henrique 21 February 2018 (has links)
As correções perturbativas da QCD aos decaimentos hadrônicos do tau são obtidas a partir da expansão da função de Adler. Acredita-se que esta série é assintótica e melhor entendida quando sua transformada de Borel é considerada. Usamos o método matemático dos Aproximantes de Padé para reconstruir a transformada de Borel da série e extrair informação sobre as correções de ordens mais altas bem como os pólos devidos aos renôrmalons associados com a divergência da série. Primeiramente, testamos o método no limite large-β0 da QCD, onde a série perturbativa é conhecida em todas as ordens. Neste limite observamos que a variação de esquema de renormalização do acoplamento forte, αs, pode ser útil para a construção de aproximantes que convergem mais rapidamente. Aplicamos o método na QCD completa para obtermos previsões sobre as principais características da série. Em QCD a estrutura analítica da transformada de Borel da função de Adler torna as aproximações com Padés menos eficientes, o que se reflete em incertezas maiores. Chegamos ao resultado de 570 ± 285 para o coeficiente do termo α5s. Devido ao fato de a série prevista pelos aproximantes apresentar comportamento divergente de sinal não-alternado, há uma indicação de que singularidades do tipo infra-vermelho contribuem mais para os coeficientes da série em ordens intermediárias. Além disso, apesar de os resultados para a soma de Borel da função δ(0) serem compatíveis com as duas prescrições mais usadas para fixar a escala de renormalização em decaimentos do tau, o Padé apresenta uma leve preferência pela prescrição de ordem fixa (ou FOPT). / Perturbative QCD corrections to hadronic tau decays are obtained from the expansion of the Adler function. This series is believed to be asymptotic and is better understood when its Borel transform is considered. We use the mathematical method of Padé approximants to reconstruct the Borel transformed series and extract information about higher order corrections as well as renormalon poles associated with the divergence of the series. First, the method is tested in the large-β0 limit of QCD, where the perturbative series is known to all orders. In this limit, we observe that the renormalization scheme variation of the strong coupling, αs, can be useful in constructing approximants that converge faster. We apply the method in complete QCD to obtain predictions about the main characteristics of the series. In QCD, the analytical structure of the Borel transform of the Adler function makes the approximations with Padés less efficient, which is reflected in larger uncertainties. We obtain the result 570 ± 285 for the coefficient of the term α5s. The fixed sign nature of the series predicted by the PAs indicates that there is an indication that infrared singularities contribute more to the coefficients of the series in intermediate orders. In addition, although the results for the Borel sum of the function δ(0) are compatible with the two most frequently used prescriptions for setting the renormalization scale in tau decays, Padé approximants show a slight preference for fixed order prescription (or FOPT).
|
52 |
QCD equation of state of hot deconfined matter at finite baryon density : a quasiparticle perspectiveBluhm, Marcus 19 January 2009 (has links) (PDF)
The quasiparticle model, based on quark and gluon degrees of freedom, has been developed for the description of the thermodynamics of a hot plasma of strongly interacting matter which is of enormous relevance in astrophysics, cosmology and for relativistic heavy-ion collisions as well. In the present work, this phenomenological model is extended into the realm of imaginary chemical potential and towards including, in general, different and independent quark flavour chemical potentials. In this way, nonzero net baryon-density effects in the equation of state are self-consistently attainable. Furthermore, a chain of approximations based on formal mathematical manipulations is presented which outlines the connection of the quasiparticle model with the underlying gauge field theory of strong interactions, QCD, putting the model on firmer ground. A comparison of quasiparticle model results with available lattice QCD data for, e. g., basic bulk thermodynamic quantities and various susceptibilities such as diagonal and off-diagonal susceptibilities, which provide a rich and sensitive testing ground, is found to be successful. Furthermore, different thermodynamic quantities and the phase diagram for imaginary chemical potential are faithfully described. Thus, the applicability of the model to extrapolate the equation of state known from lattice QCD at zero baryon density to nonzero baryon densities is shown. In addition, the ability of the model to extrapolate results to the chiral limit and to asymptotically large temperatures is illustrated by confrontation with available first-principle lattice QCD results. These extrapolations demonstrate the predictive power of the model. Basing on these successful comparisons supporting the idea that the hot deconfined phase can be described in a consistent picture by dressed quark and gluon degrees of freedom, a reliable QCD equation of state is constructed and baryon-density effects are examined, also along isentropic evolutionary paths. Scaling properties of the equation of state with fundamental QCD parameters such as the number of active quark flavour degrees of freedom, the entering quark mass parameters or the numerical value of the deconfinement transition temperature are discussed, and the robustness of the equation of state in the regions of small and large energy densities is shown. Uncertainties arising in the transition region are taken into account by constructing a family of equations of state whose members differ from each other in the specific interpolation prescription between large energy density region and a realistic hadron resonance gas equation of state at low energy densities. The obtained family of equations of state is applied in hydrodynamic simulations, and the implications of variations in the transition region are discussed by considering transverse momentum spectra and differential elliptic flow of directly emitted hadrons, in particular of strange baryons, for both, RHIC top energy and LHC conditions. Finally, with regard to FAIR physics, implications of the possible presence of a QCD critical point on the equation of state are outlined both, in an exemplary toy model and for an extended quasiparticle model.
|
53 |
From hot lattice QCD to cold quark starsSchulze, Robert 08 March 2011 (has links) (PDF)
A thermodynamic model of the quark-gluon plasma using quasiparticle degrees of freedom based on the hard thermal loop self-energies is introduced. It provides a connection between an established phenomenological quasiparticle model – following from the former using a series of approximations – and QCD – from which the former is derived using the Cornwall-Jackiw-Tomboulis formalism and a special parametrization of the running coupling.
Both models allow for an extrapolation of first-principle QCD results available at small chemical potentials using Monte-Carlo methods on the lattice to large net baryon densities with remarkably similar results. They are used to construct equations of state for heavy-ion collider experiments at SPS and FAIR as well as quark and neutron star interiors. A mixed-phase construction allows for a connection of the SPS equation of state to the hadron resonance gas.
An extension to the weak sector is presented as well as general stability and binding arguments for compact stellar objects are developed. From the extrapolation of the most recent lattice results [Baz09, Bor10b] the existence of bound pure quark stars is not suggested. However, quark matter might exist in a hybrid phase in cores of neutron stars.
|
54 |
Determinação de alguns parâmetros da teoria de perturbação quiral / Determination of some parameters of Chiral Perturbation TheoryGabriel Rocha de Santana Zarnauskas 15 October 2010 (has links)
A teoria de perturba ca o quiral (ChPT) e aceita, atualmente, como a teoria efetiva da cromodinamica quantica (QCD) para baixas energias. Ela foi colocada na sua versa o moderna com os artigos de Gasser e Leutwyler, na primeira metade da d ecada de 80 e, durante os 25 anos que se seguiram, ocorreu um aumento considera vel da variedade de fenomenos por ela descritos, sempre acompanhando a precisa o cres- cente dos resultados experimentais. Os trabalhos que apresentamos nesta tese de doutorado se inserem neste contexto e envolvem duas partes, ambas relacionadas a` determina c ao de alguns dos parametros que compo em a lagrangiana da ChPT. Por ser uma teoria efetiva, tais constantes s o podem ser fixadas por experimentos, modelos ou por c alculos da QCD na rede. Em um dos trabalhos, discutimos a cons- tante de decaimento do p on, F, e os efeitos decorrentes do acr escimo de intera co es eletromagn eticas a` ChPT. N os argumentamos que as incertezas estimadas para o valor mais aceito de F podem estar subestimadas. Mostramos, tamb em, que na o se pode determinar esta constante na presen ca das intera co es eletromagn eticas, pois a grandeza de onde ela e extra da adquire uma dependencia no calibre utilizado no ca lculo e tem suas propriedades alteradas drasticamente. No outro trabalho, abor- damos os fatores de forma escalares dos m esons pseudoescalares em tres sabores. A partir dos resultados obtidos com a ChPT e do uso de um modelo que trata dos fatores de forma no espa co das posi co es, conseguimos escreve-los em termos ape- nas das constantes presentes na lagrangiana em ordem dominante da ChPT, F e as massas dos m esons pseudoescalares. No s determinamos, tamb em, os respectivos raios quadra ticos m edios e, comparando-os com os calculados com a ChPT, obtive- mos as LECs L4(mu) = -0,26 · 10^-3 e L5(mu) = 0,85 · 10^-3, para mu = 770 MeV. Esses valores sa o compat veis com as principais estimativas vindas da ChPT. / At present, chiral perturbation theory (ChPT) is considered the effective theory of quantum chromodynamics (QCD) at low energies. It was established in its modern version by the papers of Gasser and Leutwyler written in the first half of the 80s. For the last 25 years, there has been considerable increase in the number of phe- nomena described by ChPT, always following the growing precision of experiments. The two works we present in this Ph.D. thesis are related to ChPT and discuss the determination of some of the parameters that appear in the ChPT lagrangian. As ChPT is an effective theory, such constants can only be fixed by experiments, models or calculations in the lattice. In the first presented work, we discuss the pion decay constant, F, and how it is changed by the inclusion of electromagne- tic interactions. We argue that the uncertainty of the most accepted value of F might be underestimated. We also show that we cannot determine this constant in the presence of electromagnetic interactions because the function from which it is extracted acquires a gauge dependence and the functions properties drastically change. In the other work, we deal with pseudoscalar meson scalar form factor in three flavors. We manage to write the form factors only in terms of constants present in ChPT lagrangian at leading order, F and masses of pseudoscalar mesons, using ChPT results and the model that deals with form factors in coordinate space. We also determine the respective square radii and, comparing these to those calculated using ChPT, we have obtained L4(mu) = -0.26 · 10^-3 and L5(mu) = 0.85 · 10^-3, for mu = 770 MeV. These values are compatible with the main estimates evaluated with ChPT.
|
55 |
Two Dimensional Lattice Gauge Theory with and without Fermion ContentSigdel, Dibakar 03 November 2016 (has links)
Quantum Chromo Dynamics (QCD) is a relativistic field theory of a non-abelian gauge field coupled to several flavors of fermions. Two dimensional (one space and one time) QCD serves as an interesting toy model that shares several features with the four dimensional physically relevant theory. The main aim of the research is to study two dimensional QCD using the lattice regularization.
Two dimensional QCD without any fermion content is solved analytically using lattice regularization. Explicit expressions for the expectation values of Wilson loops and the correlation of two Polyakov loops oriented in two different directions are obtained. Physics of the QCD vacuum is explained using these results.
The Hamiltonian formalism of lattice QCD with fermion content serves as an approach to study quark excitations out of the vacuum. The formalism is first developed and techniques to numerically evaluate the spectrum of physical particles, namely, meson and baryons are described. The Hybrid Monte Carlo technique was used to numerically extract the lowest meson and baryon masses as a function of the quark masses. It is shown that neither the lowest meson mass nor the lowest baryon mass goes to zero as the quark mass is taken to zero. This numerically establishes the presence of a mass gap in two dimensional QCD.
|
56 |
Dispositifs intersousbandes à base de nitrures d’éléments III du proche infrarouge au térahertz / Nitride based intersubband devices working from near infrared to ThzQuach, Patrick 27 June 2016 (has links)
Les nitrures d’éléments III (III-N) sont des matériaux prometteurs pour la réalisation de dispositifs intersousbandes (ISB) : leur discontinuité de potentiel élevée en bande de conduction (1.75 eV) leur permet de couvrir une grande gamme de longueur d’onde du proche infrarouge jusqu’au Térahertz (THz), et enfin l’énergie élevée de phonon optique (90meV) laisse entrevoir la possibilité de réaliser des sources émettant dans le THz tout en fonctionnant à température ambiante. Mes travaux portent sur les détecteurs à cascade quantique (QCD) et sur les lasers à cascade quantique (QCL) à base de III-N fonctionnant dans le THz.Dans un premier temps, j’expose les concepts, la réalisation et la caractérisation de plusieurs détecteurs à cascade quantique (QCDs) à base de nitrures (AlGaN/GaN) fonctionnant dans le proche IR entre 1 et 2 µm.. Ensuite, je propose la conception de dispositifs devant fonctionner dans le THz. Je commence par décrire les difficultés inhérentes à l’obtention de transitions ISB dans la gamme THz dans les puits de nitrures polaires et je propose une approche pour les contourner. Je détaille après la conception de QCDs devant fonctionner à 5 et 6 THz. Puis, je propose une structure de QCL devant émettre à 2.5 THz.En parallèle, j’ai aussi travaillé sur les oxydes d’éléments VI (II-VI). Ces matériaux possèdent les mêmes avantages que les nitrures d’éléments III. J’ai caractérisé une série d’échantillons épitaxiés contenant des puits de ZnO/ZnMgO. Les mesures attestent de la présence d’une transition ISB et m’ont permis de donner une estimation de la discontinuité en bande de conduction, valeur jusque-là très mal connue. / Nitrides are promising materials for producing intersubband devices (ISB): their high potential discontinuity in conduction band (1.75 eV) allows them to cover a wide wavelength range from near infrared to terahertz (THz), and finally the high energy optical phonon (90 meV) suggests the possibility of producing sources emitting THz while operating at room temperature. My research focuses on quantum cascade detector (QCD) and quantum cascade lasers (QCL) based on III-N operating in the THz.First, I outline the concepts, realization and characterization of several quantum cascade detectors (QCDs) based on nitrides (AlGaN / GaN) operating in near infrared between 1 and 2 microns. Then, I propose design of devices working in the THz range: I describe difficulties inherent in getting ISB transitions in THz fields in polar nitride quantum well. I detail the design of QCDs operating at 5 and 6 THz. Then I worked on QCL operating at 2.5 THz.In parallel, I also worked on VI elements oxides (II-VI). These materials have the same benefits as III nitrides. I characterized a series of samples containing quantum wells ZnO / ZnMgO. Measurements show the presence of ISB transitions and allow me to provide an estimation of the conduction band offset, which value was not well known prior to this work.
|
57 |
Fluctuations in QCD phase diagram in the strong coupling limit of lattice QCD / 強結合極限格子QCDによる有限温度・密度における揺らぎの研究Ichihara, Terukazu 23 March 2016 (has links)
権利表示を行うこと, 出典表示を行うこと, 出版社版へのリンクを表示すること / 京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19488号 / 理博第4148号 / 新制||理||1596(附属図書館) / 32524 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 大西 明, 准教授 菅沼 秀夫, 教授 田中 貴浩 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
58 |
QCD equation of state of hot deconfined matter at finite baryon density : a quasiparticle perspectiveBluhm, Marcus 15 December 2008 (has links)
The quasiparticle model, based on quark and gluon degrees of freedom, has been developed for the description of the thermodynamics of a hot plasma of strongly interacting matter which is of enormous relevance in astrophysics, cosmology and for relativistic heavy-ion collisions as well. In the present work, this phenomenological model is extended into the realm of imaginary chemical potential and towards including, in general, different and independent quark flavour chemical potentials. In this way, nonzero net baryon-density effects in the equation of state are self-consistently attainable. Furthermore, a chain of approximations based on formal mathematical manipulations is presented which outlines the connection of the quasiparticle model with the underlying gauge field theory of strong interactions, QCD, putting the model on firmer ground. A comparison of quasiparticle model results with available lattice QCD data for, e. g., basic bulk thermodynamic quantities and various susceptibilities such as diagonal and off-diagonal susceptibilities, which provide a rich and sensitive testing ground, is found to be successful. Furthermore, different thermodynamic quantities and the phase diagram for imaginary chemical potential are faithfully described. Thus, the applicability of the model to extrapolate the equation of state known from lattice QCD at zero baryon density to nonzero baryon densities is shown. In addition, the ability of the model to extrapolate results to the chiral limit and to asymptotically large temperatures is illustrated by confrontation with available first-principle lattice QCD results. These extrapolations demonstrate the predictive power of the model. Basing on these successful comparisons supporting the idea that the hot deconfined phase can be described in a consistent picture by dressed quark and gluon degrees of freedom, a reliable QCD equation of state is constructed and baryon-density effects are examined, also along isentropic evolutionary paths. Scaling properties of the equation of state with fundamental QCD parameters such as the number of active quark flavour degrees of freedom, the entering quark mass parameters or the numerical value of the deconfinement transition temperature are discussed, and the robustness of the equation of state in the regions of small and large energy densities is shown. Uncertainties arising in the transition region are taken into account by constructing a family of equations of state whose members differ from each other in the specific interpolation prescription between large energy density region and a realistic hadron resonance gas equation of state at low energy densities. The obtained family of equations of state is applied in hydrodynamic simulations, and the implications of variations in the transition region are discussed by considering transverse momentum spectra and differential elliptic flow of directly emitted hadrons, in particular of strange baryons, for both, RHIC top energy and LHC conditions. Finally, with regard to FAIR physics, implications of the possible presence of a QCD critical point on the equation of state are outlined both, in an exemplary toy model and for an extended quasiparticle model.
|
59 |
Hard scattering cross sections and parton distribution functions at the LHCKovačíková, Petra 19 August 2013 (has links)
Über einen Mellinraumzugang werden Methoden zur Auswertung von Wirkunsquerschnitten für verschiedene Prozesse mit Hadronen im Anfangszustand entwickelt. Die Arbeit geschieht im Hinblick auf drei Prozesse, für die die analyischen Ergebnisse für perturbative QCD Korrekturen zu “next-to-next-to-leading order” bekannt sind; diese sind: die Produktion der Vektorbosonen Z0 und W± über einen Drell-Yan-Prozess in der “narrow width”-Näherung, die Produktion eines Standardmodell-Higgs-Bosons über die Fusion zweier Gluonen im Grenzfall schwerer Top-Quark-Massen und die tiefinelastische Lepton-Hadron-Streuung über neutrale und geladene Ströme. Die Implementierung der Mellinraumtechniken erfolgt in dem c++ Paket sbp. Das Programm ermöglicht auf elegante Weise eine schnelle und präzise Auswertung von inklusiven Wirkungsquerschnitten. Wir vergleichen sbp mit den herkömmlichen Impulsraumtechniken, und präsentieren Studien der asymptotischen Konvergenz den perturbativen Reihen und von Skalenabhängigkeiten. Als Anwendung untersuchen wir welchen Einfluss die Behandlung der Faktorisierungs- und Renormierungsskala auf den Wirkungsquerschnitt hat. / In this thesis we will explore a Mellin space approach to the evaluation of precision cross-sections at hadron colliders. We consider three processes with known analytic results for perturbative QCD corrections up to the next-to-next-to-leading order, namely: the production of vector bosons Z0, W± via the Drell-Yan mechanism in the narrow width approximation; the production of the standard model Higgs boson via gluon-gluon fusion using the large top quark mass limit and the neutral and charged current deep inelastic lepton-hadron scattering. We develop a c++ package sbp that implements the Mellin space technique. The resulting program provides an elegant, fast and accurate solution for the evaluation of inclusive cross sections. We compare our program with available results that use standard momentum space techniques. We present studies of asymptotic convergence and scale dependence of the perturbative series. We use the package to study different treatments of factorisation and renormalisation scales in cross sections.
|
60 |
Lattice QCD study of octet hyperon semi-leptonic decaysCooke, Ashley Noel January 2014 (has links)
We present a calculation of vector and axial-vector form factors for each of the octet hyperon semi-leptonic transition matrix elements by using the techniques of lattice QCD where simulations were performed with Nf = 2 + 1 flavours of dynamical O(a)-improved Wilson fermions. We also study the electromagnetic form factors, axial charges and other properties of octet baryons. Errors due to extrapolation to zero transferred momentum are reduced by applying a twist to the boundary conditions on the lattice. Our form factor results compare favourably with experiment and other lattice QCD determinations. By considering an expansion about the SU(3)-flavour symmetric limit we seek to investigate and quantify the symmetry breaking effects in these matrix elements due to the mass splitting between the strange and light quarks. We find good agreement with the Ademollo-Gatto theorem for the vector form factor, a measurable amount of breaking in the axial-vector form factor and significant effects in the weak magnetism form factor. Knowledge of the parameterisation of SU(3)-flavour symmetry breaking allows for a series of constrained fits to be made to the form factor results which are used to arrive at a 'baryonic' estimation of the Cabibbo-Kobayashi-Maskawa matrix element |Vus|.
|
Page generated in 0.0514 seconds