• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 12
  • Tagged with
  • 39
  • 25
  • 23
  • 21
  • 21
  • 19
  • 11
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Einfluß von Gravitation und Trägheit auf die Interferenz von Quantenfeldern

Marzlin, Karl-Peter. Unknown Date (has links)
Universiẗat, Diss., 1994--Konstanz.
12

Optical control of single neutral atoms

Alt, Wolfgang. Unknown Date (has links) (PDF)
University, Diss., 2004--Bonn.
13

Qed in periodischen und absorbierenden Medien / Qed in periodic and lossy media

Kurcz, Andreas January 2005 (has links)
Das Strahlungsfeld in einem absorbierenden, periodischen Dielektrikum ist kanonisch quantisiert worden. Dabei wurde ein eindimensionales Modell mit punktförmigen Streuern betrachtet, deren Polarisierbarkeit den Kramers-Kronig Relationen gehorcht. Es wurde ein Quantisierungsverfahren nach Knöll, Scheel und Welsch [1] verwendet, das als eine Ergänzung zum mikroskopischen Huttner-Barnett Schema [2] aufgefaßt werden kann und in dem auf der Basis der phänomenologischen Maxwell Gleichungen eine bosonische Rauschpolarisation als die Quelle des Feldes auftritt. Das Problem reduziert sich dabei auf die Bestimmung der klassischenGreens Funktion. Die Kramers-Kronig Relationen der komplexen Polarisierbarkeit der Punktstreuer sichert die korrekte Verknüpfung zwischen Dispersion und Absorption. Der Punktstreuer ist dabei ein idealisiertes Modell, um periodische Hintergrundmedien, denen das Strahlungsfeld ausgesetzt ist, zu beschreiben. Er bedarf jedoch eines Kompromisses, um die entsprechenden Rauschquellen zu konstruieren. Es konnte gezeigt werden, daß der Punktstreuer dasselbe Streuverhalten wie eine dünne Potentialschwelle besitzt und damit die technischen Schwierigkeiten für den Fall eines absorptiven Punktstreuers überwunden werden können. An Hand dieses Beispiels konnte das Quantisierungsschema nach Knöll, Scheel und Welsch auf periodische und absorbierende Strukturen angewendet werden. Es ist bekannt, daß die Bestimmung der Modenstruktur für den Fall der Modenzerlegung des Strahlungsfeldes ein rein klassisches Problem darstellt. Mit Ausnahme des Vakuums ist eine zweckmäßige Modenzerlegung nur dann durchführbar, wenn mit einer reellen Polarisierbarkeit die Absorption vernachlässigt werden kann. Aus den Kramers-Kronig Relationen wird klar, daß solch eine Annahme nur in bestimmten Intervallen des Frequenzspektrums gerechtfertigt werden kann. Es wurde gezeigt, daß auch das quantisierte Strahlungsfeld in Anwesenheit der Punktstreuer in eben solchen Intervallen in Quasimoden entwickelt werden kann, wenn man neue Quasioperatoren als Erzeuger und Vernichter einführt. Die bosonischen Vertauschungsrelationen dieser Operatoren konnten bestätigt werden. Die allgemeine Vertauschungsrelation kanonisch konjugierter Variablen im Sinne der kanonischen Quantisierung kann für das elektrische Feld und das Vektorpotential beibehalten werden. In der Greens Funktion sind sämtliche Informationen über die dispersiven und absorptiven Eigenschaften des Dielektrikums sowie über die räumliche Struktur enthalten. Die wesentlichen Merkmale werden dabei durch den Reflexionskoeffizienten nach Boedecker und Henkel [3] bestimmt, der das Reflexionsverhalten an einem unendlich ausgedehnten Halbraum aus periodisch angeordneten Punktstreuern beschreibt. Mit Hilfe des Transfermatrixformalismus war es möglich einen allgemeinen Zugang zum Reflexionsverhalten zunächst endlicher Strukturen zu erhalten. Die Ausdehnung auf den Halbraum mit Hilfe der Klassifizierung in Untergruppen der Transfermatrizen nach ermöglichte es, den Reflexionskoeffizienten nach Boedecker und Henkel [3] auch geometrisch plausibel zu machen. Ein wesentlicher Aspekt von periodischen Systemen ist die Translationssymmetrie, die im Fall unendlich ausgedehnter, verlustfreier Systeme auf eine ideale Bandstruktur führt. Mit Hilfe der Untergruppenklassifizierung kann im verlustfreien Fall die Geometrie der Anordnung indirekt mit der Bandstruktur verknüpft werden. Es konnte nachgewiesen werden, daß auch der einzelne Punktstreuer immer in einer dieser Untergruppen zu finden ist. Dabei besitzt die Bandstruktur der unendlich periodischen Anordnung dieser Streuer immer eine von der Polarisierbarkeit abhängige Bandkante und eine von der Polarisierbarkeit unabhängige Bandkante. Die Bandstruktur, die mit den verlustbehafteten Feldern einhergeht, ist eine doppelt komplexe. Alternativ zu dieser nur schwer zu interpretierenden Bandstruktur wurden die Feldfluktuationen selektiv nach reellen Frequenzen und Wellenzahlen sondiert. Es zeigt sich, daß Absorption besonders in der Nähe der Bandkanten die Bänder verbreitert. Die Ergebnisse, die mit Hilfe der lokalen Zustandsdichtefunktion gewonnen wurden, konnten dabei bestätigt werden. [1] S. Scheel, L. Knöll and D. G. Welsch, Phys.Rev. A 58, 700 (1998). [2] B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992). [3] G. Boedecker and C. Henkel, OPTICS EXPRESS 11, 1590 (2003). / A canonical scheme based on the phenomenological Maxwell equations in the presence of dielectric matter is used to quantize the electromagnetic field in a periodic and lossy linear dielectric. We focus on a one-dimensional model of point scatterers with given frequency-dependent complex permittivity, and construct an expansion of the field operators that is based on the Green function and preserves the canonical equal-time commutation relations. Translation symmetry is secured by working with an infinite lattice. The impact of absorption is examined using the local density of states and the decay rate of a phase-coherent dipole chain located inside the structure. Incidentally the model is used to bring about a geometrical interpretation of the reflection from multilayers
14

Characterizing and measuring properties of continuous-variable quantum states

Ohliger, Matthias January 2012 (has links)
We investigate properties of quantum mechanical systems in the light of quantum information theory. We put an emphasize on systems with infinite-dimensional Hilbert spaces, so-called continuous-variable systems'', which are needed to describe quantum optics beyond the single photon regime and other Bosonic quantum systems. We present methods to obtain a description of such systems from a series of measurements in an efficient manner and demonstrate the performance in realistic situations by means of numerical simulations. We consider both unconditional quantum state tomography, which is applicable to arbitrary systems, and tomography of matrix product states. The latter allows for the tomography of many-body systems because the necessary number of measurements scales merely polynomially with the particle number, compared to an exponential scaling in the generic case. We also present a method to realize such a tomography scheme for a system of ultra-cold atoms in optical lattices. Furthermore, we discuss in detail the possibilities and limitations of using continuous-variable systems for measurement-based quantum computing. We will see that the distinction between Gaussian and non-Gaussian quantum states and measurements plays an crucial role. We also provide an algorithm to solve the large and interesting class of naturally occurring Hamiltonians, namely frustration free ones, efficiently and use this insight to obtain a simple approximation method for slightly frustrated systems. To achieve this goals, we make use of, among various other techniques, the well developed theory of matrix product states, tensor networks, semi-definite programming, and matrix analysis. / Die stürmische Entwicklung der Quanteninformationstheorie in den letzten Jahren brachte einen neuen Blickwinkel auf quantenmechanische Probleme. Insbesondere die fundamentale Eigenschaft der Verschränkung von Quantenzuständen spielt hierbei eine Schlüsselrolle. Einstein, Podolsky und Rosen haben 1935 versucht die Unvollständigkeit der Quantenmechanik zu demonstrieren, indem sie zeigten, dass sie keine lokale, realistische Therie ist und der Ausgang einer Messung an einem Ort von Messungen abhängen kann, die an beliebig weit entfernten Orten gemacht wurden. John Bell stellte 1964 eine, später nach ihm benannte, Ungleichung auf, die eine Grenze an mögliche Korrelationen von Messergebnissen in lokalen, realistischen Theorien gibt. Die Vorhersagen der Quatenmechanik verletzen diese Ungleichung, eine Tatsache, die 1981 von Alain Aspect und anderen auch experimentell bestätigt wurde. Solche nicht-lokalen Quantenzustände werden verschränkt'' genannt. In neuerer Zeit wurde Verschränkung nicht mehr nur als mysteriöse Eigenschaft der Quantenmechanik sondern auch als Resource für Aufgaben der Informationsverarbeitung gesehen. Ein Computer, der sich diese Eigenschaften der Quantenmechanik zu nutze macht, ein sogenannter Quantencomputer, würde es erlauben gewisse Aufgaben schnell zu lösen für die normale'' Computer zu lange brauchen. Das wichtigste Beispiel hierfür ist die Zerlegung von großen Zahlen in ihre Primfaktoren, für die Shor 1993 einen Quantenalgorithmus präsentierte. In dieser Arbeit haben wir uns mit den Eigenschaften von Quantensystemen, die durch sogenannte kontinuierliche Variablen beschrieben werden, beschäftigt. Diese sind nicht nur theoretisch sonder auch experimentell von besonderem Interesse, da sie quantenoptische Systeme beschreiben, die sich verhältnismäßig leicht im Labor präparieren, manipulieren und messen lassen. Wenn man eine vollständige Beschreibung eines Quantenzustandes erhalten will, braucht man, auf Grund der Heisenberg'schen Unschärferelation, mehrere Kopien von ihm an denen man dann Messungen durchführt. Wir haben eine Methode, compressed-sensing genannt, eingeführt um die Anzahl der nötigen Messungen substantiell zu reduzieren. Wir haben die theoretische Effizienz dieser Methode bewiesen und durch numerische Simulationen auch ihre Praktikabilität demonstriert. Desweiteren haben wir beschrieben, wie man compressed-sensing für die schon erwähnten optischen Systemen sowie für ultrakalte Atome experimentell realisieren kann. Ein zweites Hauptthema dieser Arbeit war messbasiertes Quantenrechnen. Das Standardmodell des Quantenrechnens basiert auf sogenannten Gattern, die eine genaue Kontrolle der Wechselwirkung zwischen den Bestandteilen des Quantencomputers erfordern. Messbasiertes Quantenrechnen hingegen kommt mit der Präparation eines geeigneten Quantenzustands, Resource genannt, gefolgt von einfachen Messungen auf diesem Zustand aus. Wir haben gezeigt, dass Systeme mit kontinuierlichen Variablen eine vorteilhafte Realisierung eines Quantencomputers in diesem Paradigma erlauben, es jedoch auch wichtige Beschränkungen gibt, die kompliziertere Zustandspräparationen und Messungen nötig machen.
15

Arrival times in quantum mechanics: Operational and quantum optical approaches / Ankunftszeiten in der Quantenmechanik: Operative und quantenoptische Ansätze

Seidel, Dirk 06 July 2005 (has links)
No description available.
16

Effects of Atom-Laser Interaction on Ultra-Cold Atoms / Effekte der Atom-Laser Wechselwirkung auf ultrakalte Atome

Hannstein, Volker Martin 03 April 2006 (has links)
No description available.
17

Extrinsic Quantum Centers in Silicon for Nanophotonics and Quantum Applications

Herzig, Tobias 21 June 2022 (has links)
Quantenzentren in Kristallgittern spielen als sogenannte Festkörper-Qubits eine entscheidende Rolle für die Entwicklung der zweiten Quantenrevolution. Das G-Zentrum in Silizium kann hierfür einen wesentlichen Beitrag leisten, da es sich CMOS-kompatibel und damit skalierbar herstellen lässt, es eine scharfe Nullphononenlinie im Bereich der optischen Telekommunikation besitzt und ODMR-aktiv ist. Dies macht es zu einem geeigneten Kandidaten für die Entwicklung photonischer Mikrochips, auf denen Quantentechnologien und Lichtwellenleitung durch eine Spin-Photon-Schnittstelle miteinander verknüpft werden, um somit alle Kriterien zum Aufbau eines Quantennetzwerkes zu erfüllen. In der vorliegenden Arbeit werden G-Zentren durch niederenergetische und räumlich-selektive Ionen-Implantation hergestellt und mittels Photolumineszenz-Spektroskopie und Magnetresonanzmessungen auf ihre optischen und quantenphysikalischen Eigenschaften untersucht. Anhand umfangreicher temperaturabhängiger Ensemble-Messungen in reinem Silizium werden offene Fragen zum Sättigungsverhalten, der Rekombinationsdynamik und der Verschiebung bzw. Verbreiterung der Nullphononenlinie geklärt und die ersten Zerfallszeit-Messungen des angeregten Zustandes des Defektes vorgestellt. Durch die Verwendung von SOI-Proben in Kombination mit niederenergetischer Ionen-Implantation wird weiterhin die erste, jemals in Silizium isolierte Einzelphotonenquelle hergestellt und durch zahlreiche Polarisations- und Korrelationsmessungen als solche identifiziert. Durch die Einzelphotonenmessung erfolgt zusätzlich eine erste Abschätzung der Quanteneffizienz der G-Zentren und die Messung der Lebensdauer des isolierten angeregten Zustandes. Um den Quantenzustand der G-Zentren mittels Mikrowellenfeld manipulieren und sowohl optische als auch elektronisch auslesen zu können, wird ein experimenteller Aufbau beschrieben, mit dem die magnetische Resonanz der G-Zentren in einer SOI-Probe temperaturabhängig bis in den kryogenen Bereich detektiert werden kann. Nach den ersten manuellen Testmessungen wird der Versuchsaufbau durch neue Steuergeräte und eine Automatisierung weiter optimiert, um damit umfangreiche Messungen bei T = 40K und Raumtemperatur durchzuführen. Dabei wird eine mikrowellenabhängige Manipulation der Photolumineszenz der G-Zentren beobachtet, welche mit dem detektierten Photostrom korreliert ist. Die Manipulation der Photolumineszenz wird hauptsächlich auf eine Veränderung der Ladungsträgerdichte aufgrund anderer spinabhängiger Rekombinationszentren zurückgeführt, welche sich an den Grenzflächen des SOI-Schichtstapels bilden. Ideen, um den Einfluss der G-Zentren durch Unterdrückung der anderen Rekombinationszentren zu erhöhen, werden diskutiert.:Bibliografische Beschreibung Referat Abstract Zusammenfassung der Dissertation Contents List of Figures List of Tables Abbreviations 1 Introduction and motivation 1.1 Demand for silicon photonics and quantum technologies 1.2 Description and aim of the project 1.3 Outline 2 Solid-state and optical properties of silicon 2.1 Crystal properties 2.1.1 Structure 2.1.2 Lattice vibrations 2.1.3 Debye-Waller factor 2.1.4 Energy bands 2.2 Defects and doping in silicon 2.2.1 Intrinsic and extrinsic point defects 2.2.2 Line, area and volume defects 2.2.3 Doping 2.3 Luminescence from silicon 2.3.1 Optical properties of bulk silicon 2.3.2 Non-linear effects in silicon 2.3.3 Dislocation loops 2.3.4 Quantum confinement effects 2.3.5 Rare-Earth (Erbium) doping 2.3.6 Light emitting defects in silicon 2.4 G centers in silicon 2.4.1 Structural properties and creation of G centers 2.4.2 Optical properties and applications of G centers 3 Solid-state quantum technologies 3.1 Ion implantation for defect engineering 3.1.1 High-energy accelerator “Lipsion” 3.1.2 100 kV Microbeam 3.2 Quantum optics 3.2.1 Properties of single photons 3.2.2 Photoluminescence and single-photon measurements 3.2.3 Applications of single-photon sources - quantum key distribution 3.3 Quantum computing 3.3.1 Basic principle 3.3.2 Photonic qubits 3.3.3 Solid-state qubits 4 Optical properties of an ensemble of G centers in silicon 4.1 Experiment description and basic properties 4.1.1 Sample fabrication 4.1.2 Optical spectroscopy 4.1.3 PL response of different defect densities 4.1.4 Photoluminescence excitation measurement 4.1.5 Saturation behavior 4.2 Temperature-dependent photoluminescence spectroscopy 4.2.1 Thermal redshift 4.2.2 ZPL broadening 4.2.3 Temperature-dependent PL intensity 4.2.4 Temperature-dependent lifetime and decay rate 4.3 Recombination dynamics 4.3.1 Spectrally selective recombination dynamics 4.3.2 Lifetime and defect density 4.3.3 Phonon-assisted recombination model 5 G centers as single-photon sources in silicon 5.1 Experimental description 5.1.1 Sample fabrication 5.1.2 Optical spectroscopy 5.2 Evidence of a single-photon source 5.2.1 Autocorrelation study 5.2.2 Photodynamics 5.2.3 PL polarization 5.3 Properties of single photons from G centers 5.3.1 ZPL shift 5.3.2 Saturation and stability 5.3.3 Lifetime of an isolated G center 5.3.4 Estimation of the quantum efficiency 6 Optical and photoelectric readout of G centers in silicon 6.1 Setup 6.1.1 Sample preparation 6.1.2 Circuit board and cryostat 6.1.3 Measuring and control devices 6.1.4 PL spectroscopy 6.2 Manual ODMR and PDMR at cryogenic temperature 6.3 Automated PDMR measurements 6.3.1 Spectrum analysis 6.3.2 Etiology 6.3.3 Voltage dependence 6.3.4 Temperature dependence 6.3.5 Laser dependence 6.3.6 Magnetic field dependence 6.4 Automated PDMR and ODMR at cryogenic temperature 6.5 Discussion 6.5.1 Microwave dielectric heating in silicon 6.5.2 Spin-dependent recombination centers in Si and Si/SiO2 interfaces 6.6 Conclusion 7 Summary and outlook Bibliography Danksagung Wissenschaftlicher Werdegang Selbstständigkeitserklärung Erklärung für die Bibliothek / Quantum centers in crystal lattices can form so-called solid-state qubits that play a crucial role for the progress of the second quantum revolution. The G center in silicon can make a significant contribution to this, since it can be fabricated in a CMOS compatible and thus scalable way, it has a sharp zero-phonon line in the optical telecommunication range, and it is ODMR active. This makes it a suitable candidate for the development of photonic microchips, where quantum technologies and optical waveguides are linked by a spin-photon interface, thus fulfilling all the criteria to build a quantum network. In the present work, G centers are fabricated by low-energy and spatially-selective ion implantation and their optical and quantum physical properties are investigated by photoluminescence spectroscopy and magnetic resonance measurements. Using extensive temperature-dependent ensemble measurements in pure silicon, open questions on saturation behavior, recombination dynamics, and zero-phonon line shift as well as broadening are clarified, and the first decay time measurements of the excited state of this defect are presented. By using SOI samples in combination with low-energy ion implantation, the first single-photon source ever isolated in silicon is further fabricated and identified as such by extensive polarization and correlation measurements. The single-photon measurement additionally provides a first estimation of the quantum efficiency of the G centers and the measurement of the lifetime of the isolated excited state. In order to manipulate the quantum state of the G centers by means of a microwave field and to enable an optical as well as an electronical readout, an experimental setup is designed and assembled that allows the temperature-dependent detection of magnetic resonances of G centers in a SOI sample down to the cryogenic range. After the first manual test measurements, the experimental setup is further optimized by new control devices and process automation to allow extensive measurements at T = 40K and room temperature. A microwave-dependent manipulation of the photoluminescence of the G centers is observed, which is correlated with the detected photocurrent. The manipulation of the photoluminescence is mainly attributed to a change in the charge carrier density due to other spin-dependent recombination centers that form at the interfaces of the SOI layer stack. Ideas to increase the influence of the G centers by suppressing the other recombination centers are discussed.:Bibliografische Beschreibung Referat Abstract Zusammenfassung der Dissertation Contents List of Figures List of Tables Abbreviations 1 Introduction and motivation 1.1 Demand for silicon photonics and quantum technologies 1.2 Description and aim of the project 1.3 Outline 2 Solid-state and optical properties of silicon 2.1 Crystal properties 2.1.1 Structure 2.1.2 Lattice vibrations 2.1.3 Debye-Waller factor 2.1.4 Energy bands 2.2 Defects and doping in silicon 2.2.1 Intrinsic and extrinsic point defects 2.2.2 Line, area and volume defects 2.2.3 Doping 2.3 Luminescence from silicon 2.3.1 Optical properties of bulk silicon 2.3.2 Non-linear effects in silicon 2.3.3 Dislocation loops 2.3.4 Quantum confinement effects 2.3.5 Rare-Earth (Erbium) doping 2.3.6 Light emitting defects in silicon 2.4 G centers in silicon 2.4.1 Structural properties and creation of G centers 2.4.2 Optical properties and applications of G centers 3 Solid-state quantum technologies 3.1 Ion implantation for defect engineering 3.1.1 High-energy accelerator “Lipsion” 3.1.2 100 kV Microbeam 3.2 Quantum optics 3.2.1 Properties of single photons 3.2.2 Photoluminescence and single-photon measurements 3.2.3 Applications of single-photon sources - quantum key distribution 3.3 Quantum computing 3.3.1 Basic principle 3.3.2 Photonic qubits 3.3.3 Solid-state qubits 4 Optical properties of an ensemble of G centers in silicon 4.1 Experiment description and basic properties 4.1.1 Sample fabrication 4.1.2 Optical spectroscopy 4.1.3 PL response of different defect densities 4.1.4 Photoluminescence excitation measurement 4.1.5 Saturation behavior 4.2 Temperature-dependent photoluminescence spectroscopy 4.2.1 Thermal redshift 4.2.2 ZPL broadening 4.2.3 Temperature-dependent PL intensity 4.2.4 Temperature-dependent lifetime and decay rate 4.3 Recombination dynamics 4.3.1 Spectrally selective recombination dynamics 4.3.2 Lifetime and defect density 4.3.3 Phonon-assisted recombination model 5 G centers as single-photon sources in silicon 5.1 Experimental description 5.1.1 Sample fabrication 5.1.2 Optical spectroscopy 5.2 Evidence of a single-photon source 5.2.1 Autocorrelation study 5.2.2 Photodynamics 5.2.3 PL polarization 5.3 Properties of single photons from G centers 5.3.1 ZPL shift 5.3.2 Saturation and stability 5.3.3 Lifetime of an isolated G center 5.3.4 Estimation of the quantum efficiency 6 Optical and photoelectric readout of G centers in silicon 6.1 Setup 6.1.1 Sample preparation 6.1.2 Circuit board and cryostat 6.1.3 Measuring and control devices 6.1.4 PL spectroscopy 6.2 Manual ODMR and PDMR at cryogenic temperature 6.3 Automated PDMR measurements 6.3.1 Spectrum analysis 6.3.2 Etiology 6.3.3 Voltage dependence 6.3.4 Temperature dependence 6.3.5 Laser dependence 6.3.6 Magnetic field dependence 6.4 Automated PDMR and ODMR at cryogenic temperature 6.5 Discussion 6.5.1 Microwave dielectric heating in silicon 6.5.2 Spin-dependent recombination centers in Si and Si/SiO2 interfaces 6.6 Conclusion 7 Summary and outlook Bibliography Danksagung Wissenschaftlicher Werdegang Selbstständigkeitserklärung Erklärung für die Bibliothek
18

Microscopy with undetected photons in the mid-infrared

Kviatkovsky, Inna 20 October 2023 (has links)
Die einzigartige (bio)-chemische Spezifität der mittleren Infrarotmikroskopie birgt ein enormes Potential für eine breite Palette biomedizinischer und industrieller Anwendungen. Eine wesentliche Einschränkung ergibt sich jedoch durch die unzureichenden Detektionsmöglichkeiten in diesem Wellenlängenbereich, da derzeitige Mittelinfrarot-Detektoren meist durch geringere Leistungsfähigkeit bei deutlich höheren Anschaffungskosten gekennzeichnet sind. Dementsprechend verlagern neuentwickelte Technologien mitunter die Detektion in den sichtbaren Spektralbereich, in dem eine weitaus bessere, Silizium-basierte Kameratechnologie verfügbar ist. Ein solches Verfahren, das im Mittelpunkt dieser Arbeit steht, ist die Quantenbildgebung mit undetektiereten Photonen, welche sich zunehmend als leistungsfähiges Werkzeug für Infrarot-Bildgebung entwickelt. Der optische Aufbau basiert auf nichtlinearer Interferometrie bei der räumlich verschränkte, nicht-entartete Photonenpaare die Entkopplung der Analyse- und Detektionswellenlängen ermöglicht. Entsprechend wird die Bildgebung im mittleren Infrarotbereich durch die Detektion von Nahinfrarotlicht mit einer handelsüblichen CMOS-Kamera realisiert. In dieser Arbeit wird die beschriebene Methode auf die Mikroskopie übertragen, wodurch Abbildungen biologischer Gewebeproben im mittleren Infrarotbereich mit einer Auflösung von geringer als 10 Mikrometer angefertigt werden können. Darüber hinaus werden zwei Abbildungsregime untersucht, die auf den komplementären Impuls- und Positionskorrelationen der Photonenpaare basieren. Weiterführende Möglichkeiten der Kombination von Quanten-Bildgebung mit unentdeckten Photonen und FTIR-Spektroskopie zum Zwecke der räumlich-spektral kontinuierlichen Datenerfassung werden besprochen. Die vorgestellten Ergebnisse stellen die Entwicklungsfähigkeit der Quantenbildgebung mit unentdeckten Photonen unter Beweis und demonstrieren ihr Potential für praxisnahe Anwendungen in der Biomedizin und der Industrie. / The unique (bio)-chemical specificity of mid-infrared (IR) microscopy holds tremendous promise for a wide range of biomedical and industrial applications. Significant limitation, however, arises from poor detection capabilities in this wavelengths range, with current mid-IR detection technology often marrying inferior technical capabilities with prohibitive costs. Accordingly, emerging approaches shift detection into the visible regime, where vastly superior silicon-based camera technology is available. One such technique, and the one that is in the center of this thesis is quantum imaging with undetected photons (QIUP), which has recently emerged as a new powerful imaging tool. The optical layout is based on nonlinear interferometry, where spatially entangled non-degenerate photon pairs enable the decoupling of the sensing and detection wavelengths, facilitating mid-IR wide-field imaging through the detection of near-IR light with an off-the-shelf CMOS camera. Additionally, the method is expanded towards microscopy, attaining sub-10 μm resolution, demonstrating our technique is fit for purpose, acquiring microscopic images of biological tissue samples in the mid-IR. Additionally, two imaging regimes are explored, based on the complementary momentum and position correlations. A comparison between the two regimes is presented and some limitations of the technique are discussed. Further efforts of combining QIUP with Fourier Transform IR spectroscopy for spatio-spectral continuous data acquisition are reviewed. The presented results demonstrate the achieved progress towards advancing QIUP to enable real-world biomedical as well as industrial imaging applications.
19

Coherence theory of atomic de Broglie waves and electromagnetic near fields

Henkel, Carsten January 2004 (has links)
Die Arbeit untersucht theoretisch die Wechselwirkung neutraler Teilchen (Atome, Moleküle) mit Oberflächen, soweit sie durch das elektromagnetische Feld vermittelt wird. Spektrale Energiedichten und Kohärenzfunktionen werden hergeleitet und liefern eine umfassende Charakterisierung des Felds auf der sub-Wellenlängen-Skala. Die Ergebnisse finden auf zwei Teilgebieten Anwendung: in der integrierten Atomoptik, wo ultrakalte Atome an thermische Oberflächen koppeln, und in der Nahfeldoptik, wo eine Auflösung unterhalb der Beugungsbegrenzung mit einzelnen Molekülen als Sonden und Detektoren erzielt werden kann. / We theoretically discuss the interaction of neutral particles (atoms, molecules) with surfaces in the regime where it is mediated by the electromagnetic field. A thorough characterization of the field at sub-wavelength distances is worked out, including energy density spectra and coherence functions. The results are applied to typical situations in integrated atom optics, where ultracold atoms are coupled to a thermal surface, and to single molecule probes in near field optics, where sub-wavelength resolution can be achieved.
20

Models in nonlinear condensed-matter optics: From theory to experiment

Voit, Kay-Michael 12 April 2013 (has links)
Cumulative Dissertation on models in nonlinear condensed-matter optics. In chapter 2, the coupled-wave theory first introduced by Kogelnik is reviewed and extended with emphasis on out-of-phase mixed holographic gratings. This class of gratings becomes increasingly important due to novel methods of hologram recording and new classes of materials and metamaterials like holographic polymer dispersed liquid crystals. Additionally, advances in laser technology suggest a stronger spectro- scopic view on holography. The model presented in this thesis accounts for both of these demands and provides a closed analytical solution. Chapter 3 contributes to the field of space-charge waves (SCW), which provides powerful tools for material analysis, especially in semiconductor technology. Although the underlying theory is generally understood, recent improvements of the ex- perimental techniques required extensions of the model and the interpretation of new effects. In this thesis, the existing formalism is adapted to a new method of excitation, which not only simplifies the experimental setup, allowing for easier adoption into industrial environments, but also provides insight into the direction of carrier motion. Furthermore, the model is extended to describe the influence of an external magnetic field, adding the possibility to examine the Hall mobility of carriers. Eventually, chapter 4 studies the dynamics of light induced absorption in pho- tochromic [Ru(bpy)2 (OSO)]+ . Compared to other photofunctional compounds, this molecule is nontoxic and exhibits exceptional photochromic reactions. These properties make it a promising candidate for important industrial and technological applications, ranging from data storage to non-electronic computation. For a profound analysis, the models used for the description of photofunctional molecules have been completely revised to account for the pronounced absortion changes in the material. Furthermore, a setup with orthogonal pump and probe beams is modeled and exper- imentally tested. This novel geometry is introduced to resemble common industrial setups.

Page generated in 0.071 seconds