• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 8
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 80
  • 80
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Threshold Extension of Gallium Arsenide/Aluminum Gallium Arsenide Terahertz Detectors and Switching in Heterostructures

Rinzan, Mohamed Buhary 04 December 2006 (has links)
In this work, homojunction interfacial workfunction internal photoemission (HIWIP) detectors based on GaAs, and heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors based mainly on the Gallium Arsenide/Aluminum Gallium Arsenide material system are presented. Design principles of HIWIP and HEIWIP detectors, such as free carrier absorption, photocarrier generation, photoemission, and responsivity, are discussed in detail. Results of p-type HIWIPs based on GaAs material are presented. Homojunction detectors based on p-type GaAs were found to limit their operating wavelength range. This is mainly due to band depletion arising through carrier transitions from the heavy/light hole bands to the split off band. Designing n-type GaAs HIWIP detectors is difficult as it is strenuous to control their workfunction. Heterojunction detectors based on Gallium Arsenide/Aluminum Gallium Arsenide material system will allow tuning their threshold wavelength by adjusting the alloy composition of the Aluminum Gallium Arsenide/Gallium Arsenide barrier, while keeping a fixed doping density in the emitter. The detectors covered in this work operate from 1 to 128 micron (300 to 2.3 THz). Enhancement of detector response using resonance cavity architecture is demonstrated. Threshold wavelength extension of HEIWIPs by varying the Al composition of the barrier was investigated. The threshold limit of approximately 3.3 THz (92 micron), due to a practical Al fraction limit of approximately 0.005, can be overcome by replacing GaAs emitters in Gallium Arsenide/Aluminum Gallium Arsenide HEIWIPs with Aluminum Gallium Arsenide/Gallium Arsenide emitters. As the initial step, terahertz absorption for 1 micron-thick Be-doped Aluminum Gallium Arsenide epilayers (with different Al fraction and doping density) grown on GaAs substrates was measured. The absorption probability of the epilayers was derived from these absorption measurements. Based on the terahertz absorption results, an Aluminum Gallium Arsenide/Gallium Arsenide HEIWIP detector was designed and the extension of threshold frequency (f0) to 2.3 THz was successfully demonstrated. In a different study, switching in Gallium Arsenide/Aluminum Gallium Arsenide heterostructures from a tunneling dominated low conductance branch to a thermal emission dominated high conductance branch was investigated. This bistability leads to neuron-like voltage pulses observed in some heterostructure devices. The bias field that initiates the switching was determined from an iterative method that uses feedback information, such as carrier drift velocity and electron temperature, from hot carrier transport. The bias voltage needed to switch the device was found to decrease with the increasing device temperature.
62

Electrical and Optical Characterization of Group III-V Heterostructures with Emphasis on Terahertz Devices

Weerasekara, Aruna Bandara 03 August 2007 (has links)
Electrical and optical characterizations of heterostructures and thin films based on group III-V compound semiconductors are presented. Optical properties of GaMnN thin films grown by Metalorganic Chemical Vapor Deposition (MOCVD) on GaN/Sapphire templates were investigated using IR reflection spectroscopy. Experimental reflection spectra were fitted using a non - linear fitting algorithm, and the high frequency dielectric constant (ε∞), optical phonon frequencies of E1(TO) and E1(LO), and their oscillator strengths (S) and broadening constants (Γ) were obtained for GaMnN thin films with different Mn fraction. The high frequency dielectric constant (ε∞) of InN thin films grown by the high pressure chemical vapor deposition (HPCVD) method was also investigated by IR reflection spectroscopy and the average was found to vary between 7.0 - 8.6. The mobility of free carriers in InN thin films was calculated using the damping constant of the plasma oscillator. The terahertz detection capability of n-type GaAs/AlGaAs Heterojunction Interfacial Workfunction Internal Photoemission (HEIWIP) structures was demonstrated. A threshold frequency of 3.2 THz (93 µm) with a peak responsivity of 6.5 A/W at 7.1 THz was obtained using a 0.7 µm thick 1E18 cm−3 n - type doped GaAs emitter layer and a 1 µm thick undoped Al(0.04)Ga(0.96)As barrier layer. Using n - type doped GaAs emitter layers, the possibility of obtaining small workfunctions (∆) required for terahertz detectors has been successfully demonstrated. In addition, the possibility of using GaN (GaMnN) and InN materials for terahertz detection was investigated and a possible GaN base terahertz detector design is presented. The non - linear behavior of the Inter Pulse Time Intervals (IPTI) of neuron - like electric pulses triggered externally in a GaAs/InGaAs Multi Quantum Well (MQW) structure at low temperature (~10 K) was investigated. It was found that a grouping behavior of IPTIs exists at slow triggering pulse rates. Furthermore, the calculated correlation dimension reveals that the dimensionality of the system is higher than the average dimension found in most of the natural systems. Finally, an investigation of terahertz radiation efect on biological system is reported.
63

Quantum Optoelectronic Detection and Mixing in the Nanowire Superconducting Structure

Yan, Zhizhong 19 January 2010 (has links)
The recent advancement of superconducting nano devices has allowed for making a Superconducting Nanowire Single Photon Detector (SNSPD), whose extraordinary features have strongly motivated the research community to exploit it in many practical applications. In this thesis, an experimental setup for testing the SNSPD has been established. It contains an in-house packaging that meets the requirements of RF/microwave and optoelectronic characterizations. The quantum efficiency and detection efficiency measurements have confirmed that our approach is satisfactory. The dark count performance has reached the anticipated level. The factors affecting rise and fall times of the photoresponses are addressed. Based on the successful setup, the characterizations including dc, small signal ac measurements have been undertaken. The measurements are aimed at quantitatively investigating Cooper pair density in the superconducting nanowire. The experimental method involves a two-step, small signal S-parameter measurement either in the presence or absence of optical powers. The subsequent measurements by varying the temperature and dc bias current have achieved remarkable understanding on the physical properties of SNSPD nanowires. Then, the electrically induced nonlinearity is studied via the large signal RF and Microwave measurements. The experiments are a set of one-tone and two-tone measurements, in which either the RF driving power is varied at a fixed frequency, or vice versa. Two major nonlinear microwave circuit analysis methods, i.e. time-domain transient and hybrid-domain harmonic balance analysis, are employed. The simulation result reveals the optimized conditions of reaching the desired nonlinearity. Finally, we have successfully measured the optoelectronic mixing products in an electrically pumped optoelectronic mixer, which has identical structures as that of the SNSPD. The experiments confirm that this mixer is not only sensitive to the classical light intensities, but also to that of the single photon level. Meanwhile, the quantum conversion matrices is derived to interpret the quantum optoelectronic mixing effects.
64

Application of Computer Simulation in the Investigation of Photoelectric Materials

Yang, Hsiao-ching 25 July 2004 (has links)
In this thesis, we investigated several photoelectric material systems consisted of conjugated polymers by means of computer simulation. We combined several theory and simulation methods to meodeling different subjects from atomic to mesoscopic scale. We dealt with the problems such as quantum efficiency, structure characteristic, and the phase behavior in material. We hope to have better understanding of the relationship between structure characteristic and functional property in material. It will help an engineering designer to adjust the variables that optimize characteristics linking the synthesis of advanced materials with desired physical properties. This work can be divided into three parts. Long side chain substituted PPV polymers applied in light-emitting diode material : Molecular dynamics simulations were employed to investigate structure features and segment orientation of four poly(phenylene vinylene) (PPV)-like conjugated polymers with long flexible side chains at room temperature. In the simulations, the main chains of the polymers were found to be semi-rigid and to exhibit a tendency to coil into ellipsoidal helices or form zigzag conformations of only limited regularity. It was shown that continuous segments of a chain which are quasi-coplanar along the backbone are in a range of 2~4 repeat units. This implies that long-range electron transfer along same backbones of these polymers may not happen but may be mediated by interchain interactions. The ordered orientation and coupling distance of interchain aromatic rings are found to correlate with important optical properties of materials. Then we combined molecular dynamics simulation and density matrix methods modeling of amorphous light-emitting polymers. A simplified method combining molecular dynamics (MD) simulation and density matrix (DM) theory was developed for the prediction of optical properties of long side chain substituted poly(phenylene vinylene) (PPV) polymers. This MD+DM method takes account of the complexity of molecular packing of polymer chains. The method has been tested to simulate the absorption spectra of four model systems. The wavelengths of absorption maxima of the calculated spectra of these four conjugated polymers are in reasonable agreement with experimental data. The simulation also demonstrated that the importance of including interchain interactions in the calculation. Ion-conducting polymer sPBI-PS(Li+): To understand the mechanism of ionic migration in the amorphous matrixes of polymer electrolytes is crucial for their applications in modern technologies. Here, molecular dynamics (MD) simulation was carried out to investigate the ionic conduction mechanism of a particular conjugated rigid-rod polymer, sPBI-PS(Li+). The backbone of this polymer is poly[(1, 7- dihydrobenzo[1, 2-d:4,5-d¡¦]diimidazole- 2,6-diyl)-2-(2-sulfo)-p-phenylene]. The polymer has pendants of propane sulfonate Li+ ionomer. The MD simulations showed that the main chains of sPBI-PS(Li+) are in layer-like structure. The further detailed structure analysis suggested that the £k-electron of this polymer is not delocalized among aromatic rings. This agrees with the experimental result that sPBI-PS(Li+) shows no electronic conductivity and the conductivity of this polymer is mainly ionic. The calculated migration channels of lithium ions and electrostatic potential distributions indicated clearly that the polymer matrix is anisotropic for the migrations of ions. The migration of lithium ions along the longitudinal direction is more preferable than that along the transverse direction. The relaxations of the polymer host were found to play important roles in the transfer process of lithium ions. The hopping of lithium ion from one -SO3-1 group to another is correlated strongly with characteristic motions of -SO3-1 group on a time scale of about 10-13 s. Self-assembly functional material. Dissipative particle dynamics (DPD) simulations were carried out to investigate mixed ionic and non-ionic molecules, sodium tetradecyl sulfate (STS) and tetradecyl triethoxylated ether (C14E3) aqueous system. Different types of mixed micelles are formed depending on the concentrations of STS and C14E3. Our results are in good agreement to the early NMR measurements. From the investigation of surfactant aggregation, we understand the self-assembly mechanism and classical phase behavior in general diblock copolymer. Further, we investigated the self-assembly process on a particular mushroom-shaped supramolecular film material from molecular character to phase behavior. The miniaturized rod-coil triblock copolymers (PS-PI-RCBC) HEMME had been found to self-assemble into well-ordered nanostructures and unusual head to tail multilayer structure. The purpose of our study is to obtain fundamental understanding the connection of the inherent morphological characterization of single molecule and the mechanism of phase behavior of this polar self-assembly system. Dissipative particle dynamics simulation was carried out to study the mechanism of phase behavior of the solvent-copolymers system. We found that the solvent-induced polar effect under different temperature is important in the process of self-assembly of block copolymers. In different temperature the solvent induces hybrid structure aggregation. Our results are consistent with experimental observations and give evidence for a special mechanism governing the unusual phase behavior in thin films of modulated phases. The sizes and stabilization energies of mushroom-shaped supramolecular clusters were predicted by molecular modeling method. Clusters of sizes from 16 to 90 molecules were found to be stable. In combination of classical and simple quantum mechanical calculations, the band gaps of HEMME clusters with various sizes were estimated. The band gap was converged at 2.45 eV for cluster contains 90 molecules. Nonlinear optical properties of the material were investigated by the semi-empirical quantum mechanical calculations of molecular dipole moment and hyperpolarizabilities. Significant second-order nonlinear optical properties were shown from these calculated properties.
65

Uso de bioestimulantes e enraizadores no crescimento inicial e tolerância à seca em cana-de-açúcar / Biostimulants and use of reinforcers on the grouth and drought tolerance in sugar cane

Wanderley Filho, Humberto Cristiano de Lins 10 November 2011 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A cana-de-açúcar (Saccharum spp) é uma cultura em expansão no Brasil, necessitando de práticas que aumentem a produtividade nos diferentes ecossistemas do país. Dessa forma, o presente trabalho, teve como objetivo avaliar o crescimento inicial e a tolerância à seca da variedade de cana-de-açúcar RB92579 com a aplicação de bioestimulantes e enraizadores. Para isso, foi realizado um experimento em casa de vegetação, em delineamento inteiramente casualizado. Os tratamentos utilizados foram: T1 Controle; T2 - AIB (Ácido Indolbutírico), na concentração de 1000 mg.L-1; T3 - B+Zn (Bórax, 10 Kg por hectare + Sulfato de Zinco, 20 Kg por hectare); T4 - Triptofano, 7,2 Kg por hectare; T5 - (Kymon Plus®, 1,0 L por hectare + Potamol® 0,5 L por hectare) e T6 - Stimulate®, 0,5 L por hectare. Aos 41 e 124 DAP foram coletados dados morfológicos e de biomassa para análise do crescimento inicial da planta. Aos 117 dias após o plantio foi suspensa a rega por 36 horas para avaliar o efeito dos bioestimulantes e enraizadores em mitigar o efeito do estresse hídrico. A aplicação de AIB e Stimulate® proporcionaram maiores taxas de crescimento e acúmulo de biomassa. A aplicação de Ubyfol e Stimulate® proporcionaram maiores trocas gasosas na ausência de estresse hídrico e aumentaram a eficiência quântica efetiva do PSII mesmo quando a plantas estavam sob estresse hídrico, quando comparadas com o controle. Em plantas sob estresse hídrico moderado, a aplicação de Stimulate® proporcionou a manutenção de maiores taxas de fotossíntese, transpiração e condutância estomática. O experimento deve ser repetido em campo para verificar se esses resultados se traduzem em aumento da produtividade tanto na condição de sequeiro como na condição irrigada.
66

Nano-scale approaches for the development and optimization of state-of-the-art semiconductor photovoltaic devices

Garduno Nolasco, Edson January 2014 (has links)
This project is concerned with both the study of different Multiple Quantum Wells (MQWs) structures using the In0.53Ga0.47As/In0.52Al0.48As material system lattice matched to InP and a systematic investigation of the properties of InAs QD systems within GaAs with the aim of achieving enhancements of solar cell performance. The key challenge is the growth of QDs solar cell structures which exhibit sufficient absorption (enhanced infrared absorption) to increase short circuit current density (Jsc) but which can still maintains a high open circuit voltage (Voc). The research consists of epitaxial growth using state-of–the-art MBE, optical absorption, photoluminescence and high resolution x-ray diffraction measurements as well as device fabrication and characterization of novel solar cell structures. Optimization was performed on these novel cells to further improve their efficiency by inserting stacks of QD into different regions of the device. The effect of localized doping of such structures was used in an attempt to maintain and enhance the open-circuit voltage which in turn increases the device efficiency. The fabricated devices were characterized using measurements of the dark/light current-voltage (I-V) characteristics and spectral response (50-480 K). Solar cell external quantum efficiencies under standard air mass (AM) 1.5 spectrum were determined and the suitability of these new cells under solar concentration were assessed. Full physical simulations are performed using SILVACO semiconductors modelling software to generate models of multi-junction solar cells that were crucial in informing iterations to growth and fabrication and help to reconcile theory with experiment. One of the key findings, of this thesis, is the fact that Intermediate band photovoltaic devices using material based on InAs/GaAs vertically stacked quantum dot arrays, can be used in applications according to specific configuration criteria such as high temperature operation conditions. The intermediate band cell, including an inter-dot doped configuration, has been found to be a potential candidate as the inter dot doping profile reduces the efficiency degradation below the GaAs values including an enhancement in the open circuit voltage. It has been proved that these devices not only have a good performance at high temperatures but also by changing the vertical stacking QD layer periodicity can enhance the short circuit current density while keeping a large open circuit voltage. It was confirmed in practical device operation that thermal energy is required to enable the intermediate band in InAs/GaAs QD materials. The impact of this works can help in the future improvements of the intermediate band solar cells based on InAs on GaAs QD. The best overall efficiency of 11.6 % obtained in this work is an excellent value for so simple devices configuration. The Si3N4, tested for the first time on InAs/GaAs QD materials, reduces the reflectance on the device surface to a value of 2% and the operational wavelength can be tuned by controlling the layer thickness. A 100 nm Si3N4 antireflective coating proved to be an excellent coating from 700 to 1000 nm. In terms of short circuit current density a 37% enhancement was achieved.
67

Optical studies of InGaN/GaN quantum well structures

Davies, Matthew John January 2014 (has links)
In this thesis I present and discuss the results of optical spectroscopy performed on InGaN/GaN single and multiple quantum well (QW) structures. I report on the optical properties of InGaN/GaN single and multiple QW structures, measured at high excitation power densities. I show a correlation exists between the reduction in PL efficiency at high excitation power densities, the phenomenon so-called ``efficiency-droop'', and a broadening of the PL spectra. I also show a distinct change in recombination dynamics, measured by time-resolved photoluminescence (PL), which occurs at the excitation power densities for which efficiency droop is measured. The broadening of the PL spectra at high excitation power densities is shown to occur due to a rapidly redshifting, short-lived high energy emission band. The high energy emission band is proposed to be due to the recombination of weakly localised/delocalised carriers occurring as a consequence of the progressive saturation of the local potential fluctuations responsible for carrier localisation, at high excitation power densities. I report on the effects of varying threading dislocation (TD) density on the optical properties of InGaN/GaN multiple QW structures. No systematic relationship exists between the room temperature internal quantum efficiency (IQE) and the TD density, in a series of nominally identical InGaN/GaN multiple QWs deposited on GaN templates of varying TD density. I also show the excitation power density dependence of the PL efficiency, at room temperatures, is unaffected for variation in the TD density between 2 x107 and 5 x109 cm-2. The independence of the optical properties to TD density is proposed to be a consequence of the strong carrier localisation, and hence short carrier diffusion lengths. I report on the effects of including an InGaN underlayer on the optical and microstructural properties of InGaN/GaN multiple QW structures. I show an increase in the room temperature IQE occurs for the structure containing the InGaN underlayer, compared to the reference. I show using PL excitation spectroscopy that an additional carrier transfer and recombination process occurs on the high energy side of the PL spectrum associated with the InGaN underlayer. Using PL decay time measurements I show the additional recombination process for carriers excited in the underlayer occurs on a faster timescale than the recombination at the peak of the PL spectrum. The additional contribution to the spectrum from the faster recombination process is proposed as responsible for the increase in room temperature IQE.
68

Návrh detektoru sekundárních elektronů pro ultravakuový elektronový mikroskop / Design of secondary electron detector for ultrahigh vacuum electron microscope

Skladaný, Roman January 2019 (has links)
In this master’s thesis, a mechanical design of an in-column secondary electrons (SE) detector is presented. It is an ultravacuum compatible fibre-scintillation detector designed for use in an ultrahigh vacuum scanning electron microscope (UHV SEM). The designed in-column SE detector was manufactured and tested upon overcoming R&D challenges. The first section of this thesis deals with theoretical basis needed for understanding of functional principles of UHV SEM system and means of SE’s detection. In the second section, mechanical design of the in-column SE detector is described. The last section describes functionality of the designed detector. Effectiveness of light shielding of the detector was tested and the detective quantum efficiency was measured. Finally, images created by the designed in-column detector and an in-chamber SE detector were evaluated and compared.
69

Evaluation of the Impact of X-ray Tube Voltage and Filter Thickness on the Performance of Spectral Photon-Counting Detectors / Utvärdering av inverkan av röntgenrörsspänning och filtertjocklek på prestanda för spektrala fotonräknande detektorer

Mannila, Cassandra, Larsson, Marcus January 2021 (has links)
During the past years photon-counting detectors (PCDs) have emerged as an alternative to conventional energy-integrating detectors and may significantly improve the standard of care for computed tomography (CT). There are two main alternatives for the material of the detector: cadmium telluride (CdTe) and silicon (Si). The settings of the X-ray tube and the applied filters need to be evaluated and optimized for the new detector technology. In this report, Monte Carlo simulations are used to determine how image quality is affected by different X-ray tube voltages and filter thicknesses. The image quality indicators that were chosen to evaluate are detective quantum efficiency (DQE) for material quantification and both DQE and dose-normalized signal-difference-to-noise ratio (SDNR) for detection tasks. Overall, silicon-based detectors performed better than cadmium-based detectors for quantification imaging tasks for all object thicknesses, while cadmium-based detectors were superior for detection imaging tasks in larger patients. For both silicon- and cadmium-based detectors, the dose-normalized image quality was largely independent of filter thickness, while the X-ray tube voltage had a more distinct impact on the result, where low voltages were optimal. / Under de senaste åren har fotonräknande detektorer blivit aktuellt som ett alternativ till konventionella energiintegrerande detektorer och kommer troligen förbättra datortomografibilder avsevärt. För de nya detektorerna finns det två huvudsakliga materialalternativ: kadmiumtellurid (CdTe) och kisel (Si). Inställningarna för röntgenröret och det pålagda filtret behöver utvärderas och optimeras för den nya detektorteknologin. I denna rapport användes Monte Carlo-simuleringar för att bestämma hur bildkvaliteten påverkades av rörspänningen och filtertjockleken. Bildkvaliteten bestämdes sedan utifrån tre indikatorer, detective quantum efficiency (DQE) för materialbestämning samt både DQE och dosnormaliserad signal-difference-to-noise ratio (SDNR) för detektionsuppgifter.    Den kiselbaserade detektorn presterade bättre än den kadmiumbaserade för materialbestämning för alla patientstorlekar medan den kadmiumbaserade presterade bättre på detektionsuppgifterna för större patienter. Vidare var den dosnormaliserade bildkvaliteten för både kisel- och kadmiumdetektorer svagt beroende av filtertjocklek medan båda påverkades starkt av rörspänningen, där låga spänningar var att föredra.
70

Crystal growth and charge carrier transport in liquid crystals and other novel organic semiconductors

Pokhrel, Chandra Prasad 29 September 2009 (has links)
No description available.

Page generated in 0.0615 seconds