• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cardinal spline wavelet decomposition based on quasi-interpolation and local projection

Ahiati, Veroncia Sitsofe 03 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2009. / Wavelet decomposition techniques have grown over the last two decades into a powerful tool in signal analysis. Similarly, spline functions have enjoyed a sustained high popularity in the approximation of data. In this thesis, we study the cardinal B-spline wavelet construction procedure based on quasiinterpolation and local linear projection, before specialising to the cubic B-spline on a bounded interval. First, we present some fundamental results on cardinal B-splines, which are piecewise polynomials with uniformly spaced breakpoints at the dyadic points Z/2r, for r ∈ Z. We start our wavelet decomposition method with a quasi-interpolation operator Qm,r mapping, for every integer r, real-valued functions on R into Sr m where Sr m is the space of cardinal splines of order m, such that the polynomial reproduction property Qm,rp = p, p ∈ m−1, r ∈ Z is satisfied. We then give the explicit construction of Qm,r. We next introduce, in Chapter 3, a local linear projection operator sequence {Pm,r : r ∈ Z}, with Pm,r : Sr+1 m → Sr m , r ∈ Z, in terms of a Laurent polynomial m solution of minimally length which satisfies a certain Bezout identity based on the refinement mask symbol Am, which we give explicitly. With such a linear projection operator sequence, we define, in Chapter 4, the error space sequence Wr m = {f − Pm,rf : f ∈ Sr+1 m }. We then show by solving a certain Bezout identity that there exists a finitely supported function m ∈ S1 m such that, for every r ∈ Z, the integer shift sequence { m(2 · −j)} spans the linear space Wr m . According to our definition, we then call m the mth order cardinal B-spline wavelet. The wavelet decomposition algorithm based on the quasi-interpolation operator Qm,r, the local linear projection operator Pm,r, and the wavelet m, is then based on finite sequences, and is shown to possess, for a given signal f, the essential property of yielding relatively small wavelet coefficients in regions where the support interval of m(2r · −j) overlaps with a Cm-smooth region of f. Finally, in Chapter 5, we explicitly construct minimally supported cubic B-spline wavelets on a bounded interval [0, n]. We also develop a corresponding explicit decomposition algorithm for a signal f on a bounded interval. ii Throughout Chapters 2 to 5, numerical examples are provided to graphically illustrate the theoretical results.
2

Modélisation, analyse et simulation de problèmes de contact en mécanique des solides et des fluides.

Lleras, Vanessa 20 November 2009 (has links) (PDF)
La modélisation des problèmes de contact pose de sérieuses difficultés qu'elles soient conceptuelles, mathématiques ou informatiques. Motivés par le rôle fondamental que jouent les phénomènes de contact, nous nous intéressons à la modélisation, l'analyse et la simulation de problèmes de contact intervenant en mécanique des solides et des fluides. Dans une première partie théorique, on étudie le comportement asymptotique de solutions de problèmes variationnels dépendant du temps issus de la mécanique du contact frottant. La deuxième partie est consacrée au contrôle de la qualité des calculs en mécanique des solides. Guidés par la recherche de la formulation et l'étude du contact dans la méthode des éléments finis étendus (XFEM), nous étudions notamment les estimateurs d'erreur par résidu pour la méthode XFEM dans le cas linéaire, ceux pour le problème de contact unilatéral avec frottement de Coulomb approchés par une méthode d'éléments finis standard et l'extension au cas de méthodes mixtes stabilisées (i.e., ne nécessitant pas de condition inf-sup). Cette partie s'achève par la définition du problème de contact avec XFEM suivie d'une estimation a priori de l'erreur. La troisième partie concerne la simulation numérique en mécanique des fluides, plus précisément du problème de contact de la dynamique des globules rouges évoluant dans un fluide régi par les équations de Navier-Stokes en dimension deux.
3

Error analysis of the Galerkin FEM in L 2 -based norms for problems with layers / Fehleranalysis der Galerkin FEM in L2-basierten Normen für Probleme mit Grenzschichten

Schopf, Martin 20 May 2014 (has links) (PDF)
In the present thesis it is shown that the most natural choice for a norm for the analysis of the Galerkin FEM, namely the energy norm, fails to capture the boundary layer functions arising in certain reaction-diffusion problems. In view of a formal Definition such reaction-diffusion problems are not singularly perturbed with respect to the energy norm. This observation raises two questions: 1. Does the Galerkin finite element method on standard meshes yield satisfactory approximations for the reaction-diffusion problem with respect to the energy norm? 2. Is it possible to strengthen the energy norm in such a way that the boundary layers are captured and that it can be reconciled with a robust finite element method, i.e.~robust with respect to this strong norm? In Chapter 2 we answer the first question. We show that the Galerkin finite element approximation converges uniformly in the energy norm to the solution of the reaction-diffusion problem on standard shape regular meshes. These results are completely new in two dimensions and are confirmed by numerical experiments. We also study certain convection-diffusion problems with characterisitc layers in which some layers are not well represented in the energy norm. These theoretical findings, validated by numerical experiments, have interesting implications for adaptive methods. Moreover, they lead to a re-evaluation of other results and methods in the literature. In 2011 Lin and Stynes were the first to devise a method for a reaction-diffusion problem posed in the unit square allowing for uniform a priori error estimates in an adequate so-called balanced norm. Thus, the aforementioned second question is answered in the affirmative. Obtaining a non-standard weak formulation by testing also with derivatives of the test function is the key idea which is related to the H^1-Galerkin methods developed in the early 70s. Unfortunately, this direct approach requires excessive smoothness of the finite element space considered. Lin and Stynes circumvent this problem by rewriting their problem into a first order system and applying a mixed method. Now the norm captures the layers. Therefore, they need to be resolved by some layer-adapted mesh. Lin and Stynes obtain optimal error estimates with respect to the balanced norm on Shishkin meshes. However, their method is unable to preserve the symmetry of the problem and they rely on the Raviart-Thomas element for H^div-conformity. In Chapter 4 of the thesis a new continuous interior penalty (CIP) method is present, embracing the approach of Lin and Stynes in the context of a broken Sobolev space. The resulting method induces a balanced norm in which uniform error estimates are proven. In contrast to the mixed method the CIP method uses standard Q_2-elements on the Shishkin meshes. Both methods feature improved stability properties in comparison with the Galerkin FEM. Nevertheless, the latter also yields approximations which can be shown to converge to the true solution in a balanced norm uniformly with respect to diffusion parameter. Again, numerical experiments are conducted that agree with the theoretical findings. In every finite element analysis the approximation error comes into play, eventually. If one seeks to prove any of the results mentioned on an anisotropic family of Shishkin meshes, one will need to take advantage of the different element sizes close to the boundary. While these are ideally suited to reflect the solution behavior, the error analysis is more involved and depends on anisotropic interpolation error estimates. In Chapter 3 the beautiful theory of Apel and Dobrowolski is extended in order to obtain anisotropic interpolation error estimates for macro-element interpolation. This also sheds light on fundamental construction principles for such operators. The thesis introduces a non-standard finite element space that consists of biquadratic C^1-finite elements on macro-elements over tensor product grids, which can be viewed as a rectangular version of the C^1-Powell-Sabin element. As an application of the general theory developed, several interpolation operators mapping into this FE space are analyzed. The insight gained can also be used to prove anisotropic error estimates for the interpolation operator induced by the well-known C^1-Bogner-Fox-Schmidt element. A special modification of Scott-Zhang type and a certain anisotropic interpolation operator are also discussed in detail. The results of this chapter are used to approximate the solution to a recation-diffusion-problem on a Shishkin mesh that features highly anisotropic elements. The obtained approximation features continuous normal derivatives across certain edges of the mesh, enabling the analysis of the aforementioned CIP method.
4

Error analysis of the Galerkin FEM in L 2 -based norms for problems with layers: On the importance, conception and realization of balancing

Schopf, Martin 07 May 2014 (has links)
In the present thesis it is shown that the most natural choice for a norm for the analysis of the Galerkin FEM, namely the energy norm, fails to capture the boundary layer functions arising in certain reaction-diffusion problems. In view of a formal Definition such reaction-diffusion problems are not singularly perturbed with respect to the energy norm. This observation raises two questions: 1. Does the Galerkin finite element method on standard meshes yield satisfactory approximations for the reaction-diffusion problem with respect to the energy norm? 2. Is it possible to strengthen the energy norm in such a way that the boundary layers are captured and that it can be reconciled with a robust finite element method, i.e.~robust with respect to this strong norm? In Chapter 2 we answer the first question. We show that the Galerkin finite element approximation converges uniformly in the energy norm to the solution of the reaction-diffusion problem on standard shape regular meshes. These results are completely new in two dimensions and are confirmed by numerical experiments. We also study certain convection-diffusion problems with characterisitc layers in which some layers are not well represented in the energy norm. These theoretical findings, validated by numerical experiments, have interesting implications for adaptive methods. Moreover, they lead to a re-evaluation of other results and methods in the literature. In 2011 Lin and Stynes were the first to devise a method for a reaction-diffusion problem posed in the unit square allowing for uniform a priori error estimates in an adequate so-called balanced norm. Thus, the aforementioned second question is answered in the affirmative. Obtaining a non-standard weak formulation by testing also with derivatives of the test function is the key idea which is related to the H^1-Galerkin methods developed in the early 70s. Unfortunately, this direct approach requires excessive smoothness of the finite element space considered. Lin and Stynes circumvent this problem by rewriting their problem into a first order system and applying a mixed method. Now the norm captures the layers. Therefore, they need to be resolved by some layer-adapted mesh. Lin and Stynes obtain optimal error estimates with respect to the balanced norm on Shishkin meshes. However, their method is unable to preserve the symmetry of the problem and they rely on the Raviart-Thomas element for H^div-conformity. In Chapter 4 of the thesis a new continuous interior penalty (CIP) method is present, embracing the approach of Lin and Stynes in the context of a broken Sobolev space. The resulting method induces a balanced norm in which uniform error estimates are proven. In contrast to the mixed method the CIP method uses standard Q_2-elements on the Shishkin meshes. Both methods feature improved stability properties in comparison with the Galerkin FEM. Nevertheless, the latter also yields approximations which can be shown to converge to the true solution in a balanced norm uniformly with respect to diffusion parameter. Again, numerical experiments are conducted that agree with the theoretical findings. In every finite element analysis the approximation error comes into play, eventually. If one seeks to prove any of the results mentioned on an anisotropic family of Shishkin meshes, one will need to take advantage of the different element sizes close to the boundary. While these are ideally suited to reflect the solution behavior, the error analysis is more involved and depends on anisotropic interpolation error estimates. In Chapter 3 the beautiful theory of Apel and Dobrowolski is extended in order to obtain anisotropic interpolation error estimates for macro-element interpolation. This also sheds light on fundamental construction principles for such operators. The thesis introduces a non-standard finite element space that consists of biquadratic C^1-finite elements on macro-elements over tensor product grids, which can be viewed as a rectangular version of the C^1-Powell-Sabin element. As an application of the general theory developed, several interpolation operators mapping into this FE space are analyzed. The insight gained can also be used to prove anisotropic error estimates for the interpolation operator induced by the well-known C^1-Bogner-Fox-Schmidt element. A special modification of Scott-Zhang type and a certain anisotropic interpolation operator are also discussed in detail. The results of this chapter are used to approximate the solution to a recation-diffusion-problem on a Shishkin mesh that features highly anisotropic elements. The obtained approximation features continuous normal derivatives across certain edges of the mesh, enabling the analysis of the aforementioned CIP method.:Notation 1 Introduction 2 Galerkin FEM error estimation in weak norms 2.1 Reaction-diffusion problems 2.2 A convection-diffusion problem with weak characteristic layers and a Neumann outflow condition 2.3 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers 2.3.1 Weakly imposed characteristic boundary conditions 2.4 Numerical experiments 2.4.1 A reaction-diffusion problem with boundary layers 2.4.2 A reaction-diffusion problem with an interior layer 2.4.3 A convection-diffusion problem with characteristic layers and a Neumann outflow condition 2.4.4 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers 3 Macro-interpolation on tensor product meshes 3.1 Introduction 3.2 Univariate C1-P2 macro-element interpolation 3.3 C1-Q2 macro-element interpolation on tensor product meshes 3.4 A theory on anisotropic macro-element interpolation 3.5 C1 macro-interpolation on anisotropic tensor product meshes 3.5.1 A reduced macro-element interpolation operator 3.5.2 The full C1-Q2 interpolation operator 3.5.3 A C1-Q2 macro-element quasi-interpolation operator of Scott-Zhang type on tensor product meshes 3.5.4 Summary: anisotropic C1 (quasi-)interpolation error estimates 3.6 An anisotropic macro-element of tensor product type 3.7 Application of macro-element interpolation on a tensor product Shishkin mesh 4 Balanced norm results for reaction-diffusion 4.1 The balanced finite element method of Lin and Stynes 4.2 A C0 interior penalty method 4.3 Galerkin finite element method 4.3.1 L2-norm error bounds and supercloseness 4.3.2 Maximum-norm error bounds 4.4 Numerical verification 4.5 Further developments and summary References
5

Adaptive least-squares finite element method with optimal convergence rates

Bringmann, Philipp 29 January 2021 (has links)
Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert. Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten. / The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution. This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.

Page generated in 0.1202 seconds