11 |
The abstract structure of quantum algorithmsZeng, William J. January 2015 (has links)
Quantum information brings together theories of physics and computer science. This synthesis challenges the basic intuitions of both fields. In this thesis, we show that adopting a unified and general language for process theories advances foundations and practical applications of quantum information. Our first set of results analyze quantum algorithms with a process theoretic structure. We contribute new constructions of the Fourier transform and Pontryagin duality in dagger symmetric monoidal categories. We then use this setting to study generalized unitary oracles and give a new quantum blackbox algorithm for the identification of group homomorphisms, solving the GROUPHOMID problem. In the remaining section, we construct a novel model of quantum blackbox algorithms in non-deterministic classical computation. Our second set of results concerns quantum foundations. We complete work begun by Coecke et al., definitively connecting the Mermin non-locality of a process theory with a simple algebraic condition on that theory's phase groups. This result allows us to offer new experimental tests for Mermin non-locality and new protocols for quantum secret sharing. In our final chapter, we exploit the shared process theoretic structure of quantum information and distributional compositional linguistics. We propose a quantum algorithm adapted from Weibe et al. to classify sentences by meaning. The clarity of the process theoretic setting allows us to recover a speedup that is lost in the naive application of the algorithm. The main mathematical tools used in this thesis are group theory (esp. Fourier theory on finite groups), monoidal category theory, and categorical algebra.
|
12 |
Simulation of quantum walks in two-Dimensional lattices / Simulação de caminhos quânticos em redes bidimensionaisAmanda Castro Oliveira 15 June 2007 (has links)
Caminhos aleatórios clássicos são essenciais para a Física, a Matemática, a Ciência da Computação e muitas outras áreas. Há uma grande expectativa que a sua versão quântica seja ainda mais poderosa, uma vez que o caminhante quântico se espalha quadraticamente mais rápido que o seu análogo clássico. Neste trabalho, estudamos o comportamento do caminhante quântico em uma e duas dimensões, além de generalizarmos o formalismo de ligações interrompidas para duas ou mais dimensões. Em uma dimensão, analisamos o comportamento do caminhante quântico, que além das duas possibilidades de deslocamento usuais, direita e esquerda, também permanece na posição atual. Em duas dimensões, apresentamos um estudo detalhado do comportamento do caminhante no plano e quando há descoerência gerada pela quebra aleatória das ligações para as posições vizinhas com uma certa probabilidade para cada uma das direções. Quando essa probabilidade de quebra é diferente nas duas direções encontramos um resultado não trivial que representa uma transição do caso 2-D descorente para o caso 1-D coerente. Também utilizamos o formalismo de ligações interrompidas para modelar o comportamento de um caminhante quântico que passa por uma e por duas fendas. Realizamos simulações com com as principais moedas e observamos conclusivamente os padrões de interferência e difração.
|
13 |
Ferramentas algÃbricas para o estudo do entrelaÃamento quÃntico / Algebraic tools for the study of quantum entanglementJoÃo Luzeilton de Oliveira 02 March 2012 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Esta tese apresenta alguns resultados sobre dois temas importantes para a teoria da informaÃÃo quÃntica: entrelaÃamento quÃntico e algoritmos quÃnticos Com respeito ao entrelaÃamento à estabelecida uma relaÃÃo entre a negatividade e os menores principais de matrizes Hermitianas o que permite analisar o entrelaÃamento para estados de dois qubits e estados puros de trÃs e quatro qubits usando os menores principais Foi proposta tambÃm uma nova medida para o cÃlculo do entrelaÃamento de estados puros de seis qubits usando a negatividade Para ambos os casos o cÃlculo da variaÃÃo do entrelaÃamento de estados parametrizados foi realizado atravÃs de fÃrmulas analÃticas e simulaÃÃes numÃricas Por fim com relaÃÃo aos algoritmos quÃnticos à proposto um algoritmo de busca capaz de achar o mÃnimo de uma funÃÃo realizando apenas uma mediÃÃo ao final do algoritmo O algoritmo à descrito e um exemplo de utilizaÃÃo do mesmo no cÃlculo do perÃodo de uma funÃÃo periÃdica à apresentado / This thesis presents some results about two important subjects of the quantum information theory: quantum entanglement and quantum algorithms. Regarding the entanglement, a relationship between negativity and minors principals of Hermitian matrices was stablished, allowing the analysis of the entanglement of two qubits states, three and four qubits pure states, using the minors principals. It was also proposed a new measure, using negativity, for calculating the entanglement of pure states of six qubits. Finally, with respect to quantum algorithms it was proposed a quantum search algorithm able to finding the minimum of a function by performing only one measurement. The algorithm is described and an example of its usage in the calculation of the period of a periodic function is presented.
|
14 |
Post-quantum algorithms for digital signing in Public Key Infrastructures / Post-quantum-algoritmer för digitala signaturer i Public Key InfrastructuresSjöberg, Mikael January 2017 (has links)
One emerging threat to Public Key Infrastructures is the possible development of large-scale quantum computers, which would be able to break the public-key cryptosystems used today. Several possibly post-quantum secure cryptographic algorithms have been proposed but so far they have not been used in many practical settings. The purpose of this thesis was to find post-quantum digital signature algorithms that might be suitable for use in Public Key Infrastructures today. To answer the research question, an extensive literature study was conducted where relevant algorithms were surveyed. Algorithms with high-grade implementations in different cryptographic libraries were benchmarked for performance. Hash-based XMSS and SPHINCS, multivariate-based Rainbow and lattice-based BLISS-B were benchmarked and the results showed that BLISS-B offered the best performance, on par with RSA and ECDSA. All the algorithms did however have relatively large signature sizes and/or key sizes. Support for post-quantum digital signature algorithms in Public Key Infrastructure products could easily be achieved since many algorithms are implemented in cryptographic libraries. The algorithms that could be recommended for use today were SPHINCS for high-security applications and possibly BLISS-B for lower security applications requiring higher efficiency. The biggest obstacles to widespread deployment of post-quantum algorithms was deemed to be lack of standardisation and either inefficient operations compared to classical algorithms, uncertain security levels, or both. / Ett nytt hot mot Public Key Infrastructures är den möjliga utvecklingen av storskaliga kvantdatorer som kan knäcka de asymmetriska kryptosystem som används idag. Ett flertal eventuellt kvantsäkra algoritmer har presenterats men de har än så länge inte sett mycket praktisk användning. Målet med detta examensarbete var att försöka identifiera eventuellt kvantsäkra signaturalgoritmer som skulle kunna lämpa sig för användning i Public Key Infrastructures idag. För att besvara forskningsfrågan gjordes en utredande litteraturstudie där relevanta signaturalgoritmer identifierades. Därefter prestandatestades de algoritmer som var implementerade i kryptografiska bibliotek. De algoritmer som prestandatestades var de hash-baserade algoritmerna XMSS och SPHINCS, flervariabel-baserade Rainbow och gitter-baserade BLISS-B. Resultaten visade att BLISS-B hade bäst prestanda och att prestandan var i nivå med RSA och ECDSA. Samtliga algoritmer hade emellertid relativt stora signatur- och/eller nyckelstorlekar. Eventuellt kvantsäkra algoritmer skulle redan idag kunna stödjas i Public Key Infrastructures eftersom många algoritmer finns implementerade i kryptografiska bibliotek. SPHINCS kunde rekommenderas när hög säkerhet krävs medan BLISS-B möjligtvis skulle kunna användas när lägre säkerhet kan tolereras i utbyte mot bättre prestanda. Största hindren för utbredd användning ansågs vara en brist på standardisering samt ineffektiva operationer jämfört med klassiska algoritmer och/eller tveksamma säkerhetsnivåer.
|
15 |
Quantum Algorithms For: Quantum Phase Estimation, Approximation Of The Tutte Polynomial And Black-box StructuresAhmadi, Hamad 01 January 2012 (has links)
In this dissertation, we investigate three different problems in the field of Quantum computation. First, we discuss the quantum complexity of evaluating the Tutte polynomial of a planar graph. Furthermore, we devise a new quantum algorithm for approximating the phase of a unitary matrix. Finally, we provide quantum tools that can be utilized to extract the structure of black-box modules and algebras. While quantum phase estimation (QPE) is at the core of many quantum algorithms known to date, its physical implementation (algorithms based on quantum Fourier transform (QFT) ) is highly constrained by the requirement of high-precision controlled phase shift operators, which remain difficult to realize. In the second part of this dissertation, we introduce an alternative approach to approximately implement QPE with arbitrary constantprecision controlled phase shift operators. The new quantum algorithm bridges the gap between QPE algorithms based on QFT and Kitaev’s original approach. For approximating the eigenphase precise to the nth bit, Kitaev’s original approach does not require any controlled phase shift operator. In contrast, QPE algorithms based on QFT or approximate QFT require controlled phase shift operators with precision of at least Pi/2n. The new approach fills the gap and requires only arbitrary constant-precision controlled phase shift operators. From a physical implementation viewpoint, the new algorithm outperforms Kitaev’s approach. iii The other problem we investigate relates to approximating the Tutte polynomial. We show that the problem of approximately evaluating the Tutte polynomial of triangular graphs at the points (q, 1/q) of the Tutte plane is BQP-complete for (most) roots of unity q. We also consider circular graphs and show that the problem of approximately evaluating the Tutte polynomial of these graphs at the point (e 2πi/5 ,e−2πi/5 ) is DQC1-complete and at points (q k , 1 + 1−q−k (q 1/2−q−1/2) 2 ) for some integer k is in BQP. To show that these problems can be solved by a quantum computer, we rely on the relation of the Tutte polynomial of a planar G graph with the Jones and HOMFLY polynomial of the alternating link D(G) given by the medial graph of G. In the case of our graphs the corresponding links are equal to the plat and trace closures of braids. It is known how to evaluate the Jones and HOMFLY polynomial for closures of braids. To establish the hardness results, we use the property that the images of the generators of the braid group under the irreducible Jones-Wenzl representations of the Hecke algebra have finite order. We show that for each braid b we can efficiently construct a braid ˜b such that the evaluation of the Jones and HOMFLY polynomials of their closures at a fixed root of unity leads to the same value and that the closures of ˜b are alternating links. The final part of the dissertation focuses on finding the structure of a black-box module or algebra. Suppose we are given black-box access to a finite module M or algebra over a finite ring R, and a list of generators for M and R. We show how to find a linear basis and structure constants for M in quantum poly(log |M|) time. This generalizes a recent quantum algorithm of Arvind et al. which finds a basis representation for rings. We then show that iv our algorithm is a useful primitive allowing quantum computers to determine the structure of a finite associative algebra as a direct sum of simple algebras. Moreover, it solves a wide variety of problems regarding finite modules and rings. Although our quantum algorithm is based on Abelian Fourier transforms, it solves problems regarding the multiplicative structure of modules and algebras, which need not be commutative. Examples include finding the intersection and quotient of two modules, finding the additive and multiplicative identities in a module, computing the order of an module, solving linear equations over modules, deciding whether an ideal is maximal, finding annihilators, and testing the injectivity and surjectivity of ring homomorphisms. These problems appear to be exponentially hard classically.
|
16 |
<i>COHERENT QUANTUM CONTROL AND QUANTUM </i><i>SIMULATION OF CHEMICAL REACTIONS</i>Sumit Suresh Kale (17743605) 18 March 2024 (has links)
<p dir="ltr">This thesis explores the intersection of quantum interference, entanglement, and quantum
algorithms in the context of chemical reactions. The initial exploration delves into the
constructive quantum interference in the photoassociation reaction of a 87Rb Bose Einstein
condensate (BEC), where a coherent superposition of multiple bare spin states is achieved
and it’s impact on photo-association (PA) was studied. Employing a quantum processor, the
study illustrates that interferences can function as a resource for coherent control in photochemical
reactions, presenting a universally applicable framework relevant to a spectrum of
ultracold chemical reactions. The subsequent inquiry scrutinizes the entanglement dynamics
between the spin and momentum degrees of freedom in an optically confined BEC of 87Rb
atoms, induced by Raman and RF fields. Significantly, this study unveils substantial spin momentum
entanglement under specific experimental conditions, indicating potential applications
in the realm of quantum information processing. Finally, the third study advances a
quantum algorithm for the computation of scattering matrix elements in chemical reactions,
adeptly navigating the complexities of quantum interactions. This algorithm, rooted in the
time-dependent method and Möller operator formulation, is applied to scenarios such as 1D
semi-infinite square well potentials and co-linear hydrogen exchange reactions, showcasing
its potential to enhance our comprehension of intricate quantum interactions within chemical
systems.</p>
|
17 |
Discrete quantum walks and quantum image processingVenegas-Andraca, Salvador Elías January 2005 (has links)
In this thesis we have focused on two topics: Discrete Quantum Walks and Quantum Image Processing. Our work is a contribution within the field of quantum computation from the perspective of a computer scientist. With the purpose of finding new techniques to develop quantum algorithms, there has been an increasing interest in studying Quantum Walks, the quantum counterparts of classical random walks. Our work in quantum walks begins with a critical and comprehensive assessment of those elements of classical random walks and discrete quantum walks on undirected graphs relevant to algorithm development. We propose a model of discrete quantum walks on an infinite line using pairs of quantum coins under different degrees of entanglement, as well as quantum walkers in different initial state configurations, including superpositions of corresponding basis states. We have found that the probability distributions of such quantum walks have particular forms which are different from the probability distributions of classical random walks. Also, our numerical results show that the symmetry properties of quantum walks with entangled coins have a non-trivial relationship with corresponding initial states and evolution operators. In addition, we have studied the properties of the entanglement generated between walkers, in a family of discrete Hadamard quantum walks on an infinite line with one coin and two walkers. We have found that there is indeed a relation between the amount of entanglement available in each step of the quantum walk and the symmetry of the initial coin state. However, as we show with our numerical simulations, such a relation is not straightforward and, in fact, it can be counterintuitive. Quantum Image Processing is a blend of two fields: quantum computation and image processing. Our aim has been to promote cross-fertilisation and to explore how ideas from quantum computation could be used to develop image processing algorithms. Firstly, we propose methods for storing and retrieving images using non-entangled and entangled qubits. Secondly, we study a case in which 4 different values are randomly stored in a single qubit, and show that quantum mechanical properties can, in certain cases, allow better reproduction of original stored values compared with classical methods. Finally, we briefly note that entanglement may be used as a computational resource to perform hardware-based pattern recognition of geometrical shapes that would otherwise require classical hardware and software.
|
18 |
Towards large-scale quantum computationFowler, Austin Greig Unknown Date (has links) (PDF)
This thesis deals with a series of quantum computer implementation issues from the Kane 31P in 28Si architecture to Shor’s integer factoring algorithm and beyond. The discussion begins with simulations of the adiabatic Kane CNOT and readout gates, followed by linear nearest neighbor implementations of 5-qubit quantum error correction with and without fast measurement. A linear nearest neighbor circuit implementing Shor’s algorithm is presented, then modified to remove the need for exponentially small rotation gates. Finally, a method of constructing optimal approximations of arbitrary single-qubit fault-tolerant gates is described and applied to the specific case of the remaining rotation gates required by Shor’s algorithm.
|
19 |
Uma arquitetura de co-processador para simulação de algoritmos quânticos em FPGA / A Co-processor architecture for simulation of quantum algorithms on FPGAConceição, Calebe Micael de Oliveira January 2013 (has links)
Simuladores quânticos têm tido um importante papel no estudo e desenvolvimento da computação quântica ao longo dos anos. A simulação de algoritmos quânticos em computadores clássicos é computacionalmente difícil, principalmente devido à natureza paralela dos sistemas quânticos. Para acelerar essas simulações, alguns trabalhos propõem usar hardware paralelo programável como FPGAs, o que diminui consideravelmente o tempo de execução. Contudo, essa abordagem tem três problemas principais: pouca escalabilidade, já que apenas transfere a complexidade do domínio do tempo para o domínio do espaço; a necessidade de re-síntese a cada mudança no algoritmo; e o esforço extra ao projetar o código RTL para simulação. Para lidar com esses problemas, uma arquitetura de um co-processador SIMD é proposta, cujas operações das portas quânticas está baseada no modelo Network of Butterflies. Com isso, eliminamos a necessidade de re-síntese com mudanças pequenas no algoritmo quântico simulado, e eliminamos a influência de um dos fatores que levam ao crescimento exponencial do uso de recursos da FPGA. Adicionamente, desenvolvemos uma ferramenta para geração automática do código RTL sintetizável do co-processador, reduzindo assim o esforço extra de projeto. / Quantum simulators have had a important role on the studying and development of quantum computing throughout the years. The simulation of quantum algorithms on classical computers is computationally hard, mainly due to the parallel nature of quantum systems. To speed up these simulations, some works have proposed to use programmable parallel hardware such as FPGAs, which considerably shorten the execution time. However this approach has three main problems: low scalability, since it only transfers the complexity from time domain to space domain; the need of re-synthesis on every change on the algorithm; and the extra effort on designing the RTL code for simulation. To handle these problems, an architecture of a SIMD co-processor is proposed, whose operations of quantum gates are based on Network of Butterflies model. Thus, we eliminate the need of re-synthesis on small changes on the simulated quantum algorithm, and we eliminated the influence of one of the factors that lead to the exponential growth on the consumption of FPGA resources. Aditionally, we developed a tool to automatically generate the synthesizable RTL code of the co-processor, thus reducing the extra design effort.
|
20 |
Uma arquitetura de co-processador para simulação de algoritmos quânticos em FPGA / A Co-processor architecture for simulation of quantum algorithms on FPGAConceição, Calebe Micael de Oliveira January 2013 (has links)
Simuladores quânticos têm tido um importante papel no estudo e desenvolvimento da computação quântica ao longo dos anos. A simulação de algoritmos quânticos em computadores clássicos é computacionalmente difícil, principalmente devido à natureza paralela dos sistemas quânticos. Para acelerar essas simulações, alguns trabalhos propõem usar hardware paralelo programável como FPGAs, o que diminui consideravelmente o tempo de execução. Contudo, essa abordagem tem três problemas principais: pouca escalabilidade, já que apenas transfere a complexidade do domínio do tempo para o domínio do espaço; a necessidade de re-síntese a cada mudança no algoritmo; e o esforço extra ao projetar o código RTL para simulação. Para lidar com esses problemas, uma arquitetura de um co-processador SIMD é proposta, cujas operações das portas quânticas está baseada no modelo Network of Butterflies. Com isso, eliminamos a necessidade de re-síntese com mudanças pequenas no algoritmo quântico simulado, e eliminamos a influência de um dos fatores que levam ao crescimento exponencial do uso de recursos da FPGA. Adicionamente, desenvolvemos uma ferramenta para geração automática do código RTL sintetizável do co-processador, reduzindo assim o esforço extra de projeto. / Quantum simulators have had a important role on the studying and development of quantum computing throughout the years. The simulation of quantum algorithms on classical computers is computationally hard, mainly due to the parallel nature of quantum systems. To speed up these simulations, some works have proposed to use programmable parallel hardware such as FPGAs, which considerably shorten the execution time. However this approach has three main problems: low scalability, since it only transfers the complexity from time domain to space domain; the need of re-synthesis on every change on the algorithm; and the extra effort on designing the RTL code for simulation. To handle these problems, an architecture of a SIMD co-processor is proposed, whose operations of quantum gates are based on Network of Butterflies model. Thus, we eliminate the need of re-synthesis on small changes on the simulated quantum algorithm, and we eliminated the influence of one of the factors that lead to the exponential growth on the consumption of FPGA resources. Aditionally, we developed a tool to automatically generate the synthesizable RTL code of the co-processor, thus reducing the extra design effort.
|
Page generated in 0.063 seconds